41
MRS Fall Meeting: Symposium Multilayer Ceramic Microsystems: applications in wireless, energy and life sciences Micro-Technologies Research Lab Solid State Research Center Motorola Labs Tempe, Arizona

Ceramic Microsystems

Embed Size (px)

DESCRIPTION

A look at mltilayer ceramic enabled microsystems

Citation preview

Page 1: Ceramic Microsystems

MRS Fall Meeting: Symposium

Multilayer Ceramic Microsystems:

applications in wireless, energy and

life sciences

Micro-Technologies Research Lab

Solid State Research Center

Motorola Labs

Tempe, Arizona

Page 2: Ceramic Microsystems

OUTLINE

• MST definitions and technologies

• Ceramic “MEMS” technology

• Ceramic “MEMS” applications

– Integration of RF-Wireless Functions

– Miniaturization of Fuel Cell Systems

• Direct Methanol

• Reformed Hydrogen

– Life Science Devices/Appliances

• MHD pumping

• DNA Amplification

• DNA Hybridization & Detection

• UV Light Source

• Conceptual Life Science Integrated Appliance

Page 3: Ceramic Microsystems

MicroSystem Technology (MST)*

Micromirrors

SiCeramic,Glass, Plastic,

Microsensors/detectorsMicrogrippers

Microactuators

Micromixers

Micropumps

Microvalves

Microreactors

Microheaters

Packaging Modular MEMS

Micropneumatics

Microplasma

System in/on a

Package (SIP) MOEMSLab-on-

Chip

MicroSystem Technologies

System Miniaturization and Integration of

Device Functions Based on:

PhotonicsElectronics MicroFluidics ThermonicsMechatronics

Microswitches

Enabled By 3D Multilayer

Integration/Fabrication Technologies:

*Source: M. Riester and D.L. Wilcox

Page 4: Ceramic Microsystems

Definition of MST

Any device or unit made up of a number of micro-

engineered components/devices.

An intelligent miniaturized monolithic and/or hybrid

integrated system comprising sensing, processing

and/or actuating devices utilizing two or more of the

following technologies: electronic, mechatronic,

microfluidic, thermonic, and photonic.

Page 5: Ceramic Microsystems

Microsystems Technology Driving

Forces

• Integration and Miniaturization of

Multifunctional Appliances

• Enabled by Integration of fluidics,

electronics, photonics, and “thermonics”

• Market Opportunities:

– Wireless – multiband and multimode phones

requiring more components

– Micro-scale energy sources for portable

appliances

– Emerging life science fluidic based devices

– “Lab on a chip”; Micro-reactor; etc.

Page 6: Ceramic Microsystems

Important Microsystem Integration

Technologies

• Ceramic - MEMS

• Si – MEMS

• Other Glass and Plastic (PCB) Technologies

• Electronic Packaging and Interconnect

Technologies

• Materials, Process and Device Modeling and

System Architecture/Partitioning and

Technology Selection Protocols

• Tools for managing cross-discipline, cross-

function teams!

Page 7: Ceramic Microsystems

Ceramic MEMS: Technologies & Applications

5 mm

15 m

m

Methanol Reformer

NEW

MATERIALS &

PROCESSES

MICROSYSTEM FUNCTIONS

pumps

chemical reactors

temperature control

on-chipICs

sensors

lightsources

ENERGY

WIRELESS

COMMUNICATIONS

LIFE

SCIENCES

fuel cells

fuel reformers

integrated modules

power amplifiers

filters

E-chipPCR

cell sorting

Integrated

BioChip

Technology

Pumping/

Mixing

Micro Hollow Cathode

Discharge (MHCD)

UV light source

V

Direct

Methanol

Fuel Cell

8 mm

8.5 mm

Power Amplifier

Cell Phone

Receiver

DNA

amplification

Page 8: Ceramic Microsystems

Sintering

Stacking

Layer 1 Layer 2 Layer n

…..………..

.

..

. ...

...

. ...

………..………..

……

…..

……

…..

…..

…..

…..…..……

…..

..

. ...

... .

..

……

…..

…..

