48
(c)2017 van Putten Center of Mass and Angular Momentum 1

Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

(c)2017 van Putten

Center of Mass and Angular Momentum

1

Page 2: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

(c)2017 van Putten

Outline

Seesaw balance Center of mass Force, CM and torque

Angular momentum Ice skater - ballerina effect

Spinning top Inertial torque Precession Nutation

Anglicisation of French “ci-ça” (back-and-forth); or from "scie" - French for "saw" with Anglo Saxon "saw." "scie-saw" became “see saw." (Wikipedia)

2

Page 3: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Center of mass

(c)2017 van Putten

http://www.pbs.org/opb/circus/classroom/circus-physics/center-mass/

3

Page 4: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Rotation of center of mass about pivots

(c)2017 van Putten

b: horizontal distance CM to pivot

b ' b '

unbalancedbalanced

b

double trouble

4

Page 5: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Schematic overview

(c)2017 van Putten

buckling

pivot

CM

5

Page 6: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

CM defined

(c)2017 van Putten

M1r1 +M 2r2 = 0

CM

M1

M 2

CM is relatively close to the heavy mass

6

CM of two bodies is along a line connecting them:

Page 7: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

CM defined

(c)2017 van Putten

CM

M1

M 2

r1r2

r = r1 − r2

Distances to CM:

r1 =M 2

M1 +M 2

r = q1+ q

r

r2 = − M1

M1 +M 2

r = − 11+ q

r

q = M 2

M1

7

Page 8: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Balance of seesaw (I)

(c)2017 van Putten

ll

r1 =q1+ q

r, r2 = − 11+ q

r

CM

M1

M 2

pivot

pivot

Balanced: CM at pivot

q = 1: M1 = M 2

no net torque, no tendency to rotate

8

Page 9: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Balance of seesaw (II)

(c)2017 van Putten

dEi = Migdhi i = 1,2( )pivot

h1 h2 dh1 = −dh2Symmetric seesaw:

0 = dE = dE1 + dE2 = g M1dh1 +M 2dh2( ) = gdh1 M1 −M 2( )

M1 = M 2

No tendency to rotate (in seeking a lowest E) if

Zero force from virtual displacements if

9

Virtual displacement

Page 10: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Imbalanced seesaw

(c)2016 van Putten

CM away from pivot:q <1: M1 > M 2

10

Page 11: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Asymmetric seesaw (I)

(c)2016 van Putten

l1 > l2 :

CM

M1

M 2

pivot

li = ri i = 1,2( ) :

r1 =q1+ q

r, r2 = − 11+ q

r

Pivot coincides with CM if

l2l1

h1

h2

q = M 2

M1

=r1r2

= l1l2

11

Page 12: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Asymmetric seesaw (II)

(c)2017 van Putten

dEi = Migdhi i = 1,2( )

dh1l1

= − dh2l2

Asymmetric seesaw:

0 = dE = dE1 + dE2 = g M1dh1 +M 2dh2( ) = gdh1 M1 −l2l1M 2

⎛⎝⎜

⎞⎠⎟

l1M1 = l2M 2

No tendency to rotate (in seeking a lowest E) if

Force-free virtual displacements if

l2l1

h1

h2

12

Virtual displacement

Page 13: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Leverage

(c)2017 van Putten

creates leverage to lift mass:

M 2 =l1l2M1 > M1

l2l1

h1

h2

dh2 = − l2l1dh1 < dh1

but over reduced heights:

l1 > l2

Potential energies: dUi = gMidhi : dU1 + dU2 = 0

Conservative exchange of potential energy

13

Page 14: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Conversion to kinetic energy...

http://en.wikipedia.org/wiki/Seesaw

14(c)2017 van Putten

Page 15: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Torque about pivot

(c)2016 van Putten

Fi = gMi i = 1,2( )

F = gMM = M1 +M 2

CM

F1 F1

pivot

15

Page 16: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Torque about pivot

(c)2017 van Putten

F = gM

b

CM at torque arm length b from pivot

T = b × F

T

16

Page 17: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Energy in rotation

Erot = Ek1 + Ek2

Eki =12Mivi

2, vi = liω

ω = dϕdt

l1 l2

ω

17(c)2017 van Putten

Page 18: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Energy in angular momentum

Erot =12Iω 2

I = M1l12 +M 2l2

2

Total Ek in rotational motion

Moment of inertia

J = IωAngular momentum

Recall Kepler’s orbital motion:J = r × p : J = Mj, j = 2 dA

dt

l1 l2

ω

18(c)2017 van Putten

is constant

Page 19: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

19

Spin in circus acts

Page 20: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Spin carries angular momentum

http://www.pbs.org/opb/circus/classroom/circus-physics/angular-momentum/

20(c)2017 van Putten

Page 21: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Angular momentum in the trapezium jump

http://www.pbs.org/opb/circus/classroom/circus-physics/angular-momentum/

21(c)2017 van Putten

Page 22: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Spin up and down, conserving J

