20
[SHIVOK SP211] November 1, 2015 Page 1 CH 16 WavesI I. Types of Waves A. Mechanical waves. These waves have two central features: They are governed by Newton’s laws, and they can exist only within a material medium, such as water, air, and rock. Common examples include water waves, sound waves, and seismic waves. B. Electromagnetic waves. These waves require no material medium to exist. All electromagnetic waves travel through a vacuum at the same exact speed c= 299,792,458 m/s. Common examples include visible and ultraviolet light, radio and television waves, microwaves, x rays, and radar (We will cover these in Physics II in more detail.) C. Matter waves. These waves are associated with electrons, protons, and other fundamental particles, and even atoms and molecules. These waves are also called matter waves (study in Quantum Mechanics.) II. Transverse and Longitudinal Waves A. In a transverse wave, the displacement of every such oscillating element along the wave is perpendicular to the direction of travel of the wave, as indicated in Fig. below.

CH 16 Structured Notes with blanks frequencies associated with these modes are often labeled f 1, f 2, f 3, and so on. The collection of all possible oscillation modes is called the

  • Upload
    hatram

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

 [SHIVOK SP211] November 1, 2015 

 

 Page1

CH 16 

Waves‐I

I. TypesofWaves

A. Mechanicalwaves.Thesewaveshavetwocentralfeatures:TheyaregovernedbyNewton’slaws,andtheycanexistonlywithinamaterialmedium,suchaswater,air,androck.Commonexamplesincludewaterwaves,soundwaves,andseismicwaves.

B. Electromagneticwaves.Thesewavesrequirenomaterialmediumtoexist.Allelectromagneticwavestravelthroughavacuumatthesameexactspeedc=299,792,458m/s.Commonexamplesincludevisibleandultravioletlight,radioandtelevisionwaves,microwaves,xrays,andradar(WewillcovertheseinPhysicsIIinmoredetail.)

C. Matterwaves.Thesewavesareassociatedwithelectrons,protons,andotherfundamentalparticles,andevenatomsandmolecules.Thesewavesarealsocalledmatterwaves(studyinQuantumMechanics.)

II. TransverseandLongitudinalWaves 

A. Inatransversewave,thedisplacementofeverysuchoscillatingelementalongthewaveisperpendiculartothedirectionoftravelofthewave,asindicatedinFig.below.

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page2

B. Inalongitudinalwavethemotionoftheoscillatingparticlesisparalleltothedirectionofthewave’stravel,asshowninFig.below.

 

III. Wavevariables

A. TransverseWaveEquation

 

1. Theamplitudeymofawaveisthemagnitudeofthemaximumdisplacementoftheelementsfromtheirequilibriumpositionsasthewavepassesthroughthem.

2. Thephaseofthewaveistheargument(kx–wt)ofthesinefunction;asthewavesweepsthroughastringelementataparticularpositionx,thephasechangeslinearlywithtimet.

3. Thewavelengthofawaveisthedistanceparalleltothedirectionofthewave’stravelbetweenrepetitionsoftheshapeofthewave(orwaveshape).Itisrelatedtotheangularwavenumber,k,by

 

4. TheperiodofoscillationTofawaveisthetimeforanelementtomovethroughonefulloscillation.Itisrelatedtotheangularfrequency,w,by

 

5. Thefrequencyfofawaveisdefinedas1/Tandisrelatedtotheangularfrequencywby

 

6. Aphaseconstantfinthewavefunction:y=Ymsin(kx–t+f).Thevalueoffcanbechosensothatthefunctiongivessomeotherdisplacementandslopeatx=0whent=0.

 

 [SHIVOK SP211] November 1, 2015 

 

 Page3

IV. TheSpeedofaTravelingWave 

 

A. AsthewaveinFig.16‐7abovemoves,eachpointofthemovingwaveform,suchaspointAmarkedonapeak,retainsitsdisplacementy.(Pointsonthestringdonotretaintheirdisplacement,butpointsonthewaveformdo.)IfpointAretainsitsdisplacementasitmoves,thephasegivingitthatdisplacementmustremainaconstant:

1.  

