23
20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular structure (inorganic, organic, biological) MS qualitative-quantitative composition structure & comp. of solid surface isotopic ratio of atoms 1940s 1 st Molecular MS 1950s commercialized 1980s big change in MS ions from nonvolatile & labile molecules applicable to biological molecuels 1990s explosive growth into Bio-MS polypeptides proteins high MW biopolymers 20.2 by Prof. Myeong Hee Moon 20A. Molecular Mass Spectra C 6 H 5 CH 2 CH 3 + e- C 6 H 5 CH 2 CH 3 · + + 2e- Electron bombardment Molecular ion Radical ion (same MW) After excitation -- relaxation & produce fragmentation ion C 6 H 5 CH 2 CH 3 · + C 6 H 5 CH 2 + + CH 3 · + Largest ion peak EI of ethylbenzene

Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

  • Upload
    lethien

  • View
    218

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.1

by Prof. Myeong Hee Moon

Ch.20 Molecular Mass Spectrometry

elemental compositionmolecular structure (inorganic, organic, biological)

MS qualitative-quantitative compositionstructure & comp. of solid surfaceisotopic ratio of atoms

1940s 1st Molecular MS1950s commercialized1980s big change in MS

ions from nonvolatile & labile moleculesapplicable to biological molecuels

1990s explosive growth into Bio-MSpolypeptidesproteinshigh MW biopolymers

20.2

by Prof. Myeong Hee Moon

20A. Molecular Mass Spectra

C6H5CH2CH3 + e- C6H5CH2CH3·++ 2e-Electron bombardment

Molecular ionRadical ion(same MW)

After excitation -- relaxation & produce fragmentation ion

C6H5CH2CH3·+ C6H5CH2+ + CH3·+

Largest ion peak

EI of ethylbenzene

Page 2: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.3

by Prof. Myeong Hee Moon

20B. Ion Sources

: gaseous analyte ions to be formed• Ionization sources

Gas-phase sources: vaporization then ionization: for thermally stable sample (bp < 500oC), MW<103 Da

Desorption sources: sample in solid or liquid state--- directly converted to gaseous ions

: applicable to nonvolitile & thermally labile sample

20.4

by Prof. Myeong Hee Moon

• Classification of ion sources

Hard sources: energy imparted to molecules

relaxation --- fragment ions : info about functional group

Soft sources: little fragmentation. : Info about MW

1-decanol

Page 3: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.5

by Prof. Myeong Hee Moon

20B-1. The Electron-Impact (EI) sources

Vaporization electron bombardment (~70V)

(high T)

M + e- M·+ + 2e- : 1/106 ionization (low eff.)

~5V

103~104V

Kinetic energy

2mv2

1 zeV qV KE

e: 1.6x10-19Cz=1

20.6

by Prof. Myeong Hee Moon

• EI spectra

Excitation/relaxation causes fragment ions (daughter ions)

20B-1. The Electron-Impact (EI) sources

Page 4: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.7

by Prof. Myeong Hee Moon

EI of Methylene chloride (MC)Base peak: - Cl

1-pentanol

MW peak : not always present

but very important

Base m/z=44 -CH2CHOH

Isotope peaks12C1H2

35Cl2 (m=84)13C1H2

35Cl2 (m=85)12C1H2

35Cl37Cl (m=86)13C1H2

35Cl37Cl (m=87)

Collision product peaksprotonated molecular ion peak: (M+1)+

2nd order reactionAmount of (M+1)+ conc.

(partial pressure)

20B-1. The Electron-Impact (EI) sources

20.8

by Prof. Myeong Hee Moon

• Advantage & disadvantages

convenienthigh ion currentsgood sensitivitiesextensive fragmentation

– unambiguous identificationDisadvantages

low molecular ion peakvolatilization of sample needed- causes thermal degradation before ionization

remedy: location of heated probe close to entrance slitlow T volatilization using lower pressure

MW < 1000 Da

Advantages

20B-1. The Electron-Impact (EI) sources

Page 5: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.9

by Prof. Myeong Hee Moon

20B-2. Chemical Ionization (CI) sources

EI & CI : interchangeably operated in most instruments

gaseous atoms positive or negative ionscollision with (rare)reagent gas ions (from electron bombardment) CH4, propane, isobutane etc.