Erot =12Iω 2 = J 2

2I∝ I −1 ∝ l−2

J = Iω : ω = JI∝ I −1 ∝ l−2

I = M × l2

l

l

http://www.pbs.org/opb/circus/classroom/circus-physics/angular-momentum/

22(c)2017 van Putten

Page 23: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Ballerina effect

IA = M × lA2

IB = M × lB2

ω B

ω A

= lAlB

⎛⎝⎜

⎞⎠⎟

2

>>1

http://www.pbs.org/opb/circus/classroom/circus-physics/angular-momentum/

23(c)2017 van Putten

Page 24: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

In the air...

ωC

ω B

= curled upstretched

⎛⎝⎜

⎞⎠⎟2

<<1

Spin down before landing...

ωC

ω Bω A

ω B

ω A

= stretchedcurled up

⎛⎝⎜

⎞⎠⎟

2

>>1

Spin up for the act:

http://www.pbs.org/opb/circus/classroom/circus-physics/angular-momentum/

24(c)2017 van Putten

Page 25: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

“What I do is very difficult. It is very hard on the body.

If I am lucky I have a good ten years ahead of me, if I am lucky.”

Alex Cortes, Big Apple Circus

Q: Why do you think this is so?

Angular momentum carries energy

25(c)2017 van Putten

Page 26: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Mach’s principle

J

26(c)2017 van Putten

Absent external torques, angular momentum is constant in magnitude and orientation relative to distance stars(*)

(*) in flat space-time, in the absence of frame dragging (“dragging of spacetime by matter”)

Page 27: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Mach’s principle

“He believed that inertia arises from the presence of all matter in the Universe.”

“Distant stars” represent most of the mass.

If the philosopher is good enough, after some time he may come back and say, “I understand. We really do not have such a thing as absolute rotation; we are really rotating relative to the stars, you see. And so some influence exerted by the stars on the object must cause the centrifugal force.” Feynman Lectures on Physics, Vol I, Ch16

27(c)2017 van Putten

Page 28: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

The Boy with a Spinning Top Jean-Baptiste Chardin, France (1699-1779)

pivot

CM

F = Mg

b

Ideal pivot: no air friction, conservation of total energy in angular momentum

θ

28

b = l sinθ l = CM − pivot

(c)2017 van Putten

Distance CM to pivot:

Spinning top

Page 29: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Precession and torque

J motion of J

ω p processional angular velocity

τ

τ =ω pJ

29(c)2017 van Putten

torque associated with orientation change of an angular momentum vector

Page 30: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Precessing top

T = b × F, e = JJ, τ = d

dte, τ̂ = τ

τ[T ]= energy

T ≡ dJdt

= ddt

Je( ) = dJdte + J d

dte

ω pJ = bFmotion of J=J(t)

precessional angular velocity

θω p

ττ =ω pJ

30(c)2017 van Putten

In magnitude and direction, this torque is absorbed by precession of J:

Page 31: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Angular momentum is a conserved quantity

Feynman Lectures on Physics, Ch20

31(c)2017 van Putten

Jz = 0 Jz = 0

Page 32: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Torques and counter-torques

ω p

J

JωJ

applied torque to the handle

T

Tcounter-torque

32(c)2017 van Putten

Jz = 0

Jz = 0

Jz = 0

Page 33: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Horizontally suspended rotating disk

Disk’s weight rests on pivot.

torque by gravity

ωT

ω p

Disk absorbs T by precession.

33(c)2017 van Putten

Page 34: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Gyroscope inertial reaction torques

34(c)2017 van Putten

Page 35: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Particle trajectories

35

Fapplied = maFapplied = −Freaction Newton’s third law

v

am

p = mv

(c)2017 van Putten

Page 36: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Inertial reaction forces

36

F = ma = dpdt

v

am

Force applied to m:

F = −ma = − dpdt

Inertial reaction force:

(c)2017 van Putten

Page 37: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Centripetal acceleration

37

F = ma = dpdt

v =ωρ

a = v2

ρ=ω 2ρ

ω

v

ac

p Δp = pΔθΔθ =ωΔt

ρ = pωm

Radius of curvature

m

p = mv

(c)2017 van Putten

Rotational motion:

F =ω p

Page 38: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Curved trajectories

38

ωρ

v

acm

Instantaneous orbital plane spanned by p and a

(c)2017 van Putten

ρ is local radius of curvature

Page 39: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Rotation induced torque

39

v =ωl

a = v2

l=ω 2l

ω

bl

vF

T

m

F = pω :T = bF = mω 2bl

Inertial pull

(c)2017 van Putten

T

F

ρ = l

Page 40: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Inertial forces in a rotating ring

40

Rotating V forces particle trajectories with curvature in both V and the horizontal plane.

