24
International Journal of Oceans and Oceanography ISSN 0973-2667 Volume 14, Number 2 (2020), pp. 197-220 © Research India Publications https://dx.doi.org/ Centennial-Millennial Climate Variability in the Makassar Strait during Early Holocene until the End of the Last Deglaciation Marfasran Hendrizan 1,3 *, Nining S. Ningsih 2 , Sri Y. Cahyarini 3 , Mutiara R. Putri 2 , Bambang Setiadi 4 , Iwan P. Anwar 1,2 , Dwi A. Utami 3 , Vera C. Agusta 3 1 Earth Sciences Study Program, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Labtek XI, Jl. Ganeca No. 10, Bandung 40132, Indonesia. E-mail: m_hendrizan@yahoo,com (MH); [email protected] (IPA) 2 Research Group of Oceanography, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Labtek XI, Jl. Ganeca No.10, Bandung 40132,Indonesia. E-mail:[email protected] (NSN), [email protected] (MRP) 3 Paleoclimate and Paleoenvironment Research Group, Research Center for Geotechnology, Indonesian Institute of Sciences, Jl. Sangkuriang Bandung 40135, Indonesia. E-mail:[email protected] (SYC), [email protected] (DAU), [email protected] (VCA) 4 Geoinformatics and Computations Research Group, Research Center for Geotechnology, Indonesian Institute of Sciences, Jl. Sangkuriang Bandung 40135, Indonesia. E-mail: [email protected] *Correspondence: [email protected] Abstract Indonesian archipelago establishes an essential region for considering relationships between climate and human activities in the region. However; large uncertainties remain in understanding Indonesian hydroclimate under varying timescales. Here we present reanalyzed data of high-resolution proxy from high sedimentation rate (120-170 cm/kyrs) marine sediment core SO217- 18517 from 9 to 14 kyrs in the offshore Mahakam Delta. Our dataset reveals high-frequency variations at centennial and millennial time scales during the period between 9 and 14 kyrs based on multi-proxies data (δ 18 Osw; Sea Surface Temperature/SST; and δ 18 O). Early Holocene to the end of last deglaciation period in the Makassar Strait was characterized by mixture forcing between

Centennial-Millennial Climate Variability in the Makassar ...202 Marfasran Hendrizan et al. 3. METHODS 3.1. Age model AMS 14C records of Core SO217-18517 used in this study are obtained

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • International Journal of Oceans and Oceanography

    ISSN 0973-2667 Volume 14, Number 2 (2020), pp. 197-220

    © Research India Publications

    https://dx.doi.org/

    Centennial-Millennial Climate Variability in the

    Makassar Strait during Early Holocene until the End

    of the Last Deglaciation

    Marfasran Hendrizan1,3*, Nining S. Ningsih2, Sri Y. Cahyarini3, Mutiara R.

    Putri2, Bambang Setiadi4, Iwan P. Anwar1,2, Dwi A. Utami3, Vera C. Agusta3

    1 Earth Sciences Study Program, Faculty of Earth Sciences and Technology,

    Bandung Institute of Technology, Labtek XI, Jl. Ganeca No. 10, Bandung 40132, Indonesia.

    E-mail: m_hendrizan@yahoo,com (MH); [email protected] (IPA)

    2 Research Group of Oceanography, Faculty of Earth Sciences and Technology,

    Bandung Institute of Technology, Labtek XI, Jl. Ganeca No.10, Bandung 40132,Indonesia.

    E-mail:[email protected] (NSN), [email protected] (MRP)

    3Paleoclimate and Paleoenvironment Research Group, Research Center for Geotechnology,

    Indonesian Institute of Sciences, Jl. Sangkuriang Bandung 40135, Indonesia.

    E-mail:[email protected] (SYC), [email protected] (DAU),

    [email protected] (VCA)

    4Geoinformatics and Computations Research Group, Research Center for Geotechnology,

    Indonesian Institute of Sciences, Jl. Sangkuriang Bandung 40135, Indonesia.

    E-mail: [email protected]

    *Correspondence: [email protected]

    Abstract

    Indonesian archipelago establishes an essential region for considering

    relationships between climate and human activities in the region. However;

    large uncertainties remain in understanding Indonesian hydroclimate under

    varying timescales. Here we present reanalyzed data of high-resolution proxy

    from high sedimentation rate (120-170 cm/kyrs) marine sediment core SO217-

    18517 from 9 to 14 kyrs in the offshore Mahakam Delta. Our dataset reveals

    high-frequency variations at centennial and millennial time scales during the

    period between 9 and 14 kyrs based on multi-proxies data (δ18Osw; Sea Surface

    Temperature/SST; and δ18O). Early Holocene to the end of last deglaciation

    period in the Makassar Strait was characterized by mixture forcing between

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 198 Marfasran Hendrizan et al.

    deep ocean and solar radiation with ~1100 and ~1000-years periodicity in

    altering millennial-scale variability on δ18Osw and δ18O records. On centennial

    timescale; the Makassar Strait climate variability was dominated by ~500-years

    periodicity recorded for Sea Surface Temperature (SST) at our core site location

    which is more influenced by deep ocean circulation.

