41
CHAPTER 3 Section 3-1 3-1. The range of X is { } 1000 ,..., 2 , 1 , 0 3-2. The range of X is { } 012 50 , , ,..., 3-3. The range of X is { } 012 99999 , , ,..., 3-4. The range of X is { } 012345 ,,,,, 3-5. The range of X is { . Because 490 parts are conforming, a nonconforming part must be selected in 491 selections. } } 491 ,..., 2 , 1 3-6. The range of X is { . Although the range actually obtained from lots typically might not exceed 10%. 012 100 , , ,..., 3-7. The range of X is conveniently modeled as all nonnegative integers. That is, the range of X is { } 012 , , ,... 3-8. The range of X is conveniently modeled as all nonnegative integers. That is, the range of X is { } 012 , , ,... 3-9. The range of X is { } 15 ,..., 2 , 1 , 0 3-10. The possible totals for two orders are 1/8 + 1/8 = 1/4, 1/8 + 1/4 = 3/8, 1/8 + 3/8 = 1/2, 1/4 + 1/4 = 1/2, 1/4 + 3/8 = 5/8, 3/8 + 3/8 = 6/8. Therefore the range of X is 1 4 3 8 1 2 5 8 6 8 , , , , 3-11. The range of X is } 10000 , , 2 , 1 , 0 { 3-12.The range of X is {100, 101, …, 150} 3-13.The range of X is {0,1,2,…, 40000)

Ch 03 Solution

Embed Size (px)

Citation preview

Page 1: Ch 03 Solution

CHAPTER 3 Section 3-1 3-1. The range of X is { } 1000,...,2,1,0 3-2. The range of X is { } 0 12 50, , ,..., 3-3. The range of X is { } 0 12 99999, , ,..., 3-4. The range of X is { } 0 12 3 4 5, , , , , 3-5. The range of X is { . Because 490 parts are conforming, a nonconforming part must be selected in 491 selections.

}

}

491,...,2,1

3-6. The range of X is { . Although the range actually obtained from lots typically might not exceed 10%.

0 12 100, , ,...,

3-7. The range of X is conveniently modeled as all nonnegative integers. That is, the range of X is { }0 12, , ,... 3-8. The range of X is conveniently modeled as all nonnegative integers. That is, the range of X is { }0 12, , ,... 3-9. The range of X is { } 15,...,2,1,0 3-10. The possible totals for two orders are 1/8 + 1/8 = 1/4, 1/8 + 1/4 = 3/8, 1/8 + 3/8 = 1/2, 1/4 + 1/4 = 1/2, 1/4 + 3/8 = 5/8, 3/8 + 3/8 = 6/8.

Therefore the range of X is 14

38

12

58

68

, , , ,⎧⎨⎩

⎫⎬⎭

3-11. The range of X is }10000,,2,1,0{ … 3-12.The range of X is {100, 101, …, 150} 3-13.The range of X is {0,1,2,…, 40000) Section 3-2 3-14.

6/1)3(6/1)2(

3/1)5.1()5.1(3/16/16/1)0()0(

==

====+===

X

X

X

X

ff

XPfXPf

a) P(X = 1.5) = 1/3 b) P(0.5< X < 2.7) = P(X = 1.5) +P(X = 2) = 1/3 + 1/6 = 1/2 c) P(X > 3) = 0 d) (0 2) ( 0) ( 1.5) 1/ 3 1/ 3 2 / 3P X P X P X≤ < = = + = = + =e) P(X = 0 or X = 2) = 1/3 + 1/6 = 1/2

3-15. All probabilities are greater than or equal to zero and sum to one.

3-1

Page 2: Ch 03 Solution

CHAPTER 3 Section 3-1 3-1. The range of X is { } 1000,...,2,1,0 3-2. The range of X is { } 0 12 50, , ,..., 3-3. The range of X is { } 0 12 99999, , ,..., 3-4. The range of X is { } 0 12 3 4 5, , , , , 3-5. The range of X is { . Because 490 parts are conforming, a nonconforming part must be selected in 491 selections.

}

}

491,...,2,1

3-6. The range of X is { . Although the range actually obtained from lots typically might not exceed 10%.

0 12 100, , ,...,

3-7. The range of X is conveniently modeled as all nonnegative integers. That is, the range of X is { }0 12, , ,... 3-8. The range of X is conveniently modeled as all nonnegative integers. That is, the range of X is { }0 12, , ,... 3-9. The range of X is { } 15,...,2,1,0 3-10. The possible totals for two orders are 1/8 + 1/8 = 1/4, 1/8 + 1/4 = 3/8, 1/8 + 3/8 = 1/2, 1/4 + 1/4 = 1/2, 1/4 + 3/8 = 5/8, 3/8 + 3/8 = 6/8.

Therefore the range of X is 14

38

12

58

68

, , , ,⎧⎨⎩

⎫⎬⎭

3-11. The range of X is }10000,,2,1,0{ … 3-12.The range of X is {100, 101, …, 150} 3-13.The range of X is {0,1,2,…, 40000) Section 3-2 3-14.

6/1)3(6/1)2(

3/1)5.1()5.1(3/16/16/1)0()0(

==

====+===

X

X

X

X

ff

XPfXPf

a) P(X = 1.5) = 1/3 b) P(0.5< X < 2.7) = P(X = 1.5) +P(X = 2) = 1/3 + 1/6 = 1/2 c) P(X > 3) = 0 d) (0 2) ( 0) ( 1.5) 1/ 3 1/ 3 2 / 3P X P X P X≤ < = = + = = + =e) P(X = 0 or X = 2) = 1/3 + 1/6 = 1/2

3-15. All probabilities are greater than or equal to zero and sum to one.

3-1

Page 3: Ch 03 Solution

a) P(X ≤ 2)=1/8 + 2/8 + 2/8 + 2/8 + 1/8 = 1 b) P(X > - 2) = 2/8 + 2/8 + 2/8 + 1/8 = 7/8 c) P(-1 ≤ X ≤ 1) = 2/8 + 2/8 + 2/8 =6/8 = 3/4 d) P(X ≤ -1 or X=2) = 1/8 + 2/8 +1/8 = 4/8 =1/2 3-16. All probabilities are greater than or equal to zero and sum to one.

a) P(X≤ 1)=P(X=1)=0.5714 b) P(X>1)= 1-P(X=1)=1-0.5714=0.4286 c) P(2<X<6)=P(X=3)=0.1429 d) P(X≤1 or X>1)= P(X=1)+ P(X=2)+P(X=3)=1 3-17. Probabilities are nonnegative and sum to one. a) P(X = 4) = 9/25 b) P(X ≤ 1) = 1/25 + 3/25 = 4/25 c) P(2 ≤ X < 4) = 5/25 + 7/25 = 12/25 d) P(X > −10) = 1 3-18. Probabilities are nonnegative and sum to one. a) P(X = 2) = 3/4(1/4)2 = 3/64 b) P(X ≤ 2) = 3/4[1+1/4+(1/4)2] = 63/64 c) P(X > 2) = 1 − P(X ≤ 2) = 1/64 d) P(X ≥ 1) = 1 − P(X ≤ 0) = 1 − (3/4) = 1/4 3-19. X = number of successful surgeries. P(X=0)=0.1(0.33)=0.033 P(X=1)=0.9(0.33)+0.1(0.67)=0.364 P(X=2)=0.9(0.67)=0.603 3-20. P(X = 0) = 0.023 = 8 x 10-6

P(X = 1) = 3[0.98(0.02)(0.02)]=0.0012 P(X = 2) = 3[0.98(0.98)(0.02)]=0.0576 P(X = 3) = 0.983 = 0.9412 3-21. X = number of wafers that pass P(X=0) = (0.2)3 = 0.008 P(X=1) = 3(0.2)2(0.8) = 0.096 P(X=2) = 3(0.2)(0.8)2 = 0.384 P(X=3) = (0.8)3 = 0.512 3-22. X: the number of computers that vote for a left roll when a right roll is appropriate.

p=0.0001. P(X=0)=(1-p)4=0.99994=0.9996 P(X=1)=4*(1-p)3p=4*0.999930.0001=0.0003999 P(X=2)=C4

2(1-p)2p2=5.999*10-8

P(X=3)=C43(1-p)1p3=3.9996*10-12

P(X=4)=C40(1-p)0p4=1*10-16

3-23. P(X = 50 million) = 0.5, P(X = 25 million) = 0.3, P(X = 10 million) = 0.2 3-24. P(X = 10 million) = 0.3, P(X = 5 million) = 0.6, P(X = 1 million) = 0.1 3-25. P(X = 15 million) = 0.6, P(X = 5 million) = 0.3, P(X = -0.5 million) = 0.1 3-26. X = number of components that meet specifications P(X=0) = (0.05)(0.02) = 0.001 P(X=1) = (0.05)(0.98) + (0.95)(0.02) = 0.068 P(X=2) = (0.95)(0.98) = 0.931

3-2

Page 4: Ch 03 Solution

3-27. X = number of components that meet specifications P(X=0) = (0.05)(0.02)(0.01) = 0.00001 P(X=1) = (0.95)(0.02)(0.01) + (0.05)(0.98)(0.01)+(0.05)(0.02)(0.99) = 0.00167 P(X=2) = (0.95)(0.98)(0.01) + (0.95)(0.02)(0.99) + (0.05)(0.98)(0.99) = 0.07663 P(X=3) = (0.95)(0.98)(0.99) = 0.92169 Section 3-3

3-28. where

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

≤<≤<≤

<≤<

=

xxx

xx

xF

31326/525.13/25.103/1

0,0

)(

6/1)3(6/1)2(

3/1)5.1()5.1(3/16/16/1)0()0(

==

====+===

X

X

X

X

ff

XPfXPf

3-29.

where

⎪⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎪

≤<≤<≤<≤−−<≤−

−<

=

xxxxx

x

xF

21218/7108/5018/3128/1

2,0

)(

8/1)2(8/2)1(8/2)0(8/2)1(8/1)2(

====−=−

X

X

X

X

X

fffff

a) P(X ≤ 1.25) = 7/8 b) P(X ≤ 2.2) = 1 c) P(-1.1 < X ≤ 1) = 7/8 − 1/8 = 3/4 d) P(X > 0) = 1 − P(X ≤ 0) = 1 − 5/8 = 3/8

3-30. where

⎪⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎪

≤<≤<≤<≤<≤

<

=

xxxxx

x

xF

414325/163225/92125/41025/1

0,0

)(

25/9)4(25/7)3(25/5)2(25/3)1(25/1)0(

=====

X

X

X

X

X

fffff

a) P(X < 1.5) = 4/25 b) P(X ≤ 3) = 16/25 c) P(X > 2) = 1 − P(X ≤ 2) = 1 − 9/25 = 16/25 d) P(1 < X ≤ 2) = P(X ≤ 2) − P(X ≤ 1) = 9/25 − 4/25 = 5/25 = 1/5 3-31.