This is a problem of two angles… exploit translation invariance of rotation induced torques…

l

ω p =dϕdt

C

Absent precession, the ring rotates in a tangent plane V to a cylinder about the z-axis

(c)2017 van Putten

V

Page 41: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Bring ring’s CM to the origin

41

r θ ,ϕ( ) = bsinθ cosϕsinθ sinϕcosθ

⎜⎜⎜

⎟⎟⎟, dθ

dt=ω , dϕ

dt=ω p

x

y

z

ϕ

θ

Ring spins over θ (fast angle)

Precession over φ (slow angle)

mass element in ring

(c)2017 van Putten

Page 42: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Some vector calculus

42

δ J = r ×δ p = δm r × v, δm = M2π

δθ

v = ddtr, a = d

dtv, v × v ≡ 0

δT = ddtδ J = δm d

dtr × v + r × d

dtv⎛

⎝⎜⎞⎠⎟ = δm r × a

(c)2017 van Putten

Page 43: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Explicit evaluation

43

v = bcosθ cosϕcosθ sinϕ−sinθ

⎜⎜⎜

⎟⎟⎟ω + b

−sinθ sinϕsinθ cosϕ

0

⎜⎜⎜

⎟⎟⎟ω p ,

a = b−sinθ cosϕ−sinθ sinϕ−cosθ

⎜⎜⎜

⎟⎟⎟ω 2 + b

−sinθ cosϕ−sinθ sinϕ

0

⎜⎜⎜

⎟⎟⎟ω p

2 + 2b−cosθ sinϕcosθ cosϕ

0

⎜⎜⎜

⎟⎟⎟ωω p

a = −r ω 2 +ω p2( )+ bω p

2 cosθ iz + 2b−cosθ sinϕcosθ cosϕ

0

⎜⎜⎜

⎟⎟⎟ωω p :

δT = δm r × a = δmb ω p2r × iz + 2ωω pr ×

−cosθ sinϕcosθ cosϕ

0

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

(c)2017 van Putten

Page 44: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Net torque in a rotating ring

44

r × iz = 12π

r × iz dθ =0

∫b2π

sinθ sinϕ−sinθ cosϕ

0

⎜⎜⎜

⎟⎟⎟dθ =

0

∫ 0

r ×−cosθ sinϕcosθ cosϕ

0

⎜⎜⎜

⎟⎟⎟

= 12π

r ×−cosθ sinϕcosθ cosϕ

0

⎜⎜⎜

⎟⎟⎟0

∫ dθ = b2π

−cos2θ cosϕ−cos2θ sinϕ2sinθ cosθ

⎜⎜⎜

⎟⎟⎟0

∫ dθ = − b2

cosϕsinϕ0

⎜⎜⎜

⎟⎟⎟

Average over all mass positions in the ring (fast angle θ)

T = δT0

∫ = M2π

r × ad0

∫ θ = M b ω p2 r × iz + 2ωω p r ×

−cosθ sinϕcosθ cosϕ

0

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

T =ωω pMb2 =ω pJ

J =ω I , I = Mb2 :

(c)2017 van Putten

Page 45: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Starting precession: dip by gravity’s torque

Precession started by initial dip

45(c)2017 van Putten

(red > blue)

vdown = v0 + ε , v0 =ω 0bvup = v0 − ε , ε = gt

τ = b vdown2

b−vup2

b⎛

⎝⎜⎞

⎠⎟= 4ω 0εb

about z-axis

t = 0+

fnLeft > fn

Right

fnBottom = fn

Top

vdown

vup

Page 46: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Precession in equilibrium

ω pJ = lF, F = MgPrecession subsequently balances

gravity’s torque

46(c)2017 van Putten

fnLeft = fn

Right

fnBottom > fn

Top

t > 0α > 0l

vprorate

vretrograde

(red > blue)

l→σ = l cosα( )

Page 47: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

Nutation

J⊥ < 0

balances precessional angular momentum

Jz = Izω p = Mσ 2ω p

σ = l cosα

J = Mb2ω 0

tanα =ω p

Ω⎛⎝⎜

⎞⎠⎟

2

, Ω = gσ

J = J! + J⊥

J⊥ = J sinα

J!J⊥

αJz

Damped motion of CM to steady state

47(c)2017 van Putten

Mgσω p−1 tanα = J cosα( ) tanα = J sinα = Jz = Izω p = Mσ 2ω p

Page 48: Center of Mass and Angular MomentumAngular momentum carries energy (c)2017 van Putten 25 Mach’s principle J (c)2017 van Putten 26 Absent external torques, angular momentum is constant

48

Summary

CM and pivots balance Virtual displacements

Angular momentum moment of inertia angular velocity

Spinning top Torque Precession