: modify EI area with adding vacuum pump (~1 torr) &by reducing slit width to mass analyzerionization area (~ 1 torr)analyzer (<10-5 torr)

: reagent gas reduced (103~104 higher than sample source)

CH4 CH4+, CH3

+ (90%), few CH2+,

CH4+ + CH4 CH5

+ + CH3

CH3+ + CH4 C2H5

+ + CH3

: 2nd most common

20.10

by Prof. Myeong Hee Moon

• In collision with sample MH

CH5+ + MH MH2

+ + CH4

(M+1)+

C2H5+ + MH MH2

+ + C2H4

C2H5+ + MH M+ + C2H6

(M-1)+

H+ transfer

H- transfer

EI : rapid & extensive fragmentationFig. 20-2a

CI : CI spectra provides(M+1)+ or (M-1)+ peaksby addition or subtraction of H under reagent ion

20B-2. Chemical Ionization (CI) sources

Page 6: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.11

by Prof. Myeong Hee Moon

20B-3 Field Ionization Sources and Spectra

• Ion formed under a large E field (108 V/cm)

10~20 kV total. applied to emitters having fine tips (d<1mm)or carbon microtips

carbon dendrites at surface of W wiresby pyrolysis of benzonitrile

Ionization occurs via a quantum mechanical tunneling mechanismin which e- from analyte areextracted by microtips at the anode

Limitation : sensitivity (one order less)

20.12

by Prof. Myeong Hee Moon

20B-4. Field Desorption

• EI & CI: based on ionizing agents acting on gaseous samplebut for nonvolatile or thermally unstable samples (bio)--?

• Desorption ionization methods (recently 1980s): volatilization then ionization

simple in MS spectrum .. molecular ion orprotonated molecular ion

• Field desorption sourcessimilar to field ionization

- probe coated with a solution of sample- heat apply to emitter

(thermal degradation)- but simpler than field ionization (see Fig 20-6)

Page 7: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.13

by Prof. Myeong Hee Moon

• Matrix-Assisted Laser Desorption/Ionization (MALDI)MALDI - good for accurateMW of polar biopolymers

1988 by two groups (German & Jap)

In German group.sample (in aq. alcohol) mixed with matrix (Table 20-4)- evaporated on the surface of metallic probe- laser pulse causes sublimation of analyte into ions & introduces sample ions to TOF

20B-4. Field Desorption

20.14

by Prof. Myeong Hee Moon

20B-4. Field Desorption

Matrix : nicotinic acid absorbs at 266nm (from laser)

Spectrum : multiply charged ionslow background noisecomplete absence of fragmentation

• Mechanism of MALDI is not completely clear

But requires

1. matrix compd must absorb laser strongly

2. “ “ - soluble in solvent

3. analyte should not absorb laser radiation (fragmentation)

Page 8: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.15

by Prof. Myeong Hee Moon

MALDI spectrum from a nicotinic acid matrix irradiated with A 266-nm laser beam, 1990

20B-4. Field Desorption

20.16

by Prof. Myeong Hee Moon

• Electrospray Ionization (ESI)

1984. ESI/MS. Most important for biomolecules

even inorganic & synthetic polymers

~kVAdvantages• useful for thermally fragile

biomolecules(little fragmentation)

• multiply charged ions.m/z within 1500 or less at Q

• direct introduction of samplefrom HPLC or CE columns

Page 9: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.17

by Prof. Myeong Hee Moon

20.18

by Prof. Myeong Hee Moon

• Fast Atom Bombardment (FAB)

FAB had a major role in MS for polar high MW species

: sample in a condensed state (in a glycerol solution matrix)

are ionized by bombarding with Xe or Ar atoms

1. very rapid heating of sample (reduce fragmentation)liquid matrix – healing effect

(reduce lattice energy): healing the damage by bombardment.

