cernicharo_cospar_intro_spectro_mod.pdf

Embed Size (px)

Citation preview

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    1/71

    Leuven, 16/March/2010

    INTRODUCTION TO R DIO STRONOMY FROM

    MILLIMETER TO SUBMILLIMETER

    Molecular Spectroscopy

    What are the mechanisms

    of emitting spectral l inesfor molecules? Which kindof transitions exist?

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    2/71

    G. Herzberg, "Atomic Spectra and Atomic Structure"G. Herzberg, "Spectra of Diatomic Molecules"

    G. Herzberg, " Infrared and Raman Spectra"G. Herzberg, "Electronic Spectra of Polyatomic Molecules"G. Herzberg, "The Spectra and Structures of Simple Free Radicals

    An Introduction to Molecular Spectroscopy"

    G. M. Barrow, " Introduction to Molecular Spectroscopy"H. B. Dunford, "Elements of Diatomic Molecular Spectra"R. N. Dixon, "Spectroscopy and Structure"W G Richards and P R Scott " Structure and Spectra of Molecules" ,.C N Banwell and E M McCash, "Fundamentals of Molecular

    Spectroscopy",.J M Hollas, "Modern Spectroscopy" , 3rd ed, Wiley, 1996.J. M. Brown, Molecular Spectroscopy , Oxford University Press,

    1998.

    I.N. Levine Molecular Spectroscopy , John Wiley, 1975D. Emerson Interpreting Astronomical Spectra

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    3/71

    Formation of molecules and

    molecular stability

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    4/71

    Electronicisodensity

    contours:

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    5/71

    The dependency of the electronic energy of the systemas a function of the internuclear distance has the

    following shape:

    0.85 A

    2.7 eV

    (values excluding the interaction

    between electrons and the factthat the two protons interact with

    the electrons)

    Experimental values:

    0.74 A and 4.7 eV

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    6/71

    ------------------------------------------------------E(HA+HB)

    IMPORTANT:When two H atoms coll ide they have some

    extra kinetic energy

    H2 cannot be formedin gas phase in the ISM !!!

    3-body collisionsare required

    (3rd body will carry outthe excess of energy)

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    7/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    8/71

    ONCE A MOLECULE IS FORMED THEINTERNAL ENERGY IS MUCH DIVERSIFIED

    Electronic: Energy of the electronic orbitals

    Vibrational: Energy of the vibrations of thenuclei around the equilibrium positionRotational: Energy associated to the

    rotation of an electric dipole.Other: unpaired electron spins or nuclear spins

    can couple with the angular momentum of theelectric dipole rotation. Internal magnetic dipolescan couple with external magnetic fields, etc

    MOST OF THESE ARE TREATED AS PERTURBATIONS OFTHE ROTATIONAL ENERGY

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    9/71

    Energy, Frequency (E=h

    Wavelength (=c/

    Molecular Transitions

    Rotational Vibrational Electronic

    There is a hierarchy in the

    energies needed for transitions

    However, the quantum mechanical problem isrelatively simple only for very small molecules.

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    10/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    11/71

    As the movement of the nuclei is much slower than those of the

    electrons we could consider that the electronic energy of the

    molecule is independent of the vibration and rotation.

    (Born-Oppenheimer approximation)

    Problem: finding the potential

    energy of the molecule, U( r ),describing in a reasonable way

    the variation of energy as a

    function of the internuclear

    Distance for a given electronic

    state. The solution of the

    Schrdinger equation will

    depend on this potential.

    Vibrational Energy

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    12/71

    Morse Potential :

    The wave equation is then :

    Making the following changes:

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    13/71

    We obtain :

    For A = 0, i.e., J=0 it is possible to find an analitycal

    solution. In the general case the solution is given by:Centrifugal distortion

    Vibrational terms Undisturbedrotation

    Harmonic

    oscillatoranharmonicity

    Higher order corrections

    Where:

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    14/71

    There is another potential proposed by Dunham.It is represented by a series in (r- re), where re is

    the equilibrium distance

    Where=(r-re)/re and Be =h/82

    re2

    The solution can be given as

    Where the terms Ylj are the Dunham coefficients

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    15/71

    and Obviously, there is a

    relation between the

    Dunham coefficients andthose obtained with the

    Morse potential

    these terms can be calculated easily.

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    16/71

    IN SUMMARY: The empirical expression used in spectroscopy

    to fit the ro-vibrational spectra of diatomic molecules is

    INVERSE PROBLEM: From spectroscopic measurementsit Is possible to fit spectroscopic constants and form themit is possible to derive important information, through the

    Morse or Dunham expression for the potential energy, onthe dissociation energy, equilibrium distance, etc.