3-3

Page 5: Ch 03 Solution

3-27. X = number of components that meet specifications P(X=0) = (0.05)(0.02)(0.01) = 0.00001 P(X=1) = (0.95)(0.02)(0.01) + (0.05)(0.98)(0.01)+(0.05)(0.02)(0.99) = 0.00167 P(X=2) = (0.95)(0.98)(0.01) + (0.95)(0.02)(0.99) + (0.05)(0.98)(0.99) = 0.07663 P(X=3) = (0.95)(0.98)(0.99) = 0.92169 Section 3-3

3-28. where

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

≤<≤<≤

<≤<

=

xxx

xx

xF

31326/525.13/25.103/1

0,0

)(

6/1)3(6/1)2(

3/1)5.1()5.1(3/16/16/1)0()0(

==

====+===

X

X

X

X

ff

XPfXPf

3-29.

where

⎪⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎪

≤<≤<≤<≤−−<≤−

−<

=

xxxxx

x

xF

21218/7108/5018/3128/1

2,0

)(

8/1)2(8/2)1(8/2)0(8/2)1(8/1)2(

====−=−

X

X

X

X

X

fffff

a) P(X ≤ 1.25) = 7/8 b) P(X ≤ 2.2) = 1 c) P(-1.1 < X ≤ 1) = 7/8 − 1/8 = 3/4 d) P(X > 0) = 1 − P(X ≤ 0) = 1 − 5/8 = 3/8

3-30. where

⎪⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎪

≤<≤<≤<≤<≤

<

=

xxxxx

x

xF

414325/163225/92125/41025/1

0,0

)(

25/9)4(25/7)3(25/5)2(25/3)1(25/1)0(

=====

X

X

X

X

X

fffff

a) P(X < 1.5) = 4/25 b) P(X ≤ 3) = 16/25 c) P(X > 2) = 1 − P(X ≤ 2) = 1 − 9/25 = 16/25 d) P(1 < X ≤ 2) = P(X ≤ 2) − P(X ≤ 1) = 9/25 − 4/25 = 5/25 = 1/5 3-31.

3-3

Page 6: Ch 03 Solution

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

≤<≤<≤<≤

<

=

xxxx

x

xF

3,132,488.021,104.010,008.0

0,0

)(

where

,512.0)8.0()3(,384.0)8.0)(8.0)(2.0(3)2(,096.0)8.0)(2.0)(2.0(3)1(

,008.02.0)0(.

3

3

======

==

fff

f

3-32.

0, 0

0.9996, 0 1( ) 0.9999, 1 3

0.99999, 3 41, 4

xx

F x xx

x

<⎧ ⎫⎪ ⎪≤ <⎪ ⎪⎪ ⎪= ≤ <⎨ ⎬⎪ ⎪≤ <⎪ ⎪

≤⎪ ⎪⎩ ⎭

where

4

3

8

12

16

.(0) 0.9999 0.9996,

(1) 4(0.9999 )(0.0001) 0.0003999,(2) 5.999*10 ,

(3) 3.9996*10 ,(4) 1*10

ff

fff

= == =

=

=

=

3-33.

⎪⎪⎭

⎪⎪⎬

⎪⎪⎩

⎪⎪⎨

≤<≤<≤

<

=

xxx

x

xF

50,15025,5.02510,2.0

10,0

)(

where P(X = 50 million) = 0.5, P(X = 25 million) = 0.3, P(X = 10 million) = 0.2

3-4

Page 7: Ch 03 Solution

3-34.

⎪⎪⎭

⎪⎪⎬

⎪⎪⎩

⎪⎪⎨

≤<≤<≤

<

=

xxx

x

xF

10,1105,7.051,1.0

1,0

)(

where P(X = 10 million) = 0.3, P(X = 5 million) = 0.6, P(X = 1 million) = 0.1

3-35. The sum of the probabilities is 1 and all probabilities are greater than or equal to zero;

pmf: f(1) = 0.5, f(3) = 0.5 a) P(X ≤ 3) = 1

b) P(X ≤ 2) = 0.5 c) P(1 ≤ X ≤ 2) = P(X=1) = 0.5 d) P(X>2) = 1 − P(X≤2) = 0.5 3-36. The sum of the probabilities is 1 and all probabilities are greater than or equal to zero; pmf: f(1) = 0.7, f(4) = 0.2, f(7) = 0.1

a) P(X ≤ 4) = 0.9 b) P(X > 7) = 0 c) P(X ≤ 5) = 0.9 d) P(X>4) = 0.1 e) P(X≤2) = 0.7 3-37. The sum of the probabilities is 1 and all probabilities are greater than or equal to zero; pmf: f(-10) = 0.25, f(30) = 0.5, f(50) = 0.25

a) P(X≤50) = 1 b) P(X≤40) = 0.75 c) P(40 ≤ X ≤ 60) = P(X=50)=0.25 d) P(X<0) = 0.25 e) P(0≤X<10) = 0 f) P(−10<X<10) = 0

3-5

Page 8: Ch 03 Solution

3-38. The sum of the probabilities is 1 and all probabilities are greater than or equal to zero; pmf: f1/8) = 0.2, f(1/4) = 0.7, f(3/8) = 0.1

a) P(X≤1/18) = 0 b) P(X≤1/4) = 0.9 c) P(X≤5/16) = 0.9 d) P(X>1/4) = 0.1 e) P(X≤1/2) = 1 Section 3-4 3-39. Mean and Variance

2)2.0(4)2.0(3)2.0(2)2.0(1)2.0(0)4(4)3(3)2(2)1(1)0(0)(

=++++=++++== fffffXEμ

22)2.0(16)2.0(9)2.0(4)2.0(1)2.0(0)4(4)3(3)2(2)1(1)0(0)(2

222222

=−++++=

−++++= μfffffXV

3- 40. Mean and Variance for random variable in exercise 3-14

333.1)6/1(3)6/1(2)3/1(5.1)3/1(0)3(3)2(2)5.1(5.1)0(0)(

=+++=+++== ffffXEμ

139.1333.1)6/1(9)6/1(4)3/1(25.2)3/1(0)3(3)2(2)1(5.1)0(0)(

2

22222

=−+++=

−+++= μffffXV

3-41. Determine E(X) and V(X) for random variable in exercise 3-15

. 0)8/1(2)8/2(1)8/2(0)8/2(1)8/1(2

)2(2)1(1)0(0)1(1)2(2)(=+++−−=+++−−−−== fffffXEμ

5.10)8/1(4)8/2(1)8/2(0)8/2(1)8/1(4)2(2)1(1)0(0)1(1)2(2)(

2

222222

=−++++=

−+++−−−−= μfffffXV

3-42. Determine E(X) and V(X) for random variable in exercise 3-16

( ) 1 (1) 2 (2) 3 (3)1(0.5714286) 2(0.2857143) 3(0.1428571)1.571429

E X f f fμ = = + += + +=

2 2 2( ) 1 (1) 2 (2) 3 (3)1.428571

V X f f f 2μ= + + + −=

3-43. Mean and variance for exercise 3-17

8.2)36.0(4)28.0(3)2.0(2)12.0(1)04.0(0)4(4)3(3)2(2)1(1)0(0)(=++++=

++++== fffffXEμ

36.18.2)36.0(16)28.0(9)2.0(4)12.0(1)04.0(0)4(4)3(3)2(2)1(1)0(0)(

2

222222

=−++++=

−++++= μfffffXV

3-6

Page 9: Ch 03 Solution

3-38. The sum of the probabilities is 1 and all probabilities are greater than or equal to zero; pmf: f1/8) = 0.2, f(1/4) = 0.7, f(3/8) = 0.1

a) P(X≤1/18) = 0 b) P(X≤1/4) = 0.9 c) P(X≤5/16) = 0.9 d) P(X>1/4) = 0.1 e) P(X≤1/2) = 1 Section 3-4 3-39. Mean and Variance

2)2.0(4)2.0(3)2.0(2)2.0(1)2.0(0)4(4)3(3)2(2)1(1)0(0)(

=++++=++++== fffffXEμ

22)2.0(16)2.0(9)2.0(4)2.0(1)2.0(0)4(4)3(3)2(2)1(1)0(0)(2

222222

=−++++=

−++++= μfffffXV

3- 40. Mean and Variance for random variable in exercise 3-14

333.1)6/1(3)6/1(2)3/1(5.1)3/1(0)3(3)2(2)5.1(5.1)0(0)(

=+++=+++== ffffXEμ

139.1333.1)6/1(9)6/1(4)3/1(25.2)3/1(0)3(3)2(2)1(5.1)0(0)(

2

22222

=−+++=

−+++= μffffXV

3-41. Determine E(X) and V(X) for random variable in exercise 3-15

. 0)8/1(2)8/2(1)8/2(0)8/2(1)8/1(2

)2(2)1(1)0(0)1(1)2(2)(=+++−−=+++−−−−== fffffXEμ

5.10)8/1(4)8/2(1)8/2(0)8/2(1)8/1(4)2(2)1(1)0(0)1(1)2(2)(

2

222222

=−++++=

−+++−−−−= μfffffXV

3-42. Determine E(X) and V(X) for random variable in exercise 3-16

( ) 1 (1) 2 (2) 3 (3)1(0.5714286) 2(0.2857143) 3(0.1428571)1.571429

E X f f fμ = = + += + +=

2 2 2( ) 1 (1) 2 (2) 3 (3)1.428571

V X f f f 2μ= + + + −=

3-43. Mean and variance for exercise 3-17

8.2)36.0(4)28.0(3)2.0(2)12.0(1)04.0(0)4(4)3(3)2(2)1(1)0(0)(=++++=

++++== fffffXEμ

36.18.2)36.0(16)28.0(9)2.0(4)12.0(1)04.0(0)4(4)3(3)2(2)1(1)0(0)(

2

222222

=−++++=

−++++= μfffffXV

3-6

Page 10: Ch 03 Solution

3-44. Mean and variance for exercise 3-18

31

41

43

41

43)(

10=⎟

⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛= ∑∑

=

= x

x

x

x

xxXE

The result uses a formula for the sum of an infinite series. The formula can be derived from the fact that the

series to sum is the derivative of a

aaahx

x

−== ∑

= 1)(

1

with respect to a.

For the variance, another formula can be derived from the second derivative of h(a) with respect to a. Calculate from this formula

95

41

43

41

43)(

1

2

0

22 =⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛= ∑∑

=

= x

x

x

x

xxXE

Then [ ]94

91

95)()()( 22 =−=−= XEXEXV

3-45. Mean and variance for random variable in exercise 3-19

( ) 0 (0) 1 (1) 2 (2)

0(0.033) 1(0.364) 2(0.603)1.57

E X f f fμ = = + += + +=

2 2 2

2

( ) 0 (0) 1 (1) 2 (2)0(0.033) 1(0.364) 4(0.603) 1.570.3111

V X f f f 2μ= + + −

= + + −=

3-46. Mean and variance for exercise 3-20

6

( ) 0 (0) 1 (1) 2 (2) 3 (3)0(8 10 ) 1(0.0012) 2(0.0576) 3(0.9412)2.940008

E X f f f fμ−

= = + + +

= × + + +=

2 2 2 2( ) 0 (0) 1 (1) 2 (2) 3 (3)0.05876096

V X f f f f 2μ= + + + −=

3-47. Determine x where range is [0,1,2,3,x] and mean is 6.