2. Takingthederivativeweget

 

 

 

 

3. Thus

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page4

B. Sampleproblem:TransverseWave

1. Awavetravelingalongastringisdescribedbyy(x,t) = 0.00327 sin (72.1x – 2.72t) 

inwhichthenumericalconstantsareinSIunits(0.00327m,72.1rad/m,and2.72rad/s).

a) Whatistheamplitudeofthiswave?

(1) ym=

b) Whatisthewavelength,period,andfrequencyofthiswave? 

 

 

 

 

 

 

 

 

c) Whatisthevelocityofthiswave? 

 

 

 

d) Whatisthedisplacementofthestringatx=22.5cm,andt=18.9s? 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page5

V. WaveSpeedonaStretchedString

A. Thespeedofawavealongastretchedidealstringdependsonlyonthetensionandlineardensityofthestringandnotonthefrequencyofthewave.

 

 

1. AsmallstringelementoflengthlwithinthepulseisanarcofacircleofradiusRandsubtendinganangle2atthecenterofthatcircle.Aforcewithamagnitudeequaltothetensioninthestring,,pullstangentiallyonthiselementateachend.Thehorizontalcomponentsoftheseforcescancel,buttheverticalcomponentsaddtoformaradialrestoringforce.Forsmallangles,

 

 

2. Ifmisthelinearmassdensityofthestring,andmthemassofthesmallelement,

 

 

3. Theelementhasacceleration: 

 

4. Therefore, 

 [SHIVOK SP211] November 1, 2015 

 

 Page6

VI. EnergyandPowerofaWaveTravelingalongaString

 

A. Transversespeed 

 

B. Kineticenergy

1.  

2. Thus

 

3. Finally

 

 

C. Theaveragepower,whichistheaveragerateatwhichenergyofbothkinds(kineticenergyandelasticpotentialenergy)istransmittedbythewave,is:

 

 [SHIVOK SP211] November 1, 2015 

 

 Page7

D. Example,TransverseWave:

1. Astringalongwhichwavescantravelis2.70mlongandhasamassof260g.Thetensioninthestringis36.0N.Whatmustbethefrequencyofthetravelingwavesofamplitude7.70mmfortheaveragepowertobe85.0W?

a) Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page8

VII. TheWaveEquation

A. Derivation

1. Letusstartwithadrawing: 

 

 

 

   

 

 

2. Ifdisplacementinthey‐directionisnotabsurdlyhigh,thentensionisequalonbothsidesofthestringsegment.Thus,

 

 

3. Then,thenetforceinthey‐directionisFy= 

 

4. ApplyingNSL: 

 

5. Deltamass: 

 

6. Usingtheslopeofthestringsegment: 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

 Page9

7. Puttingittogether: 

 

 

8. Solutionofthisdifferentialequationtakesform: 

 

 

9. UnitsoftheConstant? 

 

 

B. Using__________________wefinallygetthewaveequation:Thegeneraldifferentialequationthatgovernsthetravelofwavesofalltypes

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page10

VIII. TheSuperpositionofWaves 

A. Thedisplacementofthestringwhenwavesoverlapisthenthealgebraicsum

 

1. Overlappingwavesalgebraicallyaddtoproducearesultantwave(ornetwave).

2. Overlappingwavesdonotinanywayalterthetravelofeachother. 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page11

IX. InterferenceofWaves 

A. Iftwosinusoidalwavesofthesameamplitudeandwavelengthtravelinthesamedirectionalongastretchedstring,theyinterferetoproducearesultantsinusoidalwavetravelinginthatdirection.