    Keywords: Centennial; Millennial; Mixture Forcing; Deep Ocean, Solar

    Radiation; Makassar Strait

    1. INTRODUCTION

    Climate variability in the Indonesian archipelago may have played a confidence role on

    the intensity of rainfall patterns and tropical convections in the highly populated region

    related to global warming impact in the future. Precipitation patterns in the Indonesian

    archipelago are strongly governed by island topography and/or ocean-atmosphere

    interactions. The phase five of Coupled Model Intercomparison Project (CMIP5)

    climate model predicts Southern Hemisphere monsoon including Indonesia will get less

    precipitation in the future (Lee & Wang, 2014). However, large uncertainties remain in

    understanding Indonesian hydroclimate under different timescales in the past.

    Therefore, it is crucial to study hydrologic variability in the Indonesian archipelago and

    dynamic process on a wide range spatial and temporal timescales.

    Holocene climate archived have been identified centennial to millennial-scale in

    tropical region (Khider et al., 2014). It is also challenging to look further those

    centennial to millennial-scale climate into the last deglacial period in the tropical

    region. Examples of millennial-scale variability such as the Heinrich Stadial 1 (HS1),

    Bølling-Allerød (B-A) and the Younger Dryas (YD) exist in the Indonesian region

    which is associated with precipitation changes in the region (Hendrizan et al., 2017;

    Kuhnt et al., 2015). However, centennial to millennial-scale variability of Indonesian

    hydroclimate since the last deglaciation until the early Holocene might be controlled by

    more than single forcing on tropical rain belt changes (Hendrizan et al., 2017).

    Southward swings of the Intertropical Convergence Zone (ITCZ) (Hendrizan et al.,

    2017; Kuhnt et al., 2015; Muller et al., 2008), El Niño Southern Oscillation (ENSO)

    changes (Levi et al., 2007; Stott et al., 2004), and sea level (Griffiths et al., 2009; Partin

    et al., 2007) are likely mechanisms in controlling precipitation changes at Indonesian

    region. The questions will be appeared, do centennial to millennial-scale climate

    variability occur in the Indonesian region during the last deglaciation and the Holocene?

    What is the main forcing on precipitation changes in the Indonesian region? we will

    extend the strength of the Atlantic Meridional Overturning Circulation (AMOC)

    proposed by previous study (Khider et al., 2014) which may influence the

    ocean/atmosphere system on centennial-millennial timescales in the Indonesian region.

  • Centennial-Millennial Climate Variability in the Makassar Strait… 199

    In addition, solar forcing is also identified in the Holocene period as an external forcing

    (Bond et al., 2001; Debret et al., 2009). However, recent study mentions Holocene

    centennial to millennial-scale variability might be controlled by deep water circulation

    in the western Pacific region (Khider et al., 2014) or ocean-ice sheet interaction (Bakker

    et al., 2017) as an internal forcing. Both external and internal forcing could trigger heat

    transfer in the Indonesian region which can be traced in the longer period until the last

    deglacial period in the region. Several marine sediment cores in the Indonesian region

    record a long temporal resolution until the last deglaciation in understanding the

    influence of Sea Surface Temperature (SST) with regional climate in the region

    (Mohtadi et al., 2011, 2017; Schroder et al., 2016; Schröder et al., 2018; Visser et al.,

    2003). Core SO217-18517 (Hendrizan et al., 2017) is more challenging to be reanalyzed

    due to the influence of river runoff and the ITF intensity in the core site. In addition,

    the core provides the highest resolution timescales until < 7 years during the last

    deglacial period. δ18Osw records in the Makassar Strait (Fan et al., 2013) interpreted

    millennial-scale variability during Holocene controlled by ENSO variability. Other

    revealed deep sea circulation is the main forcing of millennial-scale variability in the

    West Pacific Warm Pool (WPWP) during Holocene (Khider et al., 2014). Different

    forcing on millennial-scale variability in the WPWP especially central Indonesia is still

    open question related to complex influences of δ18Osw in the central Indonesia

    (Schröder et al., 2018). One of the most important is local river input which local river

    input is known to be an important factor in controlling δ18Osw – salinity variability in

    the WPWP (Katz et al., 2010; Morimoto et al., 2002). Therefore, Core SO217-18517

    closes to the Mahakam River is suitable to understand high resolution climate signal in

    the Makassar Strait.

    Here we present high-resolution proxy data from high sedimentation rate (120-170

    cm/kyr) marine sediment core SO217-18517 from 9 to 14 kyr in the offshore Mahakam

    Delta ((Hendrizan et al., 2017); Figure 1). The previous study (6) in Core SO217-18517

    has not explained whether similar or not the Younger Dryas climate mechanisms in the

    Makassar Strait with the early Holocene period. Previously, uneven time series of Core

    SO217-18517 based on multi-proxies analysis was reported in (Hendrizan et al., 2017).

    In this study we have improved the evenness of the time series to 10 years/sample

    resolution, and concentrated on the time period 9 to 14 kyr. We present multi-proxies

    (δ18O, SST, δ18Osw) wavelet analysis of Core SO217-18517 to characterize centennial

    and millennial climate variability spanning from early Holocene and the end of the last

    deglaciation in the Makassar Strait. We compare our multi-proxies data with other

    hydroclimate records in the central Indonesia particularly Kalimantan and Sulawesi

    region.

  • 200 Marfasran Hendrizan et al.