2. acceleration of Ar or Xe by ion gun

FAB of organic or biochemical compoundsproduces significant amount of molecular ions

(over 10,000 Mw)

Page 10: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.19

by Prof. Myeong Hee Moon

20C. Mass Spectrometers

volatilizing solid or liq. Sample ---

convert to gaseous Ionization

just like grating in optical ins.

high vacuumneededWhy ?

20.20

by Prof. Myeong Hee Moon

20C-2. Sample Inlet Systems

Devices to put sample into ion source with minimal loss of vacuum

batch, direct probe, chromatographic, CE

• Batch inlet systems

10-4~10-5 torr

by syringe

Page 11: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.21

by Prof. Myeong Hee Moon

• Chromatographic & CE inlet

On-line coupling with MSSections 27D-3, 28C-6, 30B-4

• Direct probe inlet

solid or nonvolatile liquid by using sample holder or probe

inserted into vacuum lock

20C-2. Sample Inlet Systems

20.22

by Prof. Myeong Hee Moon

20C-3. Mass Analyzers

• Ideal performance

: resolution – detect small difference in mass

: analyzer – should allow passage of a sufficient number of ions

to yield readily measurable ion currents

• Resolution of MS

m

mR

m: mass difference between

two adjacent peaks

In case, R=4000 distinguish m/z =400.0 & 400.1or m/z=40.00 & 40.01

Commercial instrument : 500~above 1,000,000

Page 12: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.23

by Prof. Myeong Hee Moon

1) Magnetic Sector Analyzer (classic)

KE of ions

2

2

1mvZeVKE

All ions leaving the slit at app. same KEHeavier ions travel at lower velocity

needs permanent magnetor electromagnet

V: voltage between A & Be: 1.60x10-19C

20.24

by Prof. Myeong Hee Moon

Magnetic force, FM BzeVFM B: magnetic field strength

Centripetal force, FC

r

mvFC

2 r: radius of curvature

FM=FC

In order for an ion to traverse the circular path to the collector

V

erB

z

m

2

22

Vary one of B, V, r while holding two others.

: Modern MS - ion sorting by holding V & r, vary B (by varying current in magnet)

: In case of photographic recordingby holding B & V, vary r.

1) Magnetic Sector Analyzer (classic)

Page 13: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.25

by Prof. Myeong Hee Moon

2) Quadrupole MS

- less expensive, more rugged than magnetic sector

- compact, bench top

- low scan times (<100ms) : good in case of chromatographic

- most common (see section 11B-2)

20.26

by Prof. Myeong Hee Moon

• Advantages of TOF

Simplicity, RuggednessEase of accessibility of ion sourceVirtually unlimited mass range but limited resolution & sensitivity

3) Time of Flight (TOF) MS

See section 11B-3

In TOF-MS, ion acceleration intofield-free drift tube byE pulse of 103~104V.

Page 14: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.27

by Prof. Myeong Hee Moon

4) Ion Trap analyzers (or Ion trap MS)

• Ion trap : a device in which gaseous anions or cations can be

confined for extended periods by electric and/or magnetic fields

Conventional typeIon cyclotron resonance trap

radio frequencyvoltage

Principle: ions of certain m/z circulate in a stable orbit within the trap

When V increased, orbits of heavier ions become stable(lighter, unstable ions hit wall ofring electrode– leave trap throughopenings in the lower end cap)

20.28

by Prof. Myeong Hee Moon

Advantages of Ion trap

: rugged, compact, less expensive500~1000 Da mass range

--- improved with ICRMS

20C-4. Fourier Transform (FT) Instruments

FTMS -- 1980s, it provides improved S/Ngreater speedhigher sensitivity & resolution