…..

…………..

.

..

. ...

...

. ...

..

……

…..

.

…..

…..…

……

..

..

. ..

... .

..…..

…..

………..

.

.

.

.

.

...

. ...

……

…..

…..

…..

..

..

.

..

...

Inspection

SingulationLamination

Attach Devices

Fluidic microchannels( X,Y)

Electrical interconnect (Z)

Or Fluidic Microchannels (Z)

…..………..

.

..

. ...

...

. ...

………..………..

……

…..

……

…..

…..

…..

…..…..……

…..

..

. ...

... .

..

……

…..

…..

…..

…………..

.

..

. ...

...

. ...

..

……

…..

.

…..

…..…

……

..

..

. .

.

... .

..…..

…..

………..

.

.

.

.

.

...

. ...

……

…..

…..

…..

..

..

.

..

...

Electrical interconnect

SensorIntegrated

Passive component

Integrated active

component

Processing of Ceramic MEMS Microsystems

Page 9: Ceramic Microsystems

mechanical punching

100 mmVIA

FORMATION

VIA

FILL

LATERAL

FEATURES

(interconnects,

passives)

laser drilling

50 mm

stencil

100 mm

screen printing

50 mm

green sheet thickness

50-250 mm

photo-defined

50 mm

print thickness

5-20 mm

MLC Feature Forming Technologies

Page 10: Ceramic Microsystems

Microfluidic Structures Requiring Support

Page 11: Ceramic Microsystems

CMEMS Tape Texturing Technologies

Embossing Cast-on-Photoresist Fugitive

Paste

Advanced Microchannel Forming Technologies

Ceramic

Sheet Ceramic

Sheet

8 mm x 8 mm

channels10 mm channels heights

for rapid diffusive mixing

Page 12: Ceramic Microsystems

Applications of the Ceramic MEMS

• Integration of RF-Wireless Functions (SIP)

• Miniaturization of Fuel Cell Systems– Direct Methanol

– Reformed Hydrogen

• Life Science Devices/Appliances– MHD pumping

– DNA amplification

– DNA hybridizatin and detection

– UV light source

– Conceptual integrated life science appliance

Page 13: Ceramic Microsystems

Conceptual Diagram for Wireless Communication

Device

• Low RF Signal Loss Critical

• Need High Frequency Stability

• High Functional Integration:

Medium K (7-200) Dielectric

• Low L,C,R Values

RF Frontend

Mainly Analog

Circuit

IF &

Baseband

Mainly Digital

Circuit

Auxiliary

Functions

• High Interconnect Density:

Fine Line, Pitch and Pad

• High Speed and Low Cross

Talk: Low K ( < 4) Dielectric

• High L,C,R Values

Page 14: Ceramic Microsystems

TX RX

C1

Z1

D1Z2

D2C2 C3

ANT

Z3

Z4

C4

C5

C6

C8

C7

BIAS

Vertically Coiled

Transmission Line

Horizontally Coiled

Transmission Line

Multilayer Capacitor

Capacitor

Metal

MetalDielectric

Substrate

RF Device Elemental Structures

Page 15: Ceramic Microsystems

Conceptual MCIC Structure

Page 16: Ceramic Microsystems

GSM LEAP:

TRI-BAND Tx VCO

GSM KRAMER:

DUAL BAND PA MATCH,

HARMONIC FILTER,

COUPLER

ANT

ACC Rx / Tx - ANT / ACC

RF SWITCH

IRIDIUM:

LNA AND SWITCH

GSM LEAP:

TRI-BAND Rx VCOTUNABLE DUPLEXER

PCS / DCS

MCIC FILTER

Power Amp

MCIC Integration Efforts

Page 17: Ceramic Microsystems

~~

AntennaTransmit

From Amplifier

To Amplifier

To Mixer

Switch Bias Image Reject Filter

Bandpass Filter

Switch w/ Harmonic

Filter

Trap Filter

Bias Circuit

Impedance

Matching Line

Power and BiasLNA Bypass Capacitors

Example of RF Front-End Functional Integration

1 cm X 1 cm

41 components per sq. cm.