242.08.4

2.02.16)2.0()2.0(3)2.0(2)2.0(1)2.0(06

)()3(3)2(2)1(1)0(06)(

==

+=++++=

++++===

xx

xx

xxfffffXEμ

3-7

Page 11: Ch 03 Solution

3-48. (a) F(0)=0.17

Nickel Charge: X CDF 0 0.17 2 0.17+0.35=0.52 3 0.17+0.35+0.33=0.85 4 0.17+0.35+0.33+0.15=1

(b)E(X) = 0*0.17+2*0.35+3*0.33+4*0.15=2.29

V(X) =4

2

1( )( )i i

if x x μ

=

−∑ = 1.5259

3-49. X = number of computers that vote for a left roll when a right roll is appropriate.

µ = E(X)=0*f(0)+1*f(1)+2*f(2)+3*f(3)+4*f(4) = 0+0.0003999+2*5.999*10-8+3*3.9996*10-12+4*1*10-16= 0.0004

V(X)=5

2

1

( )( )i ii

f x x μ=

−∑ = 0.00039996

3-50. µ=E(X)=350*0.06+450*0.1+550*0.47+650*0.37=565

V(X)= =6875 ∑=

−4

1

2))((i

i xxf μ

σ= )(XV =82.92 3-51. (a) Transaction Frequency Selects: X f(X)

New order 43 23 0.43 Payment 44 4.2 0.44 Order status 4 11.4 0.04 Delivery 5 130 0.05 Stock level 4 0 0.04 total 100

µ =

E(X) = 23*0.43+4.2*0.44+11.4*0.04+130*0.05+0*0.04 =18.694

V(X) = = 735.964 ∑=

−5

1

2))((i

i xxf μ 1287.27)( == XVσ

(b)

Transaction Frequency All operation: X f(X) New order 43 23+11+12=46 0.43 Payment 44 4.2+3+1+0.6=8.8 0.44 Order status 4 11.4+0.6=12 0.04 Delivery 5 130+120+10=260 0.05 Stock level 4 0+1=1 0.04 total 100

µ = E(X) = 46*0.43+8.8*0.44+12*0.04+260*0.05+1*0.04=37.172

3-8

Page 12: Ch 03 Solution

V(X) = =2947.996 ∑=

−5

1

2))((i

i xxf μ 2955.54)( == XVσ

Section 3-5 3-52. E(X) = (0+100)/2 = 50, V(X) = [(100-0+1)2-1]/12 = 850 3-53. E(X) = (3+1)/2 = 2, V(X) = [(3-1+1)2 -1]/12 = 0.667 3-54. X=(1/100)Y, Y = 15, 16, 17, 18, 19.

E(X) = (1/100) E(Y) = 17.02

1915100

1=⎟

⎠⎞

⎜⎝⎛ +

mm

0002.012

1)11519(100

1)(22

=⎥⎦

⎤⎢⎣

⎡ −+−⎟⎠⎞

⎜⎝⎛=XV mm2

3-55. 3314

313

312)( =⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=XE

in 100 codes the expected number of letters is 300

( ) ( ) ( ) ( )323

314

313

312)( 2222 =−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=XV

in 100 codes the variance is 6666.67 3-56. X = 590 + 0.1Y, Y = 0, 1, 2, ..., 9

E(X) = 45.5902

901.0590 =⎟⎠⎞

⎜⎝⎛ +

+ mm

0825.012

1)109()1.0()(2

2 =⎥⎦

⎤⎢⎣

⎡ −+−=XV mm2

3-57. a = 675, b = 700 (a) µ = E(X) = (a+b)/2= 687.5 V(X) = [(b – a +1)2 – 1]/12= 56.25 (b) a = 75, b = 100 µ = E(X) = (a+b)/2 = 87.5 V(X) = [(b – a + 1)2 – 1]/12= 56.25 The range of values is the same, so the mean shifts by the difference in the two minimums (or maximums) whereas the variance does not change.

3-58. X is a discrete random variable. X is discrete because it is the number of fields out of 28 that has an error. However, X is not uniform because P(X=0) ≠ P(X=1).

3-59. The range of Y is 0, 5, 10, ..., 45, E(X) = (0+9)/2 = 4.5 E(Y) = 0(1/10)+5(1/10)+...+45(1/10) = 5[0(0.1) +1(0.1)+ ... +9(0.1)] = 5E(X) = 5(4.5) = 22.5 V(X) = 8.25, V(Y) = 52(8.25) = 206.25, σY = 14.36

3-9

Page 13: Ch 03 Solution

V(X) = =2947.996 ∑=

−5

1

2))((i

i xxf μ 2955.54)( == XVσ

Section 3-5 3-52. E(X) = (0+100)/2 = 50, V(X) = [(100-0+1)2-1]/12 = 850 3-53. E(X) = (3+1)/2 = 2, V(X) = [(3-1+1)2 -1]/12 = 0.667 3-54. X=(1/100)Y, Y = 15, 16, 17, 18, 19.

E(X) = (1/100) E(Y) = 17.02

1915100

1=⎟

⎠⎞

⎜⎝⎛ +

mm

0002.012

1)11519(100

1)(22

=⎥⎦

⎤⎢⎣

⎡ −+−⎟⎠⎞

⎜⎝⎛=XV mm2

3-55. 3314

313

312)( =⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=XE

in 100 codes the expected number of letters is 300

( ) ( ) ( ) ( )323

314

313

312)( 2222 =−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=XV

in 100 codes the variance is 6666.67 3-56. X = 590 + 0.1Y, Y = 0, 1, 2, ..., 9

E(X) = 45.5902

901.0590 =⎟⎠⎞

⎜⎝⎛ +

+ mm

0825.012

1)109()1.0()(2

2 =⎥⎦

⎤⎢⎣

⎡ −+−=XV mm2

3-57. a = 675, b = 700 (a) µ = E(X) = (a+b)/2= 687.5 V(X) = [(b – a +1)2 – 1]/12= 56.25 (b) a = 75, b = 100 µ = E(X) = (a+b)/2 = 87.5 V(X) = [(b – a + 1)2 – 1]/12= 56.25 The range of values is the same, so the mean shifts by the difference in the two minimums (or maximums) whereas the variance does not change.

3-58. X is a discrete random variable. X is discrete because it is the number of fields out of 28 that has an error. However, X is not uniform because P(X=0) ≠ P(X=1).

3-59. The range of Y is 0, 5, 10, ..., 45, E(X) = (0+9)/2 = 4.5 E(Y) = 0(1/10)+5(1/10)+...+45(1/10) = 5[0(0.1) +1(0.1)+ ... +9(0.1)] = 5E(X) = 5(4.5) = 22.5 V(X) = 8.25, V(Y) = 52(8.25) = 206.25, σY = 14.36

3-9

Page 14: Ch 03 Solution

3-60. , ∑∑ ===xx

XcExxfcxcxfcXE )()()()(

∑∑ =−=−=xx

XcVxfxcxfccxcXV )()()()()()( 222 μμ

Section 3-6 3-61. A binomial distribution is based on independent trials with two outcomes and a constant probability of success on each trial. a) reasonable b) independence assumption not reasonable c) The probability that the second component fails depends on the failure time of the first component. The binomial distribution is not reasonable. d) not independent trials with constant probability e) probability of a correct answer not constant. f) reasonable g) probability of finding a defect not constant. h) if the fills are independent with a constant probability of an underfill, then the binomial distribution for the number packages underfilled is reasonable. i) because of the bursts, each trial (that consists of sending a bit) is not independent j) not independent trials with constant probability 3-62. (a) P(X≤3) = 0.411

(b) P(X>10) = 1 – 0.9994 = 0.0006 (c) P(X=6) = 0.1091 (d) P(6 ≤X ≤11) = 0.9999 – 0.8042 = 0.1957

3-63. (a) P(X≤2) = 0.9298

(b) P(X>8) = 0 (c) P(X=4) = 0.0112 (d) P(5≤X≤7) = 1 - 0.9984 = 0.0016

3-64. a) 2461.0)5.0(5.05

10)5( 55 =⎟⎟

⎞⎜⎜⎝

⎛==XP

b) 8291100 5.05.02

105.05.0

110

5.05.00

10)2( ⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤XP

0547.0)5.0(45)5.0(105.0 101010 =++=

c) 0107.0)5.0(5.01010

)5.0(5.09

10)9( 01019 =⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≥XP

d) 6473 5.05.04

105.05.0

310

)53( ⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=<≤ XP

3223.0)5.0(210)5.0(120 1010 =+=

3-65. a) ( ) 855 1040.299.001.05

10)5( −×=⎟⎟

⎞⎜⎜⎝

⎛==XP

3-10

Page 15: Ch 03 Solution

3-60. , ∑∑ ===xx

XcExxfcxcxfcXE )()()()(

∑∑ =−=−=xx

XcVxfxcxfccxcXV )()()()()()( 222 μμ

Section 3-6 3-61. A binomial distribution is based on independent trials with two outcomes and a constant probability of success on each trial. a) reasonable b) independence assumption not reasonable c) The probability that the second component fails depends on the failure time of the first component. The binomial distribution is not reasonable. d) not independent trials with constant probability e) probability of a correct answer not constant. f) reasonable g) probability of finding a defect not constant. h) if the fills are independent with a constant probability of an underfill, then the binomial distribution for the number packages underfilled is reasonable. i) because of the bursts, each trial (that consists of sending a bit) is not independent j) not independent trials with constant probability 3-62. (a) P(X≤3) = 0.411

(b) P(X>10) = 1 – 0.9994 = 0.0006 (c) P(X=6) = 0.1091 (d) P(6 ≤X ≤11) = 0.9999 – 0.8042 = 0.1957

3-63. (a) P(X≤2) = 0.9298

(b) P(X>8) = 0 (c) P(X=4) = 0.0112 (d) P(5≤X≤7) = 1 - 0.9984 = 0.0016

3-64. a) 2461.0)5.0(5.05

10)5( 55 =⎟⎟

⎞⎜⎜⎝

⎛==XP

b) 8291100 5.05.02

105.05.0

110

5.05.00

10)2( ⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤XP

0547.0)5.0(45)5.0(105.0 101010 =++=

c) 0107.0)5.0(5.01010

)5.0(5.09

10)9( 01019 =⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≥XP

d) 6473 5.05.04

105.05.0

310

)53( ⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=<≤ XP

3223.0)5.0(210)5.0(120 1010 =+=

3-65. a) ( ) 855 1040.299.001.05

10)5( −×=⎟⎟

⎞⎜⎜⎝

⎛==XP

3-10

Page 16: Ch 03 Solution

( ) ( ) ( )

( ) ( )

( ) 46473

1801019

8291100

10138.1)99.0(01.04

1099.001.0

310

)53()

1091.999.001.01010

99.001.09

10)9()

9999.0

99.001.02

1099.001.0

110

99.001.00

10)2()

×=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=<≤

×=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≥

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤

XPd

XPc

XPb

3-66.