FT-ICR MS

Page 15: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.29

by Prof. Myeong Hee Moon

20C-4. Fourier Transform (FT) Instruments

20.30

by Prof. Myeong Hee Moon

• ICR phenomenon

: when gaseous ion drifts into a strong magnetic field

motions become circular but perpendicular to the field directionc: angular frequency or cyclotron frequency

m/z

1

m

zeB

r

v Frequency in radians/s

velocity increase increase in rotation radius of ions

If frequency of Electric field matches with c, trapped ions absorb energy from AC electric field. Absorbed E increases the velocity & rwithout disturbing c.When AC field terminates, radius becomes constant. ----- Then, coherent motion of ensemble of ions of

same m/z at a given AC field.(other m/z ions are not affected)

20C-4. Fourier Transform (FT) Instruments

Page 16: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.31

by Prof. Myeong Hee Moon

• Measurement of ICR signal

Decay pattern createstime domain FT signal

• FT Spectrometers

Ions trapped in cell

Apply short Rf pulse

Image current amplificationdigitization

: coherent circular motion of resonant ions create image currentobserved after termination of freq.sweep signal(current decays with time)

Frequency of current m/z

20C-4. Fourier Transform (FT) Instruments

20.32

by Prof. Myeong Hee Moon

Time domain signal

Frequency domain

Mass domain

Expensive(superconducting magnet)

Resolution in FTMS > 106

precision of frequency measurements

20C-4. Fourier Transform (FT) Instruments

Page 17: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.33

by Prof. Myeong Hee Moon

20D. Applications of Molecular MS

20.34

by Prof. Myeong Hee Moon

20D-1. Identification of Pure Compounds

• MW from MS

identification of molecular ion peaks

or (M+1)+, or (M-1)+ (except EI)

• Molecular formula from Exact MW

ex) purine C5H4N4 (m=120.044)benzamidine C7H8N2 (m=120.069)acetophenone C8H9O (m=120.058)

In case, measured mass of 120.070 (+0.005)only C7H8N2 is close.

• Molecular formulas from isotope ratiosratio of (M+1)+ & (M+2)+

Page 18: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.35

by Prof. Myeong Hee Moon

• Structural information from fragmentation pattern

fragmentationpattern

fragmentation mechanismgeneral rule to interpret spectra

14 m/z – CH2 -- paraffinwater -- (M-18)+

alcohol – (M-CH2OH)+

20D-1. Identification of Pure Compounds

20.36

by Prof. Myeong Hee Moon

• Compound identification from comparison of spectra

: check with possible suspect moleculesand compare mass fragmentation

Modern Technique --- Library search

largest : John Wiley & Sons (>150,000 spectra)use PC (PBM-STIRS)

small libraries – small number but similar group: pesticides, drugs, forensics.

20D-1. Identification of Pure Compounds

Page 19: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.37

by Prof. Myeong Hee Moon

20D-2. Analysis of Mixtures by Hyphenated MS methods

coupling with separation devices

• Chromatography/MS

GC/MS – most powerfulelution of gaseous sample --- sect.27D-3

LC/MS – for nonvolatile --- sect.28C-6CE/MS – for biopolymers --- sect 30B-4

• Tandem Mass Spectrometry (or MSMS)

Coupling of one MS with second MSFirst MS --- isolate the molecular ions from mixtureSecond MS – fragmentation

in a chamber, He is filled (10-3 or 10-4 torr)collisions bet. Fast moving parent ions and Hefragmentation scanned by second spectrometer

20.38

by Prof. Myeong Hee Moon

20D-2. Analysis of Mixtures by Hyphenated MS methods

Page 20: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.39

by Prof. Myeong Hee Moon

• most common Instruments– triple quadrupole MS (QQQ)