    Figure 1. a. Location of core SO217-18517 (1°32.198’S, 117°33.756’E; 698 m water

    depth), off Mahakam Delta, East Borneo (modificafion Figure from Supp. Figure 1 in

    (Hendrizan et al., 2017)). Red stars indicates core locations from other studies, marine

    sediment cores SO217-18519 and TGS-931 (Schröder et al., 2018), SO217-18515

    (Schroder et al., 2016), Lake sediment from Towuti (Konecky et al., 2016), and Gunung

    Buda speleothem (Partin et al., 2007) in a bathymetric map from ETOPO 1

    (http://maps.ngdc.gov/viewer/bathimetry); b. Marine sediment photograph of Core

    SO217-18517 in-depth scale.

    2. REGIONAL CLIMATE AND OCEANOGRAPHY

    Marine sediment core SO217-18517 (1°32.198’S, 117°33.756’E; 698 m water depth)

    is situated in the offshore Mahakam Delta, East Borneo (Hendrizan et al., 2017) which

    extends for about ~90 km from the coastal line (Figure 1). The core was collected as a

    part of the SO217 (Makassar-Java/MAJA) cruise using R/V Sonne. The core site is

    connected to the southeast distributary channel of the Mahakam River. However, the

    core site is not only influenced by Mahakam river runoff but also controlled by lower

    thermocline Indonesian Throughflow (ITF) ((Hendrizan et al., 2017); Figure 1). During

    boreal summer, the changes in wind direction shift towards Asia due as the Intertropical

    Convergence Zone (ITCZ) moves northward, leading to reduced precipitation in

    eastern Borneo, and increased SST follows the peak sun radiation (Figure 2). Saline

    http://maps.ngdc.gov/viewer/bathimetry

  • Centennial-Millennial Climate Variability in the Makassar Strait… 201

    surface water during boreal summer indicates a reduced freshwater input related to the

    monsoonal wind shift ((Gordon, 2005); Figure 2). During boreal winter, wind direction

    moves along the Indonesian archipelago, dipping into northern Australia. Both

    increased precipitation in the eastern Borneo and decreased the SST also cause a

    reduced salinity in the Makassar Strait (Figure 2). The core site is situated in the

    Makassar Strait which is the inflow pathways of the ITF (Hendrizan et al., 2017).

    Recent study found the ITF changes during decadal time scales, the ITF strengthened

    when the Pacific Decadal Oscillation (PDO) positive and weakened when the PDO

    negative (Sprintall et al., 2019).

    Figure 2. Monthly climatology in the offshore Mahakam river (a) average salinity

    (World Ocean Atlas 2009), (b) average SST (World Ocean Atlas 2013) (Locarnini et

    al., 2013), (d) average wind velocities (NCEP reanalysis data at

    http://www.esrl.noaa.gov/psd/), (d) CMAP Estimated precipitation from NOAA NCEP

    CPC Merged Analysis over the 1979-2011 period (Xie & Arkin, 1997).

    http://www.esrl.noaa.gov/psd/

  • 202 Marfasran Hendrizan et al.

    3. METHODS

    3.1. Age model

    AMS 14C records of Core SO217-18517 used in this study are obtained by the previous

    study in the similar core (Hendrizan et al., 2017). Summary of previous study

    (Hendrizan et al., 2017), approximately 6 mg of well-preserved pteropod shells were

    picked from the >355 µm size fractions and mixed planktonic foraminifera were picked

    from the size fractions 250-315 µm for accelerator mass spectrometry (AMS) 14C

    dating. AMS14C analysis was performed at the Leibniz Laboratory, Christian-

    Albrechts-University, Kiel. The age model was constrained by 8 AMS 14C dates based

    on planktonic foraminifers and pteropods. An interpolated curve was fitted through the

    8 AMS 14C tie points using a Stineman function (smooth function in Kaleidagraph).

    3.2. Data

    We used reanalysis data of Mg/Ca derived SST, δ18O, and δ18Osw from core SO217-

    18517 that was published in (Hendrizan et al., 2017). In addition, a detailed explanation

    of the analytical technique for Mg/Ca and δ18O is shown in (Hendrizan et al., 2017) and

    summarized below. For δ18O analysis, approximately 10 tests of G. ruber were picked

    from the size fraction 315-250 µm at 2 cm interval from 14 to 9 ka. δ18O was measured

    with a Finnigan MAT 253 mass spectrometer (Carbo-Kiel Device (Type IV) for

    automated CO2 preparation from carbonate samples for stable isotopic analysis) at the

    Leibniz Laboratory, Christian-Albrechts-University, Kiel. For Mg/Ca measurement,

    thirty well-preserved tests of G. ruber were selected from the size fraction 315-250 µm.

    The samples were measured using a radial viewing simultaneous ICP-OES (Spectro

    Ciros SOP CCD, Spectro Analytical Instruments, Germany) at the Institute of

    Geosciences, Christian-Albrechts-University Kiel. Foraminifera Mg/Ca were

    converted into temperature equation (Anand et al., 2003).

    Mg/Ca=0.38 exp 0.09 T for Globigerinoides ruber

    δ18Osw reconstruction was calculated based on paired Mg/Ca and δ18O measurements

    of G. ruber using equation (Bemis et al., 1998).