Page 18: Ceramic Microsystems

Synthesis Strategy of T2000 Dielectric*

Near Zero Temp. Coef. of Resonator Frequency

Low Dielectric Loss Tangent

Lead (Pb) Free Formulation

Ceramic Filler

Al2O3

Tf

Adjuster

TiO2

Sintering

850~ 900 °C

Glass

K2O, B2O3

(SiO2)

20 vol %

Crystalline Phases

CaAl2Si2O8 (35 vol%)

SrAl2Si2O8 (10 vol%)

BaAl2Si2O8 (5 vol%)

Al2O3

Glass: K2O, B2O3, SiO2

CaO, SrO, BaO

60 vol % 35 vol % 5 vol %

25 vol %

Tita-

nates5 vol %

50 vol%

Page 19: Ceramic Microsystems

7.0

8.0

9.0

10.0

600

700

800

900

1000

1100

1200

K

Q

800 825 900850 875 925 950 975

Temperature (°C)

Formation of High Q Dielectric

• Sintering T > 850 °C is necessary for high Q

• Self Limiting Crystallization - Wide Sintering Window

QK

Page 20: Ceramic Microsystems

1.232

1.234

1.236

1.238

1.24

1.242

1.244

1.246

1.248

-40 -20 0 20 40 60 80

Tf Measurement

TiO2 added

No TiO2

Res

onan

t fre

quen

cy (10

9 H

z)

Temperature (°C)

Tf=4.2 ppm/°C

Tf=-78.5 ppm/°C

Compensation of Tf:

TiO2: TK =-750 ppm/°C

CaTiO3: TK =-1850 ppm/°C

SrTiO3: TK =-3000 ppm/°C

• Tf of T2000 is ~ 80 ppm/°C

without compensation

• Can be continuously tuned

to ~ 0 ppm/°C

Compensation of Tf in T2000 Dielectric

Tf Measurement

0.994

0.996

0.998

1.000

1.002

1.004

1.006

-50 -30 -10 10 30 50 70 90

Temperature (C)

No

rma

lize

d F

req

ue

nc

y

T2000: 0.6 ppm/C

FerroA6: -48 ppm/C

DuPont 943: -58 ppm/C

DuPont 951: -69 ppm/C

Hereaus: -76 ppm/C

Page 21: Ceramic Microsystems

Example of Tf Influence on Filter

Performance

850 900 MHz 950

0

10

20

30

40

50

Attn

.

Pass

Band

Stop

Band

Filter

response at

room

temperature

Tf = 0 , Q=1000

Tf = - 60, Q=1000

Tf = -(1/2)Tk - Tk: T coefficient of dielectric constant

: linear CTE, 3~15 ppm/°C

Example of Tf Influence on Filter

Performance

850 900 MHz 950

0

10

20

30

40

50

Attn

.

Pass

Band

Stop

Band

Filter

response at

room

temperature

Tf = 0 , Q=1000

Tf = - 60, Q=1000

Tf = -(1/2)Tk - Tk: T coefficient of dielectric constant

: linear CTE, 3~15 ppm/°C

Example of Tf Influence on Filter

Performance

850 900 MHz 950

0

10

20

30

40

50

Attn

.

Pass

Band

Stop

Band

Filter

response at

room

temperature

Tf = 0 , Q=1000

Tf = - 60, Q=1000

Tf = -(1/2)Tk - Tk: T coefficient of dielectric constant

: linear CTE, 3~15 ppm/°C

Tf Impact on Embedded Filter Performance

Page 22: Ceramic Microsystems

Applications of the Ceramic MEMS

• Integration of RF-Wireless Functions

• Miniaturization of Fuel Cell Systems

– Direct Methanol

– Reformed Hydrogen

• Life Science Appliances

– MHD pumping

– DNA amplification

– DNA hybridizatin and detection

– Photonic light source

– Conceptual integrated life science appliance

Page 23: Ceramic Microsystems

LOCAL

DISTRIBUTED

MOBILEFIXEDCentral

Utilities

Mobile

Power

Luggable

Power

Distributed

Utilities

Large ApplicationsSmall Portable

Applications

A Fuel Cell is a System

Stack

Fuel Supply

Fuel Delivery System

Fuel Processing/Reforming

MicroSystem Fuel Cell & Applications

Page 24: Ceramic Microsystems

Methanol Fuel Cells

Two Approaches

Direct Methanol Fuel Cells (DMFC)