1050

0.25

0.20

0.15

0.10

0.05

0.00

x

f(x)

a) , X= 5 is most likely, also ( 5) 0.9999P X = = 5)5.0(10)( === npXE

b) Values X=0 and X=10 are the least likely, the extreme values

3-67.

3-11

Page 17: Ch 03 Solution

109876543210

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

x

pro

b of

x

Binomal (10, 0.01)

P(X = 0) = 0.904, P(X = 1) = 0.091, P(X = 2) = 0.004, P(X = 3) = 0. P(X = 4) = 0 and so forth. Distribution is skewed with 1.0)01.0(10)( === npXE a) The most-likely value of X is 0.

b) The least-likely value of X is 10. 3-68. n=3 and p=0.5

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

≤<≤<≤<≤

<

=

xxxx

x

xF

3132875.0215.010125.0

00

)( where

81

41)3(

83

43

413)2(

83

21

213)1(

81

21)0(

3

2

2

3

=⎟⎠⎞

⎜⎝⎛=

=⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛=

=⎟⎠⎞

⎜⎝⎛⎟⎠⎞

⎜⎝⎛=

=⎟⎠⎞

⎜⎝⎛=

f

f

f

f

3-12

Page 18: Ch 03 Solution

3-69. n=3 and p=0.25

where

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

⎪⎪⎪

≤<≤<≤<≤

<

=

xxxx

x

xF

31329844.0218438.0104219.0

00

)(

641

41)3(

649

43

413)2(

6427

43

413)1(

6427

43)0(

3

2

2

3

=⎟⎠⎞

⎜⎝⎛=

=⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛=

=⎟⎠⎞

⎜⎝⎛⎟⎠⎞

⎜⎝⎛=

=⎟⎠⎞

⎜⎝⎛=

f

f

f

f

3-70. Let X denote the number of defective circuits. Then, X has a binomial distribution with n = 40 and

p = 0.01. Then, P(X = 0) = ( ) 6690.099.001.0 400400 = .

3-71. Let X denote the number of times the line is occupied. Then, X has a binomial distribution with n = 10 and p = 0.4

a.) P X ( ) . ( . ) .= =⎛⎝⎜

⎞⎠⎟ =3

103

0 4 0 6 0 2153 7

b.) ( ) 994.06.04.01)0(1)1( 100100 =−==−=≥ XPXP

c.) 4)4.0(10)( ==XE 3-72. Let X denote the number of questions answered correctly. Then, X is binomial with n = 25 and p = 0.25.

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 2137.075.025.0425

75.025.0325

75.025.0225

75.025.0125

75.025.0025

)5()

10677.975.025.02525

75.025.02425

75.025.02325

75.025.02225

75.025.02125

75.025.02025

)20()

214223

232241250

10025124223

322421520

=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=<

×=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≥

XPb

XPa

3-73. Let X denote the number of mornings the light is green.

( )( )

370.0630.01)4(1)4()

218.08.02.0)4()

410.08.02.0)1()

164204

4151

=−=≤−=>

===

===

XPXPc

XPb

XPa

3-13

Page 19: Ch 03 Solution

3-74. p=0.01, n=15 X: the number of sample mutated

(a) P(X=0) = = 0.86 150 )1(015

pp −⎟⎟⎠

⎞⎜⎜⎝

(b) P(X≤1)=P(X=0)+P(X=1)= 0.99 (c) P(X>7)=P(X=8)+P(X=9)+…+P(X=15)= 0

3-75. (a) n=20, p=0.6122,

P(X≥1) = 1-P(X=0) = 1

(b)P(X≥3) = 1- P(X<3)= 0.999997 (c) µ=E(X)= np=20*0.6122=12.244 V(X)=np(1-p) = 4.748

σ= )(XV =2.179

3-76. n=20,p=0.13

(a) P(X=3) = =0.235 173 )1(320

pp −⎟⎟⎠

⎞⎜⎜⎝

(b) P(X≥3) = 1-P(X<3)=0.492 (c) µ = E(X) = np = 20*0.13 = 2.6 V(X) = np(1-p) = 2.262

σ = )(XV = 1.504 3-77. (a) Binomial distribution, p =104/369 = 4.59394E-06, n = 1E09

(b) P(X=0) = = 0 0910 )1(0

091 EppE

−⎟⎟⎠

⎞⎜⎜⎝

(c) µ = E(X) = np =1E09*0.45939E-06 = 4593.9 V(X) = np(1-p) = 4593.9

3-78. E(X) = 20 (0.01) = 0.2 V(X) = 20 (0.01) (0.99) = 0.198 μ σX X+ = + =3 0 2 3 0198 153. . . a) ) X is binomial with n = 20 and p = 0.01

( ) ( )[ ] 0169.099.001.099.001.01)1(1)2()53.1(

191201

200200 =+−=

≤−=≥=> XPXPXP

b) X is binomial with n = 20 and p = 0.04

( ) ( )[ ] 1897.096.004.096.004.01

)1(1)1(19120

120020

0 =+−=

≤−=> XPXP

c) Let Y denote the number of times X exceeds 1 in the next five samples. Then, Y is binomial with n = 5 and p = 0.190 from part b.

( )[ ] 651.0810.0190.01)0(1)1( 5050 =−==−=≥ YPYP

3-14

Page 20: Ch 03 Solution

The probability is 0.651 that at least one sample from the next five will contain more than one defective 3-79. Let X denote the passengers with tickets that do not show up for the flight. Then, X is binomial with n = 125 and p = 0.1.

( ) ( ) ( )

( ) ( )

9886.0)5(1)5()9961.0

9.01.04

1259.01.0

3125

9.01.02

1259.01.0

1125

9.01.00

125

1

)4(1)5()

12141223

123212411250

=≤−=>=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

−=

≤−=≥

XPXPb

XPXPa

3-80. Let X denote the number of defective components among those stocked.

( )( ) ( ) ( )

981.0)5()

666.098.002.098.002.098.002.0)2()

133.098.002.0)0()

10021022

10111021

10201020

10001000

=≤

=++=≤

===

XPc

XPb

XPa

Section 3-7

3-81 . a) 5.05.0)5.01()1( 0 =−==XPb) 0625.05.05.0)5.01()4( 43 ==−==XPc) 0039.05.05.0)5.01()8( 87 ==−==XPd) 5.0)5.01(5.0)5.01()2()1()2( 10 −+−==+==≤ XPXPXP 75.05.05.0 2 =+=e.) 25.075.01)2(1)2( =−=≤−=> XPXP

3-82. E(X) = 2.5 = 1/p giving p = 0.4

a) 4.04.0)4.01()1( 0 =−==XPb) 0864.04.0)4.01()4( 3 =−==XPc) 05184.05.0)5.01()5( 4 =−==XPd) )3()2()1()3( =+=+==≤ XPXPXPXP

7840.04.0)4.01(4.0)4.01(4.0)4.01( 210 =−+−+−=e) 2160.07840.01)3(1)3( =−=≤−=> XPXP

3-83. Let X denote the number of trials to obtain the first success. a) E(X) = 1/0.2 = 5 b) Because of the lack of memory property, the expected value is still 5. 3-84. a) E(X) = 4/0.2 = 20

b) P(X=20) = 0436.02.0)80.0(3

19 416 =⎟⎟⎠

⎞⎜⎜⎝

3-15

Page 21: Ch 03 Solution

The probability is 0.651 that at least one sample from the next five will contain more than one defective 3-79. Let X denote the passengers with tickets that do not show up for the flight. Then, X is binomial with n = 125 and p = 0.1.

( ) ( ) ( )

( ) ( )

9886.0)5(1)5()9961.0

9.01.04

1259.01.0

3125

9.01.02

1259.01.0

1125

9.01.00

125

1

)4(1)5()

12141223

123212411250

=≤−=>=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

−=

≤−=≥

XPXPb

XPXPa

3-80. Let X denote the number of defective components among those stocked.

( )( ) ( ) ( )

981.0)5()

666.098.002.098.002.098.002.0)2()

133.098.002.0)0()

10021022

10111021

10201020

10001000

=≤

=++=≤

===

XPc

XPb

XPa

Section 3-7

3-81 . a) 5.05.0)5.01()1( 0 =−==XPb) 0625.05.05.0)5.01()4( 43 ==−==XPc) 0039.05.05.0)5.01()8( 87 ==−==XPd) 5.0)5.01(5.0)5.01()2()1()2( 10 −+−==+==≤ XPXPXP 75.05.05.0 2 =+=e.) 25.075.01)2(1)2( =−=≤−=> XPXP

3-82. E(X) = 2.5 = 1/p giving p = 0.4

a) 4.04.0)4.01()1( 0 =−==XPb) 0864.04.0)4.01()4( 3 =−==XPc) 05184.05.0)5.01()5( 4 =−==XPd) )3()2()1()3( =+=+==≤ XPXPXPXP

7840.04.0)4.01(4.0)4.01(4.0)4.01( 210 =−+−+−=e) 2160.07840.01)3(1)3( =−=≤−=> XPXP

3-83. Let X denote the number of trials to obtain the first success. a) E(X) = 1/0.2 = 5 b) Because of the lack of memory property, the expected value is still 5. 3-84. a) E(X) = 4/0.2 = 20

b) P(X=20) = 0436.02.0)80.0(3

19 416 =⎟⎟⎠

⎞⎜⎜⎝

3-15

Page 22: Ch 03 Solution

c) P(X=19) = 0459.02.0)80.0(3

18 415 =⎟⎟⎠

⎞⎜⎜⎝

d) P(X=21) = 0411.02.0)80.0(3

20 417 =⎟⎟⎠

⎞⎜⎜⎝

e) The most likely value for X should be near μX. By trying several cases, the most likely value is x = 19. 3-85. Let X denote the number of trials to obtain the first successful alignment. Then X is a geometric random variable with p = 0.8

a) 0064.08.02.08.0)8.01()4( 33 ==−==XP b) )4()3()2()1()4( =+=+=+==≤ XPXPXPXPXP

8.0)8.01(8.0)8.01(8.0)8.01(8.0)8.01( 3210 −+−+−+−= 9984.08.02.0)8.0(2.0)8.0(2.08.0 32 =+++=

c) )]3()2()1([1)3(1)4( =+=+=−=≤−=≥ XPXPXPXPXP

]8.0)8.01(8.0)8.01(8.0)8.01[(1 210 −+−+−−= 008.0992.01)]8.0(2.0)8.0(2.08.0[1 2 =−=++−=