    δ18Osw = 0.27 + (T (°C) – 16.5 + 4.8 × δ18O (V – PDB))/4.8

    δ18Osw Core SO217-18517 indicates paleosalinity indicator in the Makassar Strait,

    which is assumed similar with relationship between δ18Osw-salinity in the Western

    Pacific Warm Pool (Morimoto et al., 2002).

  • Centennial-Millennial Climate Variability in the Makassar Strait… 203

    A length of “uneven dataset” (~5000 years), original dataset obtained from geochemical

    measurements with different time spacing (δt), between 9 and 14 kyrs is prepared to

    analyze further for wavelet analysis. Before wavelet analysis applied, unevenly dataset

    at Core SO217-18517 from previous study (Hendrizan et al., 2017) should be

    interpolated to acquire equal time spacing (δt) in the entire timeseries between 9 and 14

    kyrs for reanalysis data in this paper. Interpolated data with equal time spacing (δt) of

    10 years in this study will be identified as “evenly dataset”. We applied linear

    interpolation in this study by (Lepot et al., 2017; Mathworks, 2019). Linear

    interpolation of our dataset will obtain a straight line passed through the end point χa

    and χb of original dataset including SST, δ18O, and δ18Osw (Hendrizan et al., 2017).

    Equivalent equation for the method shown below

    𝑋𝑖 =𝜒𝑎 − 𝜒𝑏

    𝑎 − 𝑏(𝑖 − 𝑏) + 𝜒𝑏

    Interpolated data are bound between xA and xB, and true values are, in average,

    underestimated: this affirmation is strongly dependent on the distribution of data and

    should be verified for each data set (Lepot et al., 2017). A Number of dataset before

    interpolated or original dataset are 208 data of SST, 232 data of δ18O, and 229 data of

    δ18Osw with various time spacing (δt) between 10 and 150 years. After interpolation

    applied, our interpolated data increase to be 484 data of SST, 481 data of δ18O, and 482

    data of δ18Osw with 10 years’ time spacing (δt) data.

    3.3. Wavelet Analysis

    Before wavelet analysis performed, interpolated data in this study have removed their

    trends using equation of linear detrending. Removing a trend from our dataset help us

    to focus on the fluctuations of the data. We applied linear detrending using (Mathworks,

    2019). The mean in linear detrending is given by the linear regression line Xt=St + I

    over the period T (=Ni∆𝑡), the regression slope S and intercept I shown as below

    (Rannik & Vesala, 1999)

    𝑆 =𝑁𝑖 ∑ 𝑡𝑋𝑡 − ∑ 𝑡 ∑ 𝑋𝑡

    𝑁𝑖 ∑ 𝑡2 − (∑ 𝑡)2

    𝐼 =∑ 𝑋𝑡 − 𝑆 ∑ 𝑡

    𝑁𝑖

    Where t=1∆t and the summation is made of i=1,……., Ni. Detrending data has a

    mean = 0 and standard deviation = 1.

  • 204 Marfasran Hendrizan et al.

    Wavelet analysis is useful for analyzing localized variations of power within time series

    records. We analyze our multiproxy records (Mg/Ca, δ18O, and δ18Osw) using a

    modified script by (Torrence & Compo, 1997). Evenly datasets (~5000 years) between

    9 and 14 kyrs in our multiproxy (Mg/Ca derived SST, δ18O, and δ18Osw) are prepared

    to obtain several millennial and centennial signal in the records with equal time spacing

    (δt) with 10 years periodicity. Wavelet transform is a band-pass filter which consists of

    convoluting the signal with scaled and translated forms of a highly time-localized wave

    function (the filter), the so-called “mother wavelet”. Morlet transform consists of a

    Gaussian plane wave as shown below:

    ѱ0(𝜂) = 𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂

    2/2

    Where ѱ0(𝜂) is wavelet function that depends on a nondimensional “time” parameter

    𝜂 and 𝜔0 is the nondimensional frequency. Normalization is applied to ensure the

    wavelet transforms at each scale are directly comparable to each other and to the

    transforms of additional time series. Confidence levels refer to the range of confidence

    value in a given time series, we use the 95% confidence level to measure the mean

    power spectrum at Core SO17-18517. Global wavelet spectrum is the time-averaged

    wavelet spectrum of a vertical slice over a local wavelet spectrum plot as shown at the

    formula below,

    𝑊𝑛2(s)=

    1

    𝑛𝑎∑ |𝑊𝑛(𝑠)|

    𝑛2𝑛=𝑛1

    2

    Explanation of the formula indicates n is the midpoint of n1 and n2, and na=n2-n1+1 is

    the average number of points.

    4. RESULTS

    4.1. Distribution of Datasets

    The box plot of our δ18O, SST, and δ18Osw which can be seen in Figure 3 indicates a

    number summary of critical information in Core SO217-18517 datasets. We see from

    the box plot (Figure 3), several SST distribution exceeds the upper whisker compare to

    other δ18O, and δ18Osw in a core location. Exceeding the upper whisker of SST could be

    as ‘outlier’ observations, we see the SST with the value of maximum box plot (~29.5°C)

    could be ignored. We make a limitation of the upper whisker in the SST based on

    maximum calcification temperature based on foraminiferal Mg/Ca is more less 29.5°C

    (Anand et al., 2003; Regenberg et al., 2009). Therefore, outliers are lied more than

    upper whisker as a maximum calcification temperature should be ignored. The

  • Centennial-Millennial Climate Variability in the Makassar Strait… 205

    summary of our datasets in Core SO217-18517 is shown in table 1. Statistical summary

    in Core SO217-18517 shows 25th and 75th percentile range (blue box), median (red

    lines), and outliers (red cross) in Figure 3; Table 1 to approximately 99.5% the data

    range (blue ‘whiskers’) which are normally distributed (Suppl. Figure 1).