20D-2. Analysis of Mixtures by Hyphenated MS methods

20.40

by Prof. Myeong Hee Moon

• Applications of MS/MSTandem MS is more sensitivebecause chemical noise is smaller but expensive

DrugsHormonesPheromonesAlkaloids DNA -- genomicsPeptides proteins -- proteomics

20D-2. Analysis of Mixtures by Hyphenated MS methods

Page 21: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.41

by Prof. Myeong Hee Moon

NP3_P1_1_lab MS

40.00 60.00 80.00 100.00 120.00 140.00 160.00Time0

100

%

Lv_1_0422_T08 1: TOF MS ES+ BPI

2.87e348.49

39.7636.97

36.54

33.56

83.0749.56

67.43

59.01

70.72

75.96

88.89

110.16

104.77

100.03

126.55114.86143.36127.19

140.98145.67 TIME (min)

nanoLC chromatogram

1st MS

Protein Identification Scheme in Shotgun Approach (NanoLC-MSMS)

~1.0g injection

NP3_P1_1_lab MS

250 500 750 1000 1250 1500 1750m/z0

100

%

Lv_1_0422_T08 402 (73.217) 2: TOF MSMS 766.87ES+ 49326.22

213.13397.26

635.34

635.28821.41 950.45 1136.57

1321.75

Mass Spectrum at 72.92minNP3_P1_1_lab MS

200 400 600 800 1000 1200 1400 1600m/z0

100

%

Lv_1_0422_T08 1082 (72.953) 1: TOF MS ES+ 217766.88

723.34

547.31

189.13 543.29

768.38

988.55

1063.57

1064.57

MSMS spectrum of m/z=766.88

2nd MS

m/z m/z

GILAADESVGTMGNRFructose-bisphosphate aldolase B

Sample : Rat Liver Cell Lysates

20.42

by Prof. Myeong Hee Moon

: Minimizes post-column band broadening: Improves electrospray efficiency by using a low flow rate <250nL/min.: On-line sample clean-up & minimization of dead volume between sample trap and anal. column (20nL)

Fritless pulled tip columnC18-5m-100A, 75m x 15cm

Sampletrappingcolumn

C18-5m-200A75m x 1.5cm

Pt leadfor electrical contact (2.0~2.5kV)

on-off valve for vent

Mass Spectrometer

Direct Interface between Nanoflow HPLC and ESI-MS & On-line Sample Clean-up

200nL/min.

Page 22: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.43

by Prof. Myeong Hee Moon

Nanoflow LC/MS interface for Ion Trap MS

20.44

by Prof. Myeong Hee Moon

Shotgun Proteomics

: Shotgun Identification of Proteins in Mixture

Digestion

protease

Protein mixture Peptide mixture

HPLC MS/MSDatabaseSearch

(tandem MS)

ES Source

MS-1 MS-2

Collision Cell

DetectorInput: peptides from enzymatic digest

Select for a particular ion

(peptide)

Hegas

F1 F5F4F3F2

Output: fragmentsfrom daughter ions

P1

P2

P3

P4

P5

HPLC

Tandem MS

Page 23: Ch.20 Molecular Mass Spectrometrychem.yonsei.ac.kr/~mhmoon/pdf/InsAnal/Ch20.pdf · 20.1 by Prof. Myeong Hee Moon Ch.20 Molecular Mass Spectrometry elemental composition molecular

20.45

by Prof. Myeong Hee Moon

CID (Collision Induced Dissociation) Patternof a Tryptic Peptide

L F S Q V G Kb series ions

y series ions

b1

114.1b2

261.2b3

348.2b4

476.3b5

575.3b6

632.3

665.4y6

518.3y5

431.3y4

303.2y3

204.1y2

147.1y1

m/z

[LFSQVGK+H]+

=778.4 Da

b2

b3

b4b5

b6

y6

y5

y4y3y2

y1

K G V Q S FCIDspectrum