    This is the main subject of papers in journals such as theJournal of Molecular Spectroscopy or the Journal of Molecular Structure

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    17/71

    A few facts

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    18/71

    Electronic transitions will connect the lowest

    vibrational level of the ground electronic

    state with several vibrational states of theupper electronic state. The most probable

    transition is the one having the best overlap

    in the vibrational eigen functions.

    Franck-Condon Principle

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    19/71

    For simple molecules we can separatethe vibrational and rotational parts of the

    wave function as another Born-Oppenheimer aproximation

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    20/71

    SIMPLE CASE: ROTATIONAL SPECTRUMOF DIATOMIC OR LINEAR MOLECULES

    From a classical point of view of quantum theory a moleculehas a rotational energy proportional to the square of the

    angular momentum, J2. Hence the energy levels should have a

    dependency on J given by

    E(J)

    J(J+1)

    The frequencies of the transitions could be given by

    (J=>J-1)

    J

    The angular momentum of the molecule is given by I, where I

    is the momentum of inertia of the molecule,

    I =

    r2 , : reduded mass, r: separation between the nuclei.

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    21/71

    In this classical approximation for the energy of a rigid molecule

    the energies can be written as

    E(J) = B J(J+1)

    and the frequencies as

    = 2 B Ju

    The constant B, the rotational constant,is given by

    B = ( h / 8

    2 I ) [frequency units]

    1cm-1= 29979.2459 MHz

    30 GHz

    1.4388 K

    The heavier the molecule, the smaller B; the rotational

    spectrum will be tighter.

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    22/71

    ROTATIONAL SPECTRUM OF CARBON MONOXIDE

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    23/71

    EXAMPLE

    Be(CO)=57897.5 MHz

    Be(CO)=505379.05/I(CO)/r

    e(CO)2

    I(CO) = 6.856208642 u.a.

    re(CO)=1.1283

    m(13C)=13.00335483; m(12C)=12; m(O)=15.99491464

    Be(13CO) = (12CO)/(13CO)*Be(

    12CO) =0.95591388*57897.5 = 55345.02 MHz

    Experimental = 55344.9 MHz

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    24/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    25/71

    ROTATIONAL SPECTRUM OF HC3N (linear)

    ROTATIONAL SPECTRUM OF HC5N (linear)

    SpectrumGettingtighter

    However when the spectral accuracy of the observations is large

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    26/71

    However, when the spectral accuracy of the observations is large

    it is observed that the frequencies of successive rotational

    transitions depart from the last expression.

    WHY ?

    Because when molecules are rotating the nuclei are submitted tocentrifugal forces which increase the distance between them and

    increase the momentum of inertia.

    Errors with respect to the simple approximation increase:

    For lighter molecules.

    For larger rotational numbers.

    THIS IS JUST ONE OF MANY DISTORTION EFFECTSTHEY GET INCREASINGLY COMPLICATED AS THE NUMBER

    OF ATOMS IN THE MOLECULE INCREASES

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    27/71

    Selection rules J=1

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    28/71

    By selecting the appropriate molecule

    we can trace different physicalconditions.

    Molecules with low dipole moment, as

    CO, are easily excited through collisions

    with H2, even for low volume densities.

    Under some assumptions thesemolecules could trace the kinetic

    temperature of the gas.

    High dipole moment molecules could be

    used as tracer of the gas volume density

    (n(H2)).

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    29/71

    IN ASTROPHYSICS: By selecting the appropriate

    molecule we can trace different physical parametersand/or gas submitted to different physical conditions.

    Molecules with low dipole

    moment, as CO, are easily

    excited through collisions with

    H2

    , even for low volume

    densities. Under some

    assumptions these molecules

    could trace the kinetic

    temperature of the gas.

    High dipole moment molecules

    could be used as tracers of the

    gas volume density [n(H2)].

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    30/71

    Energy leveldiagram of theCO molecule

    Well, thewhole thing

    can get verycomplicated

    Radioastronomy

    with CO

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    31/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    32/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    33/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    34/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    35/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    36/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    37/71

    Frank Houwing's Lecture Notes Web site!

    www.anu.edu.au/Physics/houwing/LectureNotes/ Phys3034_MolSpec/MolSpec_L2_OH.pdf

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    38/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    39/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    40/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    41/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    42/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    43/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    44/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    45/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    46/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    47/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    48/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    49/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    50/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    51/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    52/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    53/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    54/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    55/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    56/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    57/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    58/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    59/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    60/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    61/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    62/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    63/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    64/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    65/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    66/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    67/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    68/71

    More on rotational spectroscopy

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    69/71

    More on rotational spectroscopy Diatomic or linear molecules are just a simple case (J)

    In general a molecule will have three principal axiswith moment of inertia IA, IB, IC. Here we can distinguish:

    Spherical tops: IA=IB=IC Example: Amonium ion NH4+

    Symmetric tops: IA=IB

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    70/71

  • 8/10/2019 cernicharo_cospar_intro_spectro_mod.pdf

    71/71