3-86. Let X denote the number of people who carry the gene. Then X is a negative binomial random variable with r=2 and p = 0.1

a) )]3()2([1)4(1)4( =+=−=<−=≥ XPXPXPXP

972.0)018.001.0(11.0)1.01(12

1.0)1.01(11

1 2120 =+−=⎥⎦

⎤⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛+−⎟⎟

⎞⎜⎜⎝

⎛−=

b) 201.0/2/)( === prXE

3-87. Let X denote the number of calls needed to obtain a connection. Then, X is a geometric random variable with p = 0.02.

a) 0167.002.098.002.0)02.01()10( 99 ==−==XP b) )]5()4()3()2()1([1)4(1)5( =+=+=+=+=−=≤−=> XPXPXPXPXPXPXP

)]02.0(98.0)02.0(98.0)02.0(98.0)02.0(98.0)02.0(98.002.0[1 4332 +++++−=

9039.00961.01 =−= May also use the fact that P(X > 5) is the probability of no connections in 5 trials. That is,

9039.098.002.005

)5( 50 =⎟⎟⎠

⎞⎜⎜⎝

⎛=>XP

c) E(X) = 1/0.02 = 50 3-88. X: # of opponents until the player is defeated.

p=0.8, the probability of the opponent defeating the player. (a) f(x) = (1 – p)x – 1p = 0.8(x – 1)*0.2 (b) P(X>2) = 1 – P(X=1) – P(X=2) = 0.64 (c) µ = E(X) = 1/p = 5 (d) P(X≥4) = 1-P(X=1)-P(X=2)-P(X=3) = 0.512 (e) The probability that a player contests four or more opponents is obtained in part (d), which is po = 0.512. Let Y represent the number of game plays until a player contests four or more opponents. Then, f(y) = (1-po)y-1po.

3-16

Page 23: Ch 03 Solution

µY = E(Y) = 1/po = 1.95 3-89. p=0.13

(a) P(X=1) = (1-0.13)1-1*0.13=0.13. (b) P(X=3)=(1-0.13)3-1*0.13 =0.098 (c) µ=E(X)= 1/p=7.69≈8

3-90. X: # number of attempts before the hacker selects a user password.

(a) p=9900/366=0.0000045 µ=E(X) = 1/p= 219877 V(X)= (1-p)/p2 = 4.938*1010

σ= )(XV =222222 (b) p=100/363=0.00214 µ=E(X) = 1/p= 467 V(X)= (1-p)/p2 = 217892.39

σ= )(XV =466.78 Based on the answers to (a) and (b) above, it is clearly more secure to use a 6 character password. 3-91 . p = 0.005 , r = 8

a.) 198 1091.3005.0)8( −=== xXP

b). 200005.01)( === XEμ days

c) Mean number of days until all 8 computers fail. Now we use p=3.91x10-19

1891 1056.2

1091.31)( xx

YE === −μ days or 7.01 x1015 years

3-92. Let Y denote the number of samples needed to exceed 1 in Exercise 3-66. Then Y has a geometric distribution with p = 0.0169. a) P(Y = 10) = (1 − 0.0169)9(0.0169) = 0.0145 b) Y is a geometric random variable with p = 0.1897 from Exercise 3-66. P(Y = 10) = (1 − 0.1897)9(0.1897) = 0.0286 c) E(Y) = 1/0.1897 = 5.27 3-93. Let X denote the number of transactions until all computers have failed. Then, X is negative binomial random variable with p = 10-8 and r = 3. a) E(X) = 3 x 108

b) V(X) = [3(1−10-80]/(10-16) = 3.0 x 1016

3-94. (a) p6=0.6, p=0.918

(b) 0.6*p2=0.4, p=0.816

3-95 . Negative binomial random variable: f(x; p, r) = . rrx pprx −−⎟⎟

⎞⎜⎜⎝

⎛−−

)1(11

When r = 1, this reduces to f(x; p, r) = (1−p)x-1p, which is the pdf of a geometric random variable. Also, E(X) = r/p and V(X) = [r(1−p)]/p2 reduce to E(X) = 1/p and V(X) = (1−p)/p2, respectively.

3-17

Page 24: Ch 03 Solution

3-96. Let X denote a geometric random variable with parameter p. Let q = 1-p.

1 12

1 1

1 1( ) (1 )x x

x x

E X x p p p xq pp p

∞ ∞− −

= =

⎛ ⎞= − = = =⎜ ⎟

⎝ ⎠∑ ∑

( )

2 2

2

2

2

2 2

2 1 21 1

1 1

2 1 1 11

1 1 1

2 1 2 1

1

2 1 1

1

2 3 1

2 1

1(1 )

( ) ( ) (1 ) 2 (1 )

2

2 3 ...

(1 2 3 ...)

2

1x xp p

x x

x x xp

x x x

xp p

x

xp

x

ddq p

ddq p

qddq q p

V X x p p px x p

p x q xq q

p x q

p x q

p q q q

p q q q

p

∞ ∞− −

= =

∞ ∞ ∞− − −

= = =

∞−

=

∞−

=

= − − = − + −

= − +

= − +

= −

⎡ ⎤= + + + −⎣ ⎦

⎡ ⎤= + + + −⎣ ⎦

⎡ ⎤= − =⎣ ⎦

∑ ∑

∑ ∑ ∑

[ ]2

3 2 1

2 2 2

(1 ) (1 )

2(1 ) 1 (1 )

ppq q p q

p p p qp p p

− −− + − −

− + − −= = =

Section 3-8 3-97. X has a hypergeometric distribution N=100, n=4, K=20

a.)( )( )( ) 4191.0

3921225)82160(20)1( 100

4

803

201 ====XP

b.) , the sample size is only 4 0)6( ==XP

c.) ( )( )( ) 001236.0

3921225)1(4845)4( 100

4

800

204 ====XP

d.) 8.0100204)( =⎟

⎠⎞

⎜⎝⎛===

NKnnpXE

6206.09996)8.0)(2.0(4

1)1()( =⎟

⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛

−−

−=N

nNpnpXV

3-18

Page 25: Ch 03 Solution

3-96. Let X denote a geometric random variable with parameter p. Let q = 1-p.

1 12

1 1

1 1( ) (1 )x x

x x

E X x p p p xq pp p

∞ ∞− −

= =

⎛ ⎞= − = = =⎜ ⎟

⎝ ⎠∑ ∑

( )

2 2

2

2

2

2 2

2 1 21 1

1 1

2 1 1 11

1 1 1

2 1 2 1

1

2 1 1

1

2 3 1

2 1

1(1 )

( ) ( ) (1 ) 2 (1 )

2

2 3 ...

(1 2 3 ...)

2

1x xp p

x x

x x xp

x x x

xp p

x

xp

x

ddq p

ddq p

qddq q p

V X x p p px x p

p x q xq q

p x q

p x q

p q q q

p q q q

p

∞ ∞− −

= =

∞ ∞ ∞− − −

= = =

∞−

=

∞−

=

= − − = − + −

= − +

= − +

= −

⎡ ⎤= + + + −⎣ ⎦

⎡ ⎤= + + + −⎣ ⎦

⎡ ⎤= − =⎣ ⎦

∑ ∑

∑ ∑ ∑

[ ]2

3 2 1

2 2 2

(1 ) (1 )

2(1 ) 1 (1 )

ppq q p q

p p p qp p p

− −− + − −

− + − −= = =

Section 3-8 3-97. X has a hypergeometric distribution N=100, n=4, K=20

a.)( )( )( ) 4191.0

3921225)82160(20)1( 100

4

803

201 ====XP

b.) , the sample size is only 4 0)6( ==XP

c.) ( )( )( ) 001236.0

3921225)1(4845)4( 100

4

800

204 ====XP

d.) 8.0100204)( =⎟

⎠⎞

⎜⎝⎛===

NKnnpXE

6206.09996)8.0)(2.0(4

1)1()( =⎟

⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛

−−

−=N

nNpnpXV

3-18

Page 26: Ch 03 Solution

3-98. a) ( )( )( ) 4623.0

24/)17181920(6/)1415164()1(

204

163

41 =

××××××

===XP

b) ( )( )( ) 00021.0

24/)17181920(1)4(

204

160

44 =

×××===XP

c)

( )( )( )

( )( )( )

( )( )( )

9866.0

)2()1()0()2(

2417181920

215166

61415164

2413141516

204

162

42

204

163

41

204

164

40

==

++=

=+=+==≤

⎟⎠⎞

⎜⎝⎛ ×××

⎟⎠⎞

⎜⎝⎛ ××

+×××

+×××

XPXPXPXP

d) E(X) = 4(4/20) = 0.8 V(X) = 4(0.2)(0.8)(16/19) = 0.539 3-99. N=10, n=3 and K=4

0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

x

P(x

)

3-100. (a) f(x) = / ⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎛xx 3

1224⎟⎟⎠

⎞⎜⎜⎝

⎛336

(b) µ=E(X) = np= 3*24/36=2 V(X)= np(1-p)(N-n)/(N-1) =2*(1-24/36)(36-3)/(36-1)=0.629 (c) P(X≤2) =1-P(X=3) =0.717

3-19

Page 27: Ch 03 Solution

3-101. Let X denote the number of men who carry the marker on the male chromosome for an increased risk for high

blood pressure. N=800, K=240 n=10 a) n=10

( )( )( )

( )( )1201.0)1(

!790!10!800

!551!9!560

!239!1!240

80010

5609

2401 ====XP

b) n=10 )]1()0([1)1(1)1( =+=−=≤−=> XPXPXPXP

( )( )( )

( )( )0276.0)0(

!790!10!800

!550!10!560

!240!0!240

80010

56010

2400 ====XP

8523.0]1201.00276.0[1)1(1)1( =+−=≤−=> XPXP

3-102. Let X denote the number of cards in the sample that are defective.

a)

( )( )( )

9644.00356.01)1(

0356.0)0(

)0(1)1(

!120!20!140

!100!20!120

14020

12020

200

=−=≥

====

=−=≥

XP

XP

XPXP

b)

( )( )( )

5429.04571.01)1(

4571.0!140!115!120!135)0(

)0(1)1(

!120!20!140

!115!20!135

14020

13520

50

=−=≥

=====

=−=≥

XP

XP

XPXP

3-103. N=300

(a) K=243, n=3, P(X=1)=0.087 (b) P(X≥1)=0.9934 (c) K=26+13=39 P(X=1)=0.297 (d) K=300-18=282 P(X≥1)=0.9998

3-104. Let X denote the count of the numbers in the state's sample that match those in the player's sample. Then, X has a hypergeometric distribution with N = 40, n = 6, and K = 6.

a) ( )( )( )

71

406

340

66 1061.2

!34!6!40)6( −

×=⎟⎠⎞

⎜⎝⎛===XP

b) ( )( )( ) ( )

5406

406

341

65 1031.5346)5( −×=

×===XP

c) ( )( )( ) 00219.0)4( 40

6

342

64 ===XP

d) Let Y denote the number of weeks needed to match all six numbers. Then, Y has a geometric distribution with p =

3-20

Page 28: Ch 03 Solution

380,838,3

1 and E(Y) = 1/p = weeks. This is more than 738 centuries! 380,838,3

3-105. Let X denote the number of blades in the sample that are dull.

a)

( )( )( )

7069.0)0(1)1(

2931.0!33!48!43!38)0(

)0(1)1(

!43!5!48!33!5

!38

485

385

100

==−=≥

=====

=−=≥

XPXP

XP

XPXP

b) Let Y denote the number of days needed to replace the assembly.