Direct Methanol Fuel cell

CH3OH + H2O CO2 + 3H2O

_Proton Conducting

Membrane+CH3OH Air (O2)

6H+

Loade-

Pt-Ru Catalyst

ElectrodePt Catalyst

CO2

Reformed Hydrogen (Methanol H2) Fuel Cells (RHFC)

Hydrogen Fuel cell

2H2 + O2 2H2O

_+

H2 Air (O2)

2H+

Loade-

Pt Catalyst

ElectrodePt Catalyst

Proton Conducting

Membrane

- Initial Product Target:

100 mw system for Portables

- Liquid handling

- Room Temperature Operation

- Low Power Density

- Initial Focus on miniature reformer

- High Power Density

- Reformer Operating Temp ~200ºC

- Gas handling

Higher wattage systems

Page 25: Ceramic Microsystems

Direct Methanol Fuel Cell System

DC-DC

Converter

Cell

PhoneRechargeable

Battery

Water

Cartridge

Mixing

Chamber

Methanol Concentration

Temperature

Flow

Fuel

Cell

Stack

Control

circuitry

Fuel (Methanol)

CartridgeSensors

Water Recovery

& Recirculation

MEMS Pumps

CO2 Separation

& Venting

Page 26: Ceramic Microsystems

Flow Field

(anode side)

Gold

Current

Collector Air Holes

(cathode side)

Gaskets

MEA

DMFC Fuel Cell Assembly

Assembled Fuel Cell Working Fuel Cell

Concept for Fuel Cell with integrated

pumping and control

Page 27: Ceramic Microsystems

Reformed Hydrogen Fuel Cell System

Water

Cartridge

DC-DC

Converter

Cell

Phone

Rechargeable

Battery

Fuel (Methanol)

Cartridge

Steam Reformer- Catalyst

- Temperature 250C

Heat Exchanger

Capture waste heat from FC feed

Fuel

Cell

Stack

Preferential

Oxidation

Reactor

(CO cleanup)

Temperature &

Po2 Sensors

Control

Circuitry

Fuel Vaporizer (chemical heat)

or Electric Heat

Page 28: Ceramic Microsystems

Reformed Hydrogen Fuel Cell System

CH3OH + H2O

CO2 + H2 + CO (about 1%)

CH3OH H2O

CuO-ZnO

Catalyst

Steam

Reformer

Preferential

Oxidation

Catalyst

CO

Clean upCO + 1/2O2 CO2

250 °C

(Endothermic Reaction)

H2 gas to fuel cell

Fuel Reformer

Air inChemical Combustor

Fuel Reformer

Insulator

Insulator

Insulation

Insulation

Methanol/Water (1:1 mole ratio)

H2 in

MeOH in

Reformer

Output to Fuel

Cell and Gas

analysis

Fuel Vaporizer/Heat Exchanger

Exhaust

out

Liquid Feed Pump: 10- 25 uL/min

Miniature Fuel Reformer with Integrated

Chemical Combustor Using Ceramics MEMS

Technology (Conceptual Design)

Page 29: Ceramic Microsystems

catalyst

Fuel Inlet(Methanol + Water)Fuel Vaporizer

Steam reformer

Gas Outlet(H2 , CO and CO2)

Reformer Test Data

0%

20%

40%

60%

80%

100%

180 200 230

Temperature (C)V

olu

me

%

H2

H2

H2

CO2

CO2CO2

MeOH

CO

(MeOH/ Water :1/1.05, 5 ul/min inlet fuel)

>90% MeOH Conversion @ 200C

~ 1 micro-liter/min total liquid in

produces

~ 1 milli-liter/min total gas out.