    Table 1. Critical information of statistical summary in Core SO217-18517 datasets.

    Datasets Mean Median Upper

    Quartile

    Lower

    Quartile

    Maximum Minimum

    δ18O -0.1086 -0.1060 0.0594 -0.3 0.5764 -0.6729

    SST 27.8621 27.8191 28.3 27.75 29.5 26.3858

    δ18Osw -2.2764 -2.3335 -1.8 -2.7 -1.13 -3.275

    Figure 3. multi-proxies box plot of Core SO217-18517. a. δ18O, b. Sea Surface

    Temperature, c. δ18Osw. By reducing the outlier’s effect in SST, our multi-proxies

    reconstruction in Core SO217-18517 is more considerable.

    4.2. Normalized Datasets

    Uneven records of core SO217-18517 are interpolated into evenly datasets with time

    resolution of 0.01 kyrs (Figure 4). It shows that linear interpolation between original

    and interpolated data intersects with each other. Coefficient correlation (r value)

    between original and interpolated data about 41.2% of δ18Osw, 29.7% of SST, and 73%

    of δ18O (Suppl. Figure 2). Depleted δ18Osw records at our core site occur in the periods

    of the 11-10 kyrs and 12-13 kyrs and. The amplitude of δ18Osw shows higher salinity

    value at the Younger Dryas (12-13 kyrs) compare to other salinity records at 10-11 kyrs

  • 206 Marfasran Hendrizan et al.

    Figure 4. Composite multi-proxies Core SO217-18517 between original and

    interpolated data with time resolution of 0.01 kyrs. a. Composite δ18Osw, b. Composite

    SST, c. Composite δ18O. These records present a significant high-resolution paired

    Mg/Ca-δ18O with average sampling interval ~10 years during the last deglacial until

    early Holocene in maritime continent providing hydrological changes during the past

    14,000 years.

    4.3. Wavelet Power Spectrum

    Three multi-proxies of core SO217-18517 including δ18Osw, SST, and δ18O show high-

    frequency variations at centennial and millennial timescale. These multi-proxies have

    been interpolated and normalized to evenly space data with time resolution of 0.01 kyrs

    (Figures 5a, 6a, 7a). These multi-proxies will be explained in each section below:

    4.3.1. δ18Osw reconstruction

    Wavelet power spectrum of δ18Osw reveals a number of centennial from 9 to 14 kyrs.

    Result of wavelet analysis shows that ~ 1.1-kyrs or 1100-years oscillation of δ18Osw

    core SO217-18517 is the most stable and dominant among periodicities between 9 and

  • Centennial-Millennial Climate Variability in the Makassar Strait… 207

    14 kyrs (Figure 5b). Although, low-power global wavelet spectrum on centennial and

    millennial-climate variability (Figure 5c) but those climate variability can be traced on

    wavelet power spectrum in a range of 95% confidence level (Figure 5b). An increase

    in (heavy) δ18Osw during 10-11 kyrs and 12-13 kyrs associated with an increase in δ18Osw

    average variance between 0.01-0.04 ‰ using bandpass filter output of 0.1-1 kyrs

    (Figure 5d). In contrast, light δ18Osw have slightly constant average variance during 9-

    10 kyrs, 11-12 kyrs, and 13-14 kyrs. Occurrences of several centennial-scale variability

    including 300 years, 150 years, and 63 years is getting stronger on periods of heavy

    δ18Osw at 10-11 kyrs and 12-13 kyrs (Figures 5b-c).

    Figure 5. a. δ18Osw reconstruction of core SO217-18517 after interpolation to evenly

    spaced data with time resolution of 0.01 kyrs; b. Wavelet power spectrum δ18Osw core

    SO217-18517 (High power is indicated by red whereas low power is indicated by blue),

    areas cycles by black solid lines represent the confidence level greater than 95 %; c.

    Global wavelet spectrum using mean power spectrum δ18Osw signal from 9 to 14 kyrs

    1, 0.3, and 0.15 kyrs periodicities; orange dotted lines indicate confidence level greater

    than 95 %; d. Average variance with band pass filter skala ±0.05 -0.03 kyrs. It shows

    increasing δ18Osw variance during 10-11 kyrs and 12-13 kyrs. Significant power

    spectrum shown at millennial timescale of 1.1 kyrs or 1100 years-periodicity.

    4.3.2. Sea surface temperature (SST)

    Wavelet power spectrum of SST reveals a number of centennial-timescale in periodicity

    of 125, 230 and 500-years (Figure 6b). A dominant climate signal of centennial-scale

    on 500-years periodicity is the most stable and dominant during 9-14 kyrs

  • 208 Marfasran Hendrizan et al.