P(Y = 3) = 0607.0)7069.0(2931.0 2 =

c) On the first day, ( )( )( ) 8005.0

!41!48!43!46)0(

!43!5!48!41!5

!46

485

465

20 =====XP

On the second day, ( )( )( ) 4968.0

!37!48!43!42)0(

!43!5!48!37!5

!42

485

425

60 =====XP

On the third day, P(X = 0) = 0.2931 from part a. Therefore, P(Y = 3) = 0.8005(0.4968)(1-0.2931) = 0.2811.

3-106. a) For Exercise 3-97, the finite population correction is 96/99. For Exercise 3-98, the finite population correction is 16/19. Because the finite population correction for Exercise 3-97 is closer to one, the binomial approximation to the distribution of X should be better in Exercise 3-97.

b) Assuming X has a binomial distribution with n = 4 and p = 0.2,

( )( ) 0016.08.02.0)4(

4096.08.02.0)1(044

4

3141

===

===

XP

XP

The results from the binomial approximation are close to the probabilities obtained in Exercise 3-97.

c) Assume X has a binomial distribution with n = 4 and p = 0.2. Consequently, P(X = 1) and P(X = 4) are the same as computed in part b. of this exercise. This binomial approximation is not as close to the true answer as the results obtained in part b. of this exercise.

d) From Exercise 3-102, X is approximately binomial with n = 20 and p = 20/140 = 1/7.

( )( ) ( ) 9542.00458.01)0(1)1( 20760

7120

0 =−===−=≥ XPXP finite population correction is 120/139=0.8633

From Exercise 3-92, X is approximately binomial with n = 20 and p = 5/140 =1/28

( )( ) ( ) 5168.04832.01)0(1)1( 2028270

28120

0 =−===−=≥ XPXP finite population correction is 120/139=0.8633

3-21

Page 29: Ch 03 Solution

Section 3-9

3-107. a) P X e e( )!

.= = = =−

−0 40

0 01834 0

4

b) P X P X P X P X( ) ( ) ( ) (≤ = = + = )+ =2 0 1 2

= + +

=

−− −

e e e44 1 4 241

42

0 2381! !

.

c) P X e( )!

.= = =−

4 44

019544 4

d) P X e( )!

.= = =−

8 48

0 02984 8

3-108 a) P X e( ) ..= = =−0 0 67030 4

b) P X e e e( ) ( . )!

( . )!

... .

≤ = + + =−− −

2 0 41

0 42

0 99210 40 4 0 4 2

c) P X e( ) ( . )!

..

= = =−

4 0 44

0 0007150 4 4

d) P X e( ) ( . )!

..

= = = ×−

−8 0 48

109 100 4 8

8

3-109. . Therefore, λ = −ln(0.05) = 2.996. P X e( ) .= = =−0 0λ 05 Consequently, E(X) = V(X) = 2.996. 3-110 a) Let X denote the number of calls in one hour. Then, X is a Poisson random variable with λ = 10.

P X e( )!

.= = =−

5 105

0 037810 5

.

b) P X e e e e( )! ! !

.≤ = + + + =−− − −

3 101

102

103

0 01031010 10 2 10 3

c) Let Y denote the number of calls in two hours. Then, Y is a Poisson random variable with

λ = 20. P Y e( )!

.= = =−

15 2015

0 051620 15

d) Let W denote the number of calls in 30 minutes. Then W is a Poisson random variable with

λ = 5. P W e( )!

.= = =−

5 55

017555 5

3-111. λ=1, Poisson distribution. f(x) =e- λ λx/x!

(a) P(X≥2)= 0.264 (b) In order that P(X≥1) = 1-P(X=0)=1-e- λ exceed 0.95, we need λ=3.

Therefore 3*16=48 cubic light years of space must be studied. 3-112. (a) λ=14.4, P(X=0)=6*10-7

(b) λ=14.4/5=2.88, P(X=0)=0.056 (c) λ=14.4*7*28.35/225=12.7 P(X≥1)=0.999997

(d) P(X≥28.8) =1-P(X ≤ 28) = 0.00046. Unusual.

3-113. (a) λ=0.61. P(X≥1)=0.4566

(b) λ=0.61*5=3.05, P(X=0)= 0.047.

3-22

Page 30: Ch 03 Solution

3-114. a) Let X denote the number of flaws in one square meter of cloth. Then, X is a Poisson random variable

with = 0.1. λ 0045.0!2

)1.0()2(21.0

===−eXP

b) Let Y denote the number of flaws in 10 square meters of cloth. Then, Y is a Poisson random variable

with = 1. λ 3679.0!11)1( 1

11

==== −−

eeYP

c) Let W denote the number of flaws in 20 square meters of cloth. Then, W is a Poisson random variable

with λ = 2. 1353.0)0( 2 === −eWP d) )1()0(1)1(1)2( =−=−=≤−=≥ YPYPYPYP

2642.0

1 11

=−−= −− ee

3-115.a) 2.0)( == λXE errors per test area

b) 9989.0!2

)2.0(!1

2.0)2(22.02.0

2.0 =++=≤−−

− eeeXP

99.89% of test areas 3-116. a) Let X denote the number of cracks in 5 miles of highway. Then, X is a Poisson random variable with

= 10. λ 510 1054.4)0( −− ×=== eXP b) Let Y denote the number of cracks in a half mile of highway. Then, Y is a Poisson random variable with

λ = 1. 6321.01)0(1)1( 1 =−==−=≥ −eYPYP c) The assumptions of a Poisson process require that the probability of a count is constant for all intervals. If the probability of a count depends on traffic load and the load varies, then the assumptions of a Poisson process are not valid. Separate Poisson random variables might be appropriate for the heavy and light load sections of the highway.

3-117. a) Let X denote the number of flaws in 10 square feet of plastic panel. Then, X is a Poisson random

variable with = 0.5. λ 6065.0)0( 5.0 === −eXP b) Let Y denote the number of cars with no flaws,

0067.0)3935.0()6065.0(1010

)10( 010 =⎟⎟⎠

⎞⎜⎜⎝

⎛==YP

c) Let W denote the number of cars with surface flaws. Because the number of flaws has a Poisson distribution, the occurrences of surface flaws in cars are independent events with constant probability. From part a., the probability a car contains surface flaws is 1−0.6065 = 0.3935. Consequently, W is binomial with n = 10 and p = 0.3935.

0 10

1 9

10( 0) (0.3935) (0.6065) 0.0067

0

10( 1) (0.3935) (0.6065) 0.0437

1( 1) 0.0067 0.0437 0.0504

P W

P W

P W

⎛ ⎞= = =⎜ ⎟

⎝ ⎠⎛ ⎞

= = =⎜ ⎟⎝ ⎠

≤ = + =

3-23

Page 31: Ch 03 Solution

3-118. a) Let X denote the failures in 8 hours. Then, X has a Poisson distribution with λ = 0.16.

8521.0)0( 16.0 === −eXP b) Let Y denote the number of failure in 24 hours. Then, Y has a Poisson distribution with

λ = 0.48. 3812.01)0(1)1( 48 =−==−=≥ −eYPYP Supplemental Exercises

3-119. 41

31

83

31

41

31

81)( =⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=XE ,

0104.041

31

83

31

41

31

81)(

2222

=⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛=XV

3-120. a) 3681.0)999.0(001.01

1000)1( 9991 =⎟⎟

⎞⎜⎜⎝

⎛==XP

( )

( ) ( )

999.0)999.0)(001.0(1000)(1)001.0(1000)()d

9198.0

999.0001.02

1000999.0001.0

11000

999.0001.00

1000)2()c

6319.0999.0001.00

10001)0(1)1()b

9982999110000

9990

====

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤

=⎟⎟⎠

⎞⎜⎜⎝

⎛−==−=≥

XVXE

XP

XPXP

3-121. a) n = 50, p = 5/50 = 0.1, since E(X) = 5 = np.

b) ( ) ( ) ( ) 112.09.01.02

509.01.0

150

9.01.00

50)2( 482491500 =⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤XP

c) ( ) ( ) 48050149 1051.49.01.05050

9.01.04950

)49( −×=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≥XP

3-122. (a)Binomial distribution, p=0.01, n=12.

(b) P(X>1)=1-P(X≤1)= 1- - =0.0062 120 )1(012

pp −⎟⎟⎠

⎞⎜⎜⎝

⎛ 141 )1(112

pp −⎟⎟⎠

⎞⎜⎜⎝

(c) µ =E(X)= np =12*0.01 = 0.12

V(X)=np(1-p) = 0.1188 σ= )(XV = 0.3447

3-123. (a) 12(0.5) 0.000244=(b) = 0.2256 6 6

12 (0.5) (0.5)C 6

(c) 4189.0)5.0()5.0()5.0()5.0( 66126

75125 =+CC

3-124. (a) Binomial distribution, n=100, p=0.01.

(b) P(X≥1) = 0.634 (c) P(X≥2)= 0.264

3-24

Page 32: Ch 03 Solution

3-118. a) Let X denote the failures in 8 hours. Then, X has a Poisson distribution with λ = 0.16.

8521.0)0( 16.0 === −eXP b) Let Y denote the number of failure in 24 hours. Then, Y has a Poisson distribution with

λ = 0.48. 3812.01)0(1)1( 48 =−==−=≥ −eYPYP Supplemental Exercises

3-119. 41

31

83

31

41

31

81)( =⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=XE ,

0104.041

31

83

31

41

31

81)(

2222

=⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛=XV

3-120. a) 3681.0)999.0(001.01

1000)1( 9991 =⎟⎟

⎞⎜⎜⎝

⎛==XP

( )

( ) ( )

999.0)999.0)(001.0(1000)(1)001.0(1000)()d

9198.0

999.0001.02

1000999.0001.0

11000

999.0001.00

1000)2()c

6319.0999.0001.00

10001)0(1)1()b

9982999110000

9990

====

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤

=⎟⎟⎠

⎞⎜⎜⎝

⎛−==−=≥

XVXE

XP

XPXP

3-121. a) n = 50, p = 5/50 = 0.1, since E(X) = 5 = np.

b) ( ) ( ) ( ) 112.09.01.02

509.01.0

150

9.01.00

50)2( 482491500 =⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤XP

c) ( ) ( ) 48050149 1051.49.01.05050

9.01.04950

)49( −×=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≥XP

3-122. (a)Binomial distribution, p=0.01, n=12.