• 50 ul/min fuel can produce sufficient H2 for a Fuel Cell to produce 3W power

operating at 30% efficiency

Miniature Steam Reformer To Produce

Hydrogen Gas from Liquid Methanol Fuel

RHFC Fuel Processor

Page 30: Ceramic Microsystems

Applications of Ceramic MEMS

• Integration of RF-Wireless Functions

• Miniaturization of Fuel Cell Systems

– Direct Methanol

– Reformed Hydrogen

• Life Science Appliances

– MHD pumping

– DNA amplification

– DNA hybridizatin and detection

– Photonic light source

– Conceptual integrated life science appliance

Page 31: Ceramic Microsystems

Piezo-driven LTCC Micropump

• Multilayer ceramic design

• Cofired ball check valves

• Piezoelectrically driven, PZT unimorph

Cofired balls inside

0

50

100

150

200

0 10 20 30 40

Vp-p

Flo

w R

ate

(m

icro

lit

re/m

in)

10~30 Hz

5 Hz

50 Hz

1 Hz

0

50

100

150

200

0 20 40 60

Frequecy (Hz)F

low

Rate

(m

icro

lit

re/m

in)

Vp-p=20 V

Vp-p=10 V

Vp-p= 30 V

Page 32: Ceramic Microsystems

Magnetohydrodynamic (MHD) Pumping

MHD Pumping Video

Impact: No moving parts, bi-directional, non-pulsating flow

INLET

OUTLETExternal mini-electromagnet

for B-field

Initial Pump Design

B

I

v

2

2

)(8 hwL

hIBwv

m

Basic MHD Theory

Inlet

Outlet Electrodes for E-field

“channel for pumping”

View Channel 1 mm

First Generation MHD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Current (mA)

Flo

w R

ate

(u

L/m

in)

Model Prediction

Measured Data

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 30 60 90 120 150 180

Phase Angle (Degrees)

Flo

w R

ate

(u

L/m

in)

Model Prediction

Measured Data

MHD Experimental Data (100 mM NaCl solution)

Page 33: Ceramic Microsystems

95 C 55 C 72 C

Model Predictions Experimental Validation

DESIGN

AIR

GA

P

AIR

GA

P

AIR

GAP

AIR

GAP

CH

AN

NE

L 2

CH

AN

NE

L 1

CH

AN

NE

L 3

Inlet

Outlet

DNA amplification

DNA

AMPLFICATION

THERMAL PROFILELTCC DEVICE

CONTINUOUS FLOW POLYMERASE CHAIN REACTION (PCR)

Generation 1

Generation 2Second generation design completed

with reduction in dead volume from

75% to 25% of the reactor

Page 34: Ceramic Microsystems

DNA hybridization & detection

Ag-Pd Heater

Gold Pad & Via Microwell

Plane

Heater: Ag-Pd strip of 80 squares

Resistance: 30 mW/square x 80 squares = 2.4W

Energy Input: 160 mW

Heat loss: Natural Convection at device boundary

Schematic of E-chip

Temperature Profile across Sensor Pads

MODELING OBJECTIVE:

less than 1C temperature variation

across the array

FABRICATED DEVICES

Sensing Electrodes

Sensor pads Temperature sensor

Heater

PCB-based array

Ceramic arrays

Page 35: Ceramic Microsystems

DT < 0.5 C

Colu

mn

1

Co

lum

n 2

Colu

mn

3

DT ~ 0.5 C

Ro

w 1

Ro

w 2

Ro

w 3

Ro

w 4

Predicted

Measured

Heater Resistance: 2.6 W

Current: 250 mA

Energy Input (expt.): 0.1625 W

Energy Input (model): 0.16 W

Experimental Details

Temperature Profile along X-axis Temperature Profile along Y-axis

Model Validation of Thermal Profile

Page 36: Ceramic Microsystems

0

200

400

600

800

1000

200 250 300 350 400Wavelength (nm)

Inte

nsit

y (

a.u

.)