    (Figures 6b-c). Bandpass filter output (after the 0.1-1 kyrs bandpass filter) of SST

    reconstructions shows SST variance between 0.03-0.17 °C (Figure 6D). 230 years

    periodicity is the second dominant signal during 11-14 kyrs and followed by 125 years

    periodicity during 9-11 kyrs. A trend of 500-years periodicity in our SST records

    strengthened from 10-14 kyrs and reduced after 10 kyrs (Figure 6b).

    Figure 6. a. SST reconstruction of core SO217-18517 after interpolation to evenly

    spaced data with time resolution of 0.01 kyrs; b. Wavelet power spectrum SST core

    SO217-18517 (High power is indicated by red whereas low power is indicated by blue),

    areas cycles by black solid lines represent the confidence level greater than 95 %; c.

    Global wavelet spectrum using mean power spectrum SST signal from 9 to 14 kyrs

    with dominant signal 125, 230, and 500-years periodicities; orange dotted lines indicate

    confidence level greater than 95 %; d. Average variance with band pass filter

    skala ±0.1 -1 kyrs. Significant power spectrum occurs at centennial timescale

    of 0.5 kyrs.

    4.3.3. δ18O reconstruction

    Wavelet power spectrum of δ18O core SO217-18517 reveals little variance signals

    (Figures 7b, d). The result shows a statistically confidence above 95% level centennial

    periodicity centered at 375 and 1000-years periodicity (Figures 7b, c). The result of

    wavelet analysis shows that ~ 1000-years periodicity of δ18O at core SO217-18517 are

    the most stable and dominant among periodicities of 9 to 14 kyrs (Figure 7b). Bandpass

    filter output (after the 0.05-1 kyrs bandpass filter) of δ18O reconstructions shows

    variance between 0.01-0.13‰

  • Centennial-Millennial Climate Variability in the Makassar Strait… 209

    5. DISCUSSION

    The ~1100-years or 1.1-kyrs and 1000-years periodicities are detected in planktonic

    foraminifera δ18Osw and δ18O records of SO217-18517 between 9 and 14 kyrs timeseries

    (Figures 5b & 7b). These millennial-scale variabilities of Core SO217-18517 confirm

    similar millennial-scale in Holocene planktonic records in the North Atlantic and the

    North Pacific (Khider et al., 2014; Lüning & Vahrenholt, 2016; Oppo et al., 2009;

    Wanner et al., 2008) which extended to the last deglaciation in the Makassar Strait.

    However, SST records SO217-18517 represent centennial-scale variabilities (Figure

    6b) which is contrast to millennial-scale Holocene SST records in the North Pacific

    (Khider et al., 2014). In the next sections, we will explain this centennial to millennial-

    scale climate variabilities in the Makassar Strait. We will also compare our records with

    other records in the central Indonesian region to see how the salinity changes response

    to precipitation particularly in the period of 10-11 kyrs and 12-13 kyrs.

    Figure 7. a. δ18O reconstruction of core SO217-18517 after interpolation to evenly

    spaced data with time resolution of 0.01 kyrs; b. Wavelet power spectrum SST core

    SO217-18517 (High power is indicated by orange whereas low power is indicated by

    blue), areas cycles by black solid lines represent the confidence level greater than 95

    %; orange dotted lines indicate confidence level greater than 95 %; c. Global wavelet

    spectrum using mean power spectrum SST signal from 9 to 14 kyrs with dominant

    signal 375 and 1000-years periodicities; d. Average variance with band pass filter skala

    ±0.05 -1 kyrs. Significant power spectrum occurs at millennial timescale of 1000 years.

  • 210 Marfasran Hendrizan et al.

    5.1. Centennial-Millennial-scale variability since the last deglaciation

    The δ18Osw and δ18O records on G. ruber of Core SO217-18517 are characterized by

    millennial-scale variability with 1100-years and 1000-years periodicity between 9 and

    14 kyrs (Figures 5 and 7). Wavelet power spectrum indicates a period of millennial-

    scale variability is the most stable event in the entire δ18Osw and δ18O records between

    9 and 14 kyrs (Figures 5b & 7b), even though this millennial power occurs below 95 %

    confidence level (Figure 5c & 5d). We see δ18Osw trends are strong on millennial-scale

    variability in the Makassar Strait shown by the wavelet power spectrum (Figure 5b).

    This millennial-scale variability is robust based on age from the previous study

    (Hendrizan et al., 2017), analytical, and calibration uncertainties (Figures 3 and 4). In

    addition, a dominant signal of 1100-years periodicity from δ18Osw Core SO217-18517

    can be found as well at Mindanao marine sediment core MD81 (Khider et al., 2014).

    Signal of 1100 years periodicity at Mindanao during Holocene probably extend to last

    deglacial period in the Makassar Strait as shown in Figure 5b. We propose mixture

    forcing between the deep ocean and solar radiation could be an amplifier for forcing

    and altering millennial-scale variability from 9 to 14 kyrs at our core location.