(b) P(X>1)=1-P(X≤1)= 1- - =0.0062 120 )1(012

pp −⎟⎟⎠

⎞⎜⎜⎝

⎛ 141 )1(112

pp −⎟⎟⎠

⎞⎜⎜⎝

(c) µ =E(X)= np =12*0.01 = 0.12

V(X)=np(1-p) = 0.1188 σ= )(XV = 0.3447

3-123. (a) 12(0.5) 0.000244=(b) = 0.2256 6 6

12 (0.5) (0.5)C 6

(c) 4189.0)5.0()5.0()5.0()5.0( 66126

75125 =+CC

3-124. (a) Binomial distribution, n=100, p=0.01.

(b) P(X≥1) = 0.634 (c) P(X≥2)= 0.264

3-24

Page 33: Ch 03 Solution

(d) µ=E(X)= np=100*0.01=1

V(X)=np(1-p) = 0.99

σ= )(XV =0.995 (e) Let pd= P(X≥2)= 0.264,

Y: # of messages requires two or more packets be resent. Y is binomial distributed with n=10, pm=pd*(1/10)=0.0264 P(Y≥1) = 0.235

3-125 Let X denote the number of mornings needed to obtain a green light. Then X is a geometric random variable with p = 0.20. a) P(X = 4) = (1-0.2)30.2= 0.1024 b) By independence, (0.8)10 = 0.1074. (Also, P(X > 10) = 0.1074) 3-126 Let X denote the number of attempts needed to obtain a calibration that conforms to specifications. Then, X is geometric with p = 0.6. P(X ≤ 3) = P(X=1) + P(X=2) + P(X=3) = 0.6 + 0.4(0.6) + 0.42(0.6) = 0.936. 3-127. Let X denote the number of fills needed to detect three underweight packages. Then X is a negative binomial random variable with p = 0.001 and r = 3. a) E(X) = 3/0.001 = 3000 b) V(X) = [3(0.999)/0.0012] = 2997000. Therefore, σX = 1731.18 3-128. Geometric with p=0.1

(a) f(x)=(1-p)x-1p=0.9(x-1)0.1 (b) P(X=5) = 0.94*0.1=0.0656 (c) µ=E(X)= 1/p=10 (d) P(X≤10)=0.651

3-129. (a) λ=6*0.5=3.

P(X=0) = 0.0498 (b) P(X≥3)=0.5768 (c) P(X≤x) ≥0.9, x=5 (d) σ2= λ=6. Not appropriate.

3-130. Let X denote the number of totes in the sample that do not conform to purity requirements. Then, X has a hypergeometric distribution with N = 15, n = 3, and K = 2.

3714.0!15!10!12!131

315

313

02

1)0(1)1( =−=

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

−==−=≥ XPXP

3-131. Let X denote the number of calls that are answered in 30 seconds or less. Then, X is a binomial random variable with p = 0.75.

a) P(X = 9) = 1877.0)25.0()75.0(9

10 19 =⎟⎟⎠

⎞⎜⎜⎝

b) P(X ≥ 16) = P(X=16) +P(X=17) + P(X=18) + P(X=19) + P(X=20)

3-25

Page 34: Ch 03 Solution

4148.0)25.0()75.0(2020

)25.0()75.0(1920

)25.0()75.0(1820

)25.0()75.0(1720

)25.0()75.0(1620

020119

218317416

=⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

c) E(X) = 20(0.75) = 15 3-132. Let Y denote the number of calls needed to obtain an answer in less than 30 seconds.

a) 0117.075.025.075.0)75.01()4( 33 ==−==YP b) E(Y) = 1/p = 1/0.75 = 4/3 3-133. Let W denote the number of calls needed to obtain two answers in less than 30 seconds. Then, W has a negative binomial distribution with p = 0.75.

a) P(W=6) = 51

0 25 0 75 0 01104 2⎛⎝⎜⎞⎠⎟ =( . ) ( . ) .

b) E(W) = r/p = 2/0.75 = 8/3

3-134. a) Let X denote the number of messages sent in one hour. 1755.0!55)5(

55

===−eXP

b) Let Y denote the number of messages sent in 1.5 hours. Then, Y is a Poisson random variable with

λ =7.5. 0858.0!10

)5.7()10(105.7

===−eYP

c) Let W denote the number of messages sent in one-half hour. Then, W is a Poisson random variable with = 2.5. λ 2873.0)1()0()2( ==+==< WPWPWP 3-135X is a negative binomial with r=4 and p=0.0001

400000001.0/4/)( === prXE requests 3-136. X ∼ Poisson(λ = 0.01), X ∼ Poisson(λ = 1)

9810.0!3)1(

!2)1(

!1)1()3(

3121111 =+++=≤

−−−− eeeeYP

3-137. Let X denote the number of individuals that recover in one week. Assume the individuals are independent. Then, X is a binomial random variable with n = 20 and p = 0.1. P(X ≥ 4) = 1 − P(X ≤ 3) = 1 − 0.8670 = 0.1330. 3-138. a.) P(X=1) = 0 , P(X=2) = 0.0025, P(X=3) = 0.01, P(X=4) = 0.03, P(X=5) = 0.065

P(X=6) = 0.13, P(X=7) = 0.18, P(X=8) = 0.2225, P(X=9) = 0.2, P(X=10) = 0.16 b.) P(X=1) = 0.0025, P(X=1.5) = 0.01, P(X=2) = 0.03, P(X=2.5) = 0.065, P(X=3) = 0.13 P(X=3.5) = 0.18, P(X=4) = 0.2225, P(X=4.5) = 0.2, P(X=5) = 0.16

3-139. Let X denote the number of assemblies needed to obtain 5 defectives. Then, X is a negative binomial

random variable with p = 0.01 and r=5. a) E(X) = r/p = 500. b) V(X) =(5* 0.99)/0.012 = 49500 and σX = 222.49 3-140. Here n assemblies are checked. Let X denote the number of defective assemblies. If P(X ≥ 1) ≥ 0.95, then

3-26

Page 35: Ch 03 Solution

P(X=0) ≤ 0.05. Now,

P(X=0) = and 0.99nnn99)99.0()01.0(

00 =⎟⎟

⎞⎜⎜⎝

⎛ n ≤ 0.05. Therefore,

07.298

)95.0ln()05.0ln(

)05.0ln())99.0(ln(

=≥

n

n

This would require n = 299. 3-141. Require f(1) + f(2) + f(3) + f(4) = 1. Therefore, c(1+2+3+4) = 1. Therefore, c = 0.1. 3-142. Let X denote the number of products that fail during the warranty period. Assume the units are independent. Then, X is a binomial random variable with n = 500 and p = 0.02.

a) P(X = 0) = 4.1 x 10=⎟⎟⎠

⎞⎜⎜⎝

⎛ 5000 )98.0()02.0(0

500-5

b) E(X) = 500(0.02) = 10 c) P(X >2) = 1 − P(X ≤ 2) = 0.9995 3-143. 16.0)3.0)(3.0()7.0)(1.0()0( =+=Xf

19.0)3.0)(4.0()7.0)(1.0()1( =+=Xf

20.0)3.0)(2.0()7.0)(2.0()2( =+=Xf

31.0)3.0)(1.0()7.0)(4.0()3( =+=Xf

14.0)3.0)(0()7.0)(2.0()4( =+=Xf 3-144. a) P(X ≤ 3) = 0.2 + 0.4 = 0.6 b) P(X > 2.5) = 0.4 + 0.3 + 0.1 = 0.8 c) P(2.7 < X < 5.1) = 0.4 + 0.3 = 0.7 d) E(X) = 2(0.2) + 3(0.4) + 5(0.3) + 8(0.1) = 3.9 e) V(X) = 22(0.2) + 32(0.4) + 52(0.3) + 82(0.1) − (3.9)2 = 3.09 3-145.

x 2 5.7 6.5 8.5 f(x) 0.2 0.3 0.3 0.2

3-146. Let X denote the number of bolts in the sample from supplier 1 and let Y denote the number of bolts in the sample from supplier 2. Then, x is a hypergeometric random variable with N = 100, n = 4, and K = 30. Also, Y is a hypergeometric random variable with N = 100, n = 4, and K = 70. a) P(X=4 or Y=4) = P(X = 4) + P(Y = 4)

2408.04

1004

700

30

4100

070

430

=

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

+

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=

3-27

Page 36: Ch 03 Solution

b) P[(X=3 and Y=1) or (Y=3 and X = 1)]= 4913.0

4100

370

130

170

330

=

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=

3-147. Let X denote the number of errors in a sector. Then, X is a Poisson random variable with λ = 0.32768. a) P(X>1) = 1 − P(X≤1) = 1 − e-0.32768 − e-0.32768(0.32768) = 0.0433 b) Let Y denote the number of sectors until an error is found. Then, Y is a geometric random variable and P = P(X ≥ 1) = 1 − P(X=0) = 1 − e-0.32768 = 0.2794 E(Y) = 1/p = 3.58

3-148. Let X denote the number of orders placed in a week in a city of 800,000 people. Then X is a Poisson random variable with λ = 0.25(8) = 2. a) P(X ≥ 3) = 1 − P(X ≤ 2) = 1 − [e-2 + e-2(2) + (e-222)/2!] = 1 − 0.6767 = 0.3233. b) Let Y denote the number of orders in 2 weeks. Then, Y is a Poisson random variable with λ = 4, and P(Y>2) =1- P(Y ≤ 2) = e-4 + (e-441)/1!+ (e-442)/2! =1 - [0.01832+0.07326+0.1465] = 0.7619. 3-149.a) hypergeometric random variable with N = 500, n = 5, and K = 125

2357.0115524.2100164.6

5500

5375

0125

)0( ==

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=EEf X

3971.0115525.2

)810855.8(125

5500

4375

1125

)1( ==

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=E

Ef X

2647.0115524.2

)8718875(7750

5500

3375

2125

)2( ==

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=E

f X

0873.0115524.2

)70125(317750

5500

2375

3125

)3( ==

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=E

f X

01424.0115524.2

)375(9691375

5500

1375

4125

)4( ==

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=E

f X

3-28

Page 37: Ch 03 Solution

00092.0115524.283453.2

5500

0375

5125

)5( ==

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=EEf X

b) x 0 1 2 3 4 5 6 7 8 9 10f(x) 0.0546 0.1866 0.2837 0.2528 0.1463 0.0574 0.0155 0.0028 0.0003 0.0000 0.0000 3-150. Let X denote the number of totes in the sample that exceed the moisture content. Then X is a binomial random variable with n = 30. We are to determine p.