 

1. Letusstartwithtwowaves: 

 

 

 

2. Theiralgebraicsum:

 

 

 

3. UsingAppendixe,thesumofthesinesoftwoangles:

4. Thustheirdisplacementis: 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page12

5. Graphicalrepresentation

 

 

6. Table:

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page13

B. Sampleproblem:

1. Twoidenticaltravelingwaves,movinginthesamedirection,areoutofphasebyπ/2rad.Whatistheamplitudeoftheresultantwaveintermsofthecommonamplitudeymofthetwocombiningwaves?

 

a) Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page14

X. StandingWaves

A. Diagram

 

B. Iftwosinusoidalwavesofthesameamplitudeandwavelengthtravelinoppositedirectionsalongastretchedstring,theirinterferencewitheachotherproducesastandingwave.

1. Letusstartwithourtwowaves

 

 

2. Theiralgebraicsum: 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page15

3. UsingAppendixe,thesumofthesinesoftwoangles:

4. Thustheirdisplacementis: 

 

 

5. Inthestandingwaveequation,theamplitudeiszeroforvaluesofkxthatgive

 

 

a) Thosevaluesare

b) Since

, weget , for n =0,1,2, . . . (nodes), asthepositionsofzeroamplitudeorthenodes.

Theadjacentnodesarethereforeseparatedby, halfawavelength.

6. Theamplitudeofthestandingwavehasamaximumvalueof

, whichoccursforvaluesofkxthatgive . a) Thosevaluesare

. b) Thatis,

, asthepositionsofmaximumamplitudeortheantinodes.The

antinodesareseparatedby andarelocatedhalfwaybetweenpairsofnodes.

 [SHIVOK SP211] November 1, 2015 

 

  Page16

XI. StandingWaves,ReflectionsataBoundary

A. Diagram

 

 

 

B. Rememberinordertotrulysolveadifferentialequationyouneedtoapplyyourboundaryconditions.

 

 [SHIVOK SP211] November 1, 2015 

 

  Page17

XII. StandingWavesandResonance

A. Forcertainfrequencies,theinterferenceproducesastandingwavepattern(oroscillationmode)withnodesandlargeantinodeslikethoseinFig.16‐19.

 

 

1. Fig.16‐19Stroboscopicphotographsreveal(imperfect)standingwavepatternsonastringbeingmadetooscillatebyanoscillatorattheleftend.Thepatternsoccuratcertainfrequenciesofoscillation.(RichardMegna/FundamentalPhotographs)

B. Suchastandingwaveissaidtobeproducedatresonance,andthestringissaidtoresonateatthesecertainfrequencies,calledresonantfrequencies.

 

 [SHIVOK SP211] November 1, 2015 

 

  Page18

C. Thefrequenciesassociatedwiththesemodesareoftenlabeledf1,

f2,f3,andsoon.Thecollectionofallpossibleoscillationmodesis

calledtheharmonicseries,andniscalledtheharmonicnumberofthenthharmonic.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page19

D. Sampleproblems:

1. Astringstretchedbetweentwoclampsismadetooscillateinstandingwavepatterns.WhatisthewavelengthforeachofthestandingpatternsshownbelowifL=100cm?Whatistheharmonicineachcase?

  

     

λ=________m,_____harmonic λ=________m,_____harmonic

2. StringsAandBhaveidenticallengthsandlineardensities,butstringBisundergreatertensionthanstringA.Figurebelowshowsfoursituations,(a)through(d),inwhichstandingwavepatternsexistonthetwostrings.InwhichsituationsistherethepossibilitythatstringsAandBareoscillatingatthesameresonantfrequency?

 

 

  

 

a) Answer: 

 

 

 

 [SHIVOK SP211] November 1, 2015 

 

  Page20

3. Anylonguitarstringhasalineardensityof7.20g/mandisunderatensionof150N.ThefixedsupportsaredistanceD=90.0cmapart.ThestringisoscillatinginthestandingwavepatternshowninFig.below.Calculatethe(a)speed,(b)wavelength,and(c)frequencyofthetravelingwaveswhosesuperpositiongivesthisstandingwave.

 

 

  

 

a) Solution