    The most prominent δ18Osw maximum occurs at 10-11 kyrs and 12-13 kyrs, coincides

    with the Early Holocene and Younger Dryas interval (Figure 4). We interpret the peak

    of δ18Osw at 10-11 kyrs and 12-13 kyrs as a response to a decreased in precipitation and

    a reduced in Mahakam River input into the Mahakam Strait. In those period at 10-11

    kyrs and 12-13 kyrs, several centennial-scale variability including 300 years, 150 years,

    and 63 years are stronger than other periods at 9-10 kyrs, 11-12 kyrs, and 13-14 kyrs,

    which indicate strengthening centennial-scale periodicity (Figure 5b). Those

    centennial-scale variability can be related to strengthening of solar radiative forcing

    (Liu et al., 2009). It would affect intensified precipitation in tropical region (Novello et

    al., 2016) particularly regions influenced by Australia-Indonesia Monsoon (Mohtadi et

    al., 2016). This mechanism probably could explain an increase in δ18Osw during 10-11

    kyrs and 12-13 kyrs with existing several centennial-scale variability in our core

    SO217-18517 (Figure 5b).

    5.2. Mixture forcing of climate variability

    Wavelet analysis of our SST time series (Fig. 6) reveals a confidence period of ~500-

    years periodicity. A common periodicity of ~500 years is found in global ocean from

    North Atlantic to the East Asia region (H. Cheng et al., 2015; Zielhofer et al., 2019). A

    reduced in North Atlantic Deepwater (NADW), cooling of the ocean surface and high-

    latitude continent around North Atlantic and North Pacific, weakening of the Asian

    monsoon (H. Cheng et al., 2015; Hai Cheng et al., 2012) could be mechanisms in

    controlling 500-years periodicity at SST records Core SO217-18517 (Figure 6b). To

    explain deep water circulation on our SST records, we see on log (Zr/Rb) as proxy of

  • Centennial-Millennial Climate Variability in the Makassar Strait… 211

    bottom current intensity in the ITF region from Core SO217-18517 (Hendrizan et al.,

    2017). Intriguing finding show the ITF intensity based on log (Zr/Rb) (Figure 8g; left

    panel) associated with replacement of the ITCZ from 10 to 14 kyrs (Figure 8). This

    evidence indicates likely the ITF transfer heat to our Core SO217-18517 site during 10-

    14 kyrs which is reflected by 500-years periodicity in our SST records (Figure 5b). We

    also looked furher on solar radiation forcing from Jun-August local insolation records

    near Core SO217-18517 (Figure 8g: right panel). When the the ITCZ shifted northward

    during 11-12 kyrs and 13-14 kyrs, light δ18Osw (Figure 8a) associated with both increase

    in solar radiation forcing and stronger ITF intensity (Figure 8g). In contrast, southward

    movement of the ITCZ reflects heavy δ18Osw associated with opposite pattern between

    solar radiation forcing and the ITF intensity during 10-11 kyrs and 12-13 kyrs (Figure

    8). Here we suppose the deep ocean is not the main forcing in driving SST and δ18Osw

    in this core-site, other external forcing from solar radiation is the second forcing to

    change climate proxy of Core SO217-18517.

    5.3 Comparison hydroclimate proxy records

    Today, precipitation patterns over Kalimantan and Sulawesi are associated with the

    ITCZ movement along these region (Hendrizan et al., 2017; Konecky et al., 2016).

    Precipitation pattern in Kalimantan shows the ITCZ position shifts twice which cause

    rain falls along the year with two precipitation peaks on May and October (Dubois et

    al., 2014). Precipitation pattern in Sulawesi indicates the ITCZ shifts to the south during

    December-January with maximum precipitation and minimum precipitation when

    reverse movement of the ITCZ to the north during June-August (Dubois et al., 2014).

    Multi-factors in controlling δ18Osw reconstruction include sea level, current circulation,

    and river discharge (Schröder et al., 2018) need to be considered when interpreting

    fluctuation of precipitation changes in the past. δ18Osw from marine sediment cores of

    the northwest Banda Sea (TGS-931) and Makassar Strait (SO217-18517, 18519, and

    18515) reflects seasonality of rainfall in Kalimantan and Sulawesi (Schröder et al.,

    2018). Those records will be compared with δ18O Gunung Buda speleothem records

    (Cobb et al., 2007) and δDprecip (Konecky et al., 2016) as proxy of precipitation to more

    comprehend interpretation of Kalimantan and Sulawesi precipitation pattern during the

    last deglacial until early Holocene period.

    Temporal evolution of proxy records occurred in the central Indonesia (Fig. 8),

    indicating a decrease in δ18Osw particularly during 10-11 ka and 12-13 ka in the

    Makassar Strait. It is also associated with reduced precipitation in Kalimantan (Fig. 8e)

    but the changes is uncertain in Sulawesi (Figs. 8b-d). An increase δ18Osw is represented

  • 212 Marfasran Hendrizan et al.

    as reduced in Mahakam River runoff in Core SO217-18517 and 18519 (Figure 8).

    Similar changes of δ18Osw especially during 10-11 ka corresponding to our core sites

    also found in marine core MD98-2178 at Celebes Sea (Fan et al., 2013). However,

    records in Sulawesi show more complex mechanisms during 10-11 ka and 12-13 ka

    (Figure 8). During 12-13 ka, marine sediment cores TGS-931 and SO217-18515 from

    Sulawesi has same pattern of an increase in δ18Osw with marine sediment cores off

    Mahakam Delta. Those records also associated with reduced precipitation based on

    δDprecip from Lake Towuti (Figure 8). In contrast, light δ18Osw reflected more fresh water

    supplied to the marine sediment cores from Sulawesi region which are consistent with

    increase in precipitation at Lake Towuti during 10-11 ka. We interpret difference

    between Kalimantan and Sulawesi during 10-11 kyrs due to movement of the ITCZ to

    the south but Sulawesi has received more rainfall and Kalimantan is still drying.

