31
Centro de Pesquisas de Energia Elétrica - Cepel Centro de Pesquisas de Energia Elétrica - CEPEL Paradigms in Power System Planning & Operation Contemplating the HVDC Technological Evolution SEMINARIO Planificación Energética y de Expansión de la Transmisión CIGRE CHILE Marcio Szechtman Director General IC ENERGY RESEARCH CENTER - CEPEL Santiago, Abril 16, 2018

Centro de Pesquisas de Energia Elétrica - CEPEL

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Centro de Pesquisas de Energia Elétrica - Cepel

Centro de Pesquisas de Energia Elétrica - CEPEL

Paradigms in Power System Planning &

Operation Contemplating the

HVDC Technological Evolution

SEMINARIO

Planificación Energética y de Expansión de la Transmisión

CIGRE CHILE

Marcio SzechtmanDirector General

IC ENERGY RESEARCH CENTER - CEPEL Santiago, Abril 16, 2018

Centro de Pesquisas de Energia Elétrica - Cepel

Part I

HVDC – from traditional applications

towards new market roles

Centro de Pesquisas de Energia Elétrica - Cepel

✓ Frequency Decoupler

R

Vac1 Vd1 Id Vd2 Vac2

Id = (Vd1 – Vd2)/R

✓ No reactive power flow in the DC line

AC AC

DC line

Zero Hz

✓ Basically a resistance

✓ And, moreover, the active power flow corresponds exactly to the Operator’s dispatch

HVDC – Main Inherent Characteristics

Centro de Pesquisas de Energia Elétrica - Cepel

HVDC Traditional applications

• 1) Long Distance Transmission:

✓ Synchronous Systems

✓ Three phase condutctors

✓ Intermmediate substations for

Voltage and Switching Overvoltage

control at each 300 to 400 km

✓Asynchronous Systems

✓ 2 Conductors (+ and - poles)

✓DirectTransmission

Centro de Pesquisas de Energia Elétrica - Cepel

HVDC Traditional applications

• 2) Submarine or Underground

Transmission:

AC AC

DC Cable

As there is no charging effect, applications beyond 100 km are feasible with DC

Centro de Pesquisas de Energia Elétrica - Cepel

As we can see in many parts

of Europe

Centro de Pesquisas de Energia Elétrica - Cepel

Recent Examples of North Sea Interconnetions

NordLink – Norway - Netherlands

Statnett, Tennet, KfW1400 MW +/- 525 kV

VSC Converters

Bipole

Tonstad in Norway – Wilster in Germany

571 km cable + 53 km OH-line

Commissioning 2019

North Seal Link

Statnett and National Grid1400 MW +/- 515 kV

VSC Converters

Bipole

Suldal in Norway – Newcastle area in England

722 km

Commissioning 2021

Centro de Pesquisas de Energia Elétrica - Cepel

✓ 3) Off-shore Wind Farms Transmission

AC AC

DC Cable

HVDC Traditional applications

Centro de Pesquisas de Energia Elétrica - Cepel

Off-shore Wind Farms: they need to reach load centers

(Example fo Germany)

Corridor A, to be

strung from the North

Sea port of Emden,

1000 MW 660 km,

part of a €10 billion

project still being

debated by the

German parliament

HVDC Traditional applications

Centro de Pesquisas de Energia Elétrica - Cepel

• 4) Interconnection of systems at different

frequencies:

Many examples in South America: Garabi (AR/BR), Rivera, Mello (UR/BR)

AC AC

50 Hz 60 Hz

HVDC Traditional applications

Centro de Pesquisas de Energia Elétrica - Cepel

• 5) Asynchronous Operation:

Example of the East/West/Texas USA islanding BtB

HVDC Traditional applications

Centro de Pesquisas de Energia Elétrica - Cepel

HVDC Technological

Evolution and

Trends

Part II

Centro de Pesquisas de Energia Elétrica - Cepel

HVDC Technological Evolution and

Trends

LCC or VSC?

Centro de Pesquisas de Energia Elétrica - Cepel

0.8 1 1.2 1.4 1.6 1.8 2-1000

-500

0

500

1000

IPC

C_L

1 [

A]

IPC

C_L

2 [

A]

IPC

C_L

3 [

A]

0.8 1 1.2 1.4 1.6 1.8 2-400

-200

0

200

400

UP

CC

_L

1_P

RIM

SID

E [

kV

]

UP

CC

_L

2_P

RIM

SID

E [

kV

]

UP

CC

_L

3_P

RIM

SID

E [

kV

]

File: TFR CL_S2PCP1B1 1 20131113 02;49;30_368000.CFG

0.8 1 1.2 1.4 1.6 1.8 2158.7726

479.9612

UP

CC

_P

RIM

SID

E_

RM

S [

kV]

0.8 1 1.2 1.4 1.6 1.8 2-0.5

0

0.5

1

UD

_M

EA

N_

F [

pu

]

0.8 1 1.2 1.4 1.6 1.8 2

BLOCKED

CLOSE_ISOLATION

Conv Breaker Open

DCB_Q1_CLOSED_IND

DCB_Q2_CLOSED_IND

DCB_Q3_CLOSED_IND

DCB_Q4_CLOSED_IND

Time [s]

HVDC response due to a mid-line pole DC fault: left VSC System; right typical LCC Scheme

Fault current cleared by AC breaker (3

cycles); full recovery time, from 700 to

1500 ms; with DC breakers or full bridge,

time will be less

VSC and LCC Responses to Line fault

Fault current cleared by Thyristor control in 10

ms; typical straight forward recovery time in the

range of 400 ms, including arc deionization

Centro de Pesquisas de Energia Elétrica - Cepel

HVDC – The Chinese breakthrough

Power

(MW)

YearName Volt (kV)

Only these projects add tonew 80000 MW!