Dia. =250 mm

Separation = 190 mm

Gas: XeI

V = 300 V

I = 150 mA

Pressure = 20-60 Torr

Ceramic Micro Hollow Cathode Discharge

Integrated UV

Light Source

VCollaboration with G. Eden, B. Vojak,

Univ. of Illinois, Urbana, Illinois

XeI*B-X

253 nm

Iodine

206 nm

XeI*B-A

320 nmI*2

342 nm

Page 37: Ceramic Microsystems

Electromagnetic

coil

Coil High-mu material

CMEMS Enabled Devices and Functions

Fluidic well fill sensor

Capacitor

plate

Conductor

trace

Channel flow sensor

Integrated coil heaterFluid heating

Integrated EM coils Enable:-Magnetic microsphere manipulation

-Magnetic-based stirring

-Magnetic pumping concepts

Electromagnetic-Coil Integration

Capacitive sensing of fluids Capacitive sensing of fluids:-Channel flow sensor

-Fluidic-well fill sensor

-Precise metering of fluids

-’Macro-to-micro’ fluid metering

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5 3 3.5

Heater-Coil Power (Watts)

Temperature region

of interest for “PCR”

-250

-200

-150

-100

-50

0

50

-0.5 0 0.5 1 1.5 2 2.5

Power (Watts)

Polymer “Mag-Spheres”

attracted to embedded

electromagnetic coil

Tem

pera

ture

(d

eg

C)

Mag

neti

c F

lux (

Gau

ss)

Page 38: Ceramic Microsystems

MST-INTEGRATION

TECHNOLOGIES

examples:

- Si-MEMS

- Ceramic-MEMS

- PCB/HDI/Plastics

- Si ICs

- RFIC

- LTCC 3D Interconnect

- Micro Displays- Wafer Scale Ass’y

- Known Good Parts

ELECTRONIC

2-way Wireless Signaling& Networks (ANTENNA)

RFICuC

MST-ENABLED

FEATURES

- uP & Memory

- Thermal Cycles

- Photon Sources

- Photo Imager/Det

- uFluidic Channels

- uBio Chemistry

- uPumping

- Dense Packing

- Low Cost

uPump

uPump

Ceramic-MEMS

uC

neuRFon™3D LTCC Smart Substrate

MST Integrated Bio-Analysis Appliance

Input Blood Sample -- cell sort -- lysing -- DNA amplify --

DNA signal detection -- DNA analysis -- Transmission --

Medical Network Database -- Medical Network Response

Miniature Blood Analyser

P. Roberts-SSRC

Page 39: Ceramic Microsystems

Summary

• A Microsystems Technology is Emerging

– Enabling integration/miniaturization of bench top appliances

– Enabling devices that are multifunction integrating electronic,

microfluidic, mechatronic, thermonic and photonic devices

• These appliances will impact the electronic, energy, life

science and micro-reactor related markets

• A Ceramic – “MEMS” or MST technology is emerging as

an important multifunction micro-systems 3D integration

technology:

• Building on the multilayer “packaging/interconnect”

and capacitor technologies and infrastructure

• A true 3D integration technology with a rich menu of

integrateable materials for Device opportunities

• Provides dimension gap system tradeoff: SOC vs SIP

Page 40: Ceramic Microsystems

Summary

CMEMS Applications will accelerate with:

•Advances in simulation and modeling tools

•Advances in materials integration, and feature forming

technologies

•Expanded Research at Universities and National Labs

• Establishment of CMEMS User Facilities

• Establishing Standards for Materials and Processes

• Emulating PCB and Silicon Foundry Infrastructure ..

Cost, Cycle Times, Multiple Sources

Page 41: Ceramic Microsystems

Material and Process Challenges

Material challenges:

• Dielectrics

• Ceramics (e.g., high K dielectrics)

• Glass-ceramics (LTCC)

• Glasses (encapsulation, sealing etc)

• Conductors

Au, Ag, Ag/Pd, Pt, Cu, base metals,…

• Resistors (internal cofired, post fired, etc)

• Magnetic Materials (ferrites, permanent magnets, etc)

• Ferroelectric and Piezoelectric Materials

Process Challenges• Tape and Thick film processes

• Thin film process

• Interconnect technologies

Looking for collaborations in the above fields!