    A proposed mechanism in driving precipitation pattern at Kalimantan and Sulawesi

    could be related to the ITCZ position changes during the end of the last deglacial period

    until the early Holocene. During the period of 12-13 ka which was coincided with the

    YD, the ITCZ shifted further to the south (Figure 8). Therefore, it will reduce the

    Australian-Indonesian Summer Monsoon in almost entire region of Indonesia,

    including Kalimantan and Sulawesi. Enhanced precipation in the Flores and Australia

    during the YD (Ayliffe et al., 2013; Griffiths et al., 2009; Kuhnt et al., 2015). The

    influence of ocean circulation via AMOC during the last deglaciation (Henry et al.,

    2016) to atmospheric variability in the central Indonesia could be terminated at 10 kyrs

    as both the ITF and solar radiation weakened but light δ18Osw which indicates the ITCZ

    shifted to the north (Figure 8). Centennial-scale variability of SST with 500-years

    periodicity show coherency of stronger centennial-scale from 10 to 14 kyrs (Figure 6).

    However, this interpretation still need to be examined in the Holocene records in the

    future. We suppose centennial and millennial-scale variability of AMOC intensity

    associated with the ITF contribute to climate variability in the central Indonesia until

    10 kyrs ago.

  • Centennial-Millennial Climate Variability in the Makassar Strait… 213

    Figure 8. Comparison of hydroclimate proxies between Kalimantan and Sulawesi. a)

    Interpolated δ18Osw data Core SO217-18517 offshore Mahakam Delta with smoothing

    trend in red line, b,f) δ18Osw Core TGS-931 in the northwest Banda Sea and δ18Osw Core

    SO217-18519 in the offshore Mahakam Delta (Schröder et al., 2018) c) δ18Osw Core

    SO217-18515 in the Mandar Bay, Offshore Sulawesi (Schroder et al., 2016), d) δDprecip

    records from Lake Towuti (Konecky et al., 2016), e) δ18O stalagmite records from

  • 214 Marfasran Hendrizan et al.

    Gunung Buda, Kalimantan (Partin et al., 2007), g) Left panel: Log (Zr/Rb) based on X-

    ray fluorescence (XRF) measurements at 1 cm intervals from Core SO217-18517

    (Hendrizan et al., 2017), right panel: mean summer (21 June to 21 September)

    insolation at 0°S (Laskar et al., 2004). Green shaded colors indicate heavy δ18Osw on

    10-11 kyrs and 12-13 kyrs as reduced precipitation in Kalimantan during those periods.

    6. CONCLUSION

    Marine Sediment core SO217-18517 records the Makassar Strait climate variability on

    a wide range between early Holocene and the end of the last deglaciation. During the

    period between 9 and 14 kyrs, multi-proxies data (δ18Osw, SST, and δ18O) show high-

    frequency variations at centennial and millennial timescale. δ18Osw and δ18O records

    show the confidence power spectrum occurs at millennial time scales of ~1100-years

    and 1000-years periodicity. However, the confidence power spectrum with ~500 years

    periodicity (centennial) of SST is more stable than millennial time scales. Our results

    find peaks of δ18Osw at 10-11 kyrs and 12-13 kyrs as a response to a decrease in

    precipitation and a reduced in Mahakam River input into the Mahakam Strait. In those

    period at 10-11 kyrs and 12-13 kyrs, several centennial-scale variability including 300

    years, 150 years, and 63 years are stronger than other periods at 9-10 kyrs, 11-12 kyrs,

    and 13-14 kyrs, which indicate strengthening centennial-scale periodicity. A proposed

    mechanism in driving precipitation pattern at Kalimantan and Sulawesi could be related

    to the ITCZ position changes during the end of the last deglacial period until the early

    Holocene. The influence of ocean circulation via AMOC to atmospheric variability in

    the central Indonesia could be terminated at 10 kyrs as both the ITF and solar radiation

    weakened but light δ18Osw which indicates the ITCZ shifted to the north.

    Author Contributions: All the authors are the main contributors to this manuscript.

    MH wrote the manuscript and analyzed the data; NSN, SYC, and MRP wrote and

    reviewed the manuscript; BS and IPA analyzed the data using wavelet analysis, DAU

    and VCA drew the map, analyzed regional oceanography the Makassar Strait.

    Acknowledgments: We gratefully acknowledge the Deutsche Forschungsgemeinchaft

    (grant KU649/29-1 to Wolfgang Kuhnt) for funding this geochemical analysis in this

    research and the Germany Ministry for Education and Science (BMBF, grant SO-217,

    and MAJA, 03G0217A to Wolfgang Kuhnt) for funding the Sonne-217 Cruise. We

    thank Beasiswa Saintek Kemenristek/BRIN for funding the publication fee.

  • Centennial-Millennial Climate Variability in the Makassar Strait… 215

    Conflicts of Interest: The authors declare no conflict of interest

    REFERENCES

    Anand, P., Elderfield, H., & Conte, M. H. (2003). Calibration of Mg/Ca thermometry

    in planktonic foraminifera from a sediment trap time series. Paleoceanography,