If P(X ≥ 1) = 0.9, then P(X = 0) = 0.1. Then , giving 30ln(1−p)=ln(0.1),

which results in p = 0.0739.

1.0)1()(0

30 300 =−⎟⎟⎠

⎞⎜⎜⎝

⎛pp

3-151. Let t denote an interval of time in hours and let X denote the number of messages that arrive in time t. Then, X is a Poisson random variable with λ = 10t. Then, P(X=0) = 0.9 and e-10t = 0.9, resulting in t = 0.0105 hours = 37.8 seconds 3-152. a) Let X denote the number of flaws in 50 panels. Then, X is a Poisson random variable with λ = 50(0.02) = 1. P(X = 0) = e-1 = 0.3679. b) Let Y denote the number of flaws in one panel, then P(Y ≥ 1) = 1 − P(Y=0) = 1 − e-0.02 = 0.0198. Let W denote the number of panels that need to be inspected before a flaw is found. Then W is a geometric random variable with p = 0.0198 and E(W) = 1/0.0198 = 50.51 panels.

c) 0198.01)0(1)1( 02.0 =−==−=≥ −eYPYP Let V denote the number of panels with 1 or more flaws. Then V is a binomial random

variable with n=50 and p=0.0198

491500 )9802.0(0198.0150

)9802(.0198.00

50)2( ⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤VP

9234.0)9802.0(0198.02

50 482 =⎟⎟⎠

⎞⎜⎜⎝

⎛+

Mind Expanding Exercises 3-153. The binomial distribution

P(X=x) = ( )!xn!x!n−

px(1-p)n-x

If n is large, then the probability of the event could be expressed as λ/n, that is λ=np. We could re-write the probability mass function as:

P(X=x) = ( )!xn!x!n−

[λ/n]x[1 – (λ/n)]n-x

Where p = λ/n.

P(X=x)n

1)x(n3)......(n2)(n1)(nnx

+−×−×−×−×x!λx

(1 – (λ/n))n-x

Now we can re-express:

3-29

Page 38: Ch 03 Solution

00092.0115524.283453.2

5500

0375

5125

)5( ==

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

=EEf X

b) x 0 1 2 3 4 5 6 7 8 9 10f(x) 0.0546 0.1866 0.2837 0.2528 0.1463 0.0574 0.0155 0.0028 0.0003 0.0000 0.0000 3-150. Let X denote the number of totes in the sample that exceed the moisture content. Then X is a binomial random variable with n = 30. We are to determine p.

If P(X ≥ 1) = 0.9, then P(X = 0) = 0.1. Then , giving 30ln(1−p)=ln(0.1),

which results in p = 0.0739.

1.0)1()(0

30 300 =−⎟⎟⎠

⎞⎜⎜⎝

⎛pp

3-151. Let t denote an interval of time in hours and let X denote the number of messages that arrive in time t. Then, X is a Poisson random variable with λ = 10t. Then, P(X=0) = 0.9 and e-10t = 0.9, resulting in t = 0.0105 hours = 37.8 seconds 3-152. a) Let X denote the number of flaws in 50 panels. Then, X is a Poisson random variable with λ = 50(0.02) = 1. P(X = 0) = e-1 = 0.3679. b) Let Y denote the number of flaws in one panel, then P(Y ≥ 1) = 1 − P(Y=0) = 1 − e-0.02 = 0.0198. Let W denote the number of panels that need to be inspected before a flaw is found. Then W is a geometric random variable with p = 0.0198 and E(W) = 1/0.0198 = 50.51 panels.

c) 0198.01)0(1)1( 02.0 =−==−=≥ −eYPYP Let V denote the number of panels with 1 or more flaws. Then V is a binomial random

variable with n=50 and p=0.0198

491500 )9802.0(0198.0150

)9802(.0198.00

50)2( ⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=≤VP

9234.0)9802.0(0198.02

50 482 =⎟⎟⎠

⎞⎜⎜⎝

⎛+

Mind Expanding Exercises 3-153. The binomial distribution

P(X=x) = ( )!xn!x!n−

px(1-p)n-x

If n is large, then the probability of the event could be expressed as λ/n, that is λ=np. We could re-write the probability mass function as:

P(X=x) = ( )!xn!x!n−

[λ/n]x[1 – (λ/n)]n-x

Where p = λ/n.

P(X=x)n

1)x(n3)......(n2)(n1)(nnx

+−×−×−×−×x!λx

(1 – (λ/n))n-x

Now we can re-express:

3-29

Page 39: Ch 03 Solution

[1 – (λ/n)]n-x = [1 – (λ/n)]n[1 – (λ/n)]-x And the first part of this can be re-expressed further as

[1 – (λ/n)]n = ( )( )nλ-1 n/λλ

−−

So:

P(X=x)=n

1)x(n3)......(n2)(n1)(nnx

+−×−×−×−×x!λx

( )( )nλ-1 n/λλ

−−

[1 – (λ/n)]-x

Now: In the limit as n → ∞

n1)x(n3)......(n2)(n1)(nn

x

+−×−×−×−× ≅ 1

In the limit as n → ∞ [1 – (λ/n)]-x ≅ 1 Thus:

P(X=x) = x!λx

( )( )nλ-1 n/λλ

−−

We know from exponential series that:

Limit z → ∞ ⎟⎠⎞

⎜⎝⎛ +

z11

z

= e ≅ 2.7183

In our case above –n/λ = z, so ( )nλ-1 n/λ− = e. Thus,

P(X=x) = x!λx

e λ−

It is the case, therefore, that

Limit n → ∞ ( )!xn!x!n−

px(1 – p)n-x = !x

e xλλ−

The distribution of the probability associated with this process is known as the Poisson distribution. The pmf can be expressed as:

f(x) = !x

e xλλ−

3-154. Sow that using an infinite sum. ∑∞

=

− =−1

1 1)1(i

i pp

To begin, , by definition of an infinite sum this can be rewritten

as

∑∑∞

=

−∞

=

− −=−1

1

1

1 )1()1(i

i

i

i pppp

1)1(1

)1(1

1 ==−−

=−∑∞

=

pp

pppp

i

i

3-30

Page 40: Ch 03 Solution

3-155.

[ ]

1

1 1

2 2

2 22

( ) [( ( 1) ... ]( 1)

( 1) ( 1)2 2

( 1) ( 1)

( ) ( )( 1)2 2

( 1) ( 1)( )

2( 1)(( )

( )1

b a

i i

b bbb a

i a i ai a

E X a a b b a

b b a ai i

b a b a

b a b a b a b a

b a b ab a

b a b ai b a iiV X

b a

= =

+

= ==

= + + + + − +

⎡ ⎤ + −⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= =− + − +

⎡ ⎤− + + + − +⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= =− + − ++

=

− + +− + +−= =

+ −

∑ ∑

∑ ∑∑2

2

2

)4

1( 1)(2 1) ( 1) (2 1) ( 1) ( 1) ( 1)( )( )

6 6 2 41

( 1) 112

b ab b b a a a b b a a b a b ab a

b ab a

⎡ ⎤⎢ ⎥⎣ ⎦

+ −+ + − − + − − − + +⎡ ⎤− − + +⎢ ⎥⎣ ⎦=

− +− + −

=

3-156. Let X denote the number of nonconforming products in the sample. Then, X is approximately binomial with p = 0.01 and n is to be determined. If , then 90.0)1( ≥≥XP 10.0)0( ≤=XP .

Now, P(X = 0) = ( ) nnn ppp )1()1(00 −=− . Consequently, , and

( ) .1 0− ≤p n 10

11.229)1ln(

10.0ln=

−≤

pn . Therefore, n = 230 is required

3-157. If the lot size is small, 10% of the lot might be insufficient to detect nonconforming product. For example, if the lot size is 10, then a sample of size one has a probability of only 0.2 of detecting a nonconforming product in a lot that is 20% nonconforming. If the lot size is large, 10% of the lot might be a larger sample size than is practical or necessary. For example, if the lot size is 5000, then a sample of 500 is required. Furthermore, the binomial approximation to the hypergeometric distribution can be used to show the following. If 5% of the lot of size 5000 is nonconforming, then the probability of zero nonconforming product in the sample is approximately

. Using a sample of 100, the same probability is still only 0.0059. The sample of size 500 might 7 10 12× −

be much larger than is needed.

3-31

Page 41: Ch 03 Solution

3-158. Let X denote the number of panels with flaws. Then, X is a binomial random variable with n =100 and p is

the probability of one or more flaws in a panel. That is, p = = 0.095. 1.01 −− e

( ) ( ) ( )( ) ( )

034.0

)1()1(

)1()1()1(

)4()3()2()1()0()4()5(

9641004

9731003

9821002

9911001

10001000

=

−+−+

−+−+−=

=+=+=+=+==≤=<

pppp

pppppp

XPXPXPXPXPXPXP

3-159. Let X denote the number of rolls produced.

Revenue at each demand 0 1000 2000 3000

0 1000≤ ≤x 0.05x 0.3x 0.3x 0.3x mean profit = 0.05x(0.3) + 0.3x(0.7) - 0.1x

1000 2000≤ ≤x 0.05x 0.3(1000) + 0.05(x-1000)

0.3x 0.3x

mean profit = 0.05x(0.3) + [0.3(1000) + 0.05(x-1000)](0.2) + 0.3x(0.5) - 0.1x 2000 3000≤ ≤x 0.05x 0.3(1000) +

0.05(x-1000) 0.3(2000) +

0.05(x-2000) 0.3x

mean profit = 0.05x(0.3) + [0.3(1000)+0.05(x-1000)](0.2) + [0.3(2000) + 0.05(x-2000)](0.3) + 0.3x(0.2) - 0.1x 3000 ≤ x 0.05x 0.3(1000) +

0.05(x-1000) 0.3(2000) +

0.05(x-2000) 0.3(3000)+

0.05(x-3000) mean profit = 0.05x(0.3) + [0.3(1000)+0.05(x-1000)](0.2) + [0.3(2000)+0.05(x-2000)]0.3 + [0.3(3000)+0.05(x-

3000)]0.2 - 0.1x

Profit Max. profit 0 1000≤ ≤x 0.125 x $ 125 at x = 1000

1000 2000≤ ≤x 0.075 x + 50 $ 200 at x = 2000 2000 3000≤ ≤x 200 $200 at x = 3000

3000 ≤ x -0.05 x + 350 $200 at x = 3000

The bakery can make anywhere from 2000 to 3000 and earn the same profit. 3-160.Let X denote the number of acceptable components. Then, X has a binomial distribution with p = 0.98 and n is to be determined such that P X . ( ) .≥ ≥100 0 95

n P X( )≥ 100 102 0.666 103 0.848 104 0.942 105 0.981

Therefore, 105 components are needed.

3-32