Xinjiang - Anhui 1100 10000 2017

Humeng - Liaoning 800 6400 2018

Northwest Yunnan -

Guangdong

800 6400 2017

Jinsha River II - Fujian 800 6400 2018

Yinchuan - Zhuji 800 6400 2017

Jiuquan- Xiangtan 800 6400 2016

Goupitan - Guangdong 3000 2016

Xilin Hot - Taizhou 800 6400 2017

Jinsha River II - East China 800 6400 2016

Irkutsk - Beijing 800 6400 2015

Inner Mongolia - Linyi 800 6400 2017

Humeng - Shandong 800 6400 2015

Centro de Pesquisas de Energia Elétrica - Cepel

HVDC – New Frontiers to be

accomplished in China

Centro de Pesquisas de Energia Elétrica - Cepel

HVDC – The Chinese breakthrough

The ±1100 kV, 12000 MW, 3300 km SGCC Project

587 MVA power transformers supplied by SIEMENS, ABB and ChineseManufacturers

Centro de Pesquisas de Energia Elétrica - Cepel

New trends in HVDC – The OverlayingThe Chinese idea of the Asian Interconnection

Centro de Pesquisas de Energia Elétrica - Cepel

New trends in HVDC – North America Transmission Overlaying

Centro de Pesquisas de Energia Elétrica - Cepel

Renewable Energy Evacuation

in the USA

Centro de Pesquisas de Energia Elétrica - Cepel

New Paradigms in Power

System Planning considering

HVDC

Part III

Centro de Pesquisas de Energia Elétrica - Cepel

AC AC

Zero km

Zero Hz

Zero Hz: no trasnfer of short circuit current or oscillatory modes

Zero “km”: there is no electrical distance: generation gets closer to loads

New Paradigms?

Centro de Pesquisas de Energia Elétrica - Cepel

The Brazilian Transmission Grid New Paradigms

NortheastRegion

NorthernRegion

Southern Region

SoutheastRegion • Madeira and Itaipu: assinchronous

• Belo Monte: system embedded

and bi-directional

ItaipuBipoles

MadeiraBipoles

Belo MonteBipoles

Overload capability (30 min) specified:- Itaipu: 10% for a Pole Contingency- Madeira: 33% for any DC Contingency- Belo Monte: 33% for any AC or DC event

Centro de Pesquisas de Energia Elétrica - Cepel

HVDC is now embedded

In addition:

The Belo Monte HVDC run in close

proximity of large 500 kV AC trunks

Centro de Pesquisas de Energia Elétrica - Cepel

~

New HVDC line

Requested to transmit 25% of ratedpower under restorationprocess

System Restoration with theparticipation of the Belo Monte BP2 HVDC Link

Rio de Janeiro load

HVDC Role in System Restoration

Centro de Pesquisas de Energia Elétrica - Cepel

NorteastRegion

NorthernRegion

SoutheastRegion

Southern Region

The Effect upon diferente markets

(or sub-markets in Brasil)

Centro de Pesquisas de Energia Elétrica - Cepel

• Two months displacementamong basins

• Allow water reserves

• Gains on operational costsand reliability

•In this way, storage of water(Energy) may be executed, ona systemic basis

On a local basis:

• Key technology to providemore flexibility

•To compensate suddenvariations of power generationand loads

Hydrological Complementary amongBasins – Storage on a System Basis

Centro de Pesquisas de Energia Elétrica - Cepel

Source: IEA Technology Roadmap Energy Storage (2014)

About Storage: System and Local

Centro de Pesquisas de Energia Elétrica - Cepel

44

105

165

226

286

0, 0,5 1, 1,5 2, 2,5

DELT 6419 10 TUCURUI1-4GR 501 10 I.SOLTE-18GR

DELT 6419 10 TUCURUI1-4GR 5022 10 PAFO-4G1-3GR

Generators angle separation for a double circuit 500 kV AC fault:

red: North to Southeast; blue: North to Northeast

No HVDC overload applied

Expoiting the DC Power Overload

Capability of HVDC Links

Centro de Pesquisas de Energia Elétrica - Cepel

Generators angle separation for a double circuit 500 kV AC fault:

red: North to Southeast; blue: North to Northeast

-12,3

5,8

23,9

42,

60,1

0, 3, 6, 9, 12, 15,

DELT 6419 10 TUCURUI1-4GR 501 10 I.SOLTE-18GR

DELT 6419 10 TUCURUI1-4GR 5022 10 PAFO-4G1-3GR

33% HVDC overload applied

Expoiting the DC Power Overload Capability of Belo Monte HVDC Links (33% for 30 minutes)

Presently, no dynamic overload isavailable with VSC Systems

Expoiting the DC Power Overload

Capability of HVDC Links

Centro de Pesquisas de Energia Elétrica - Cepel

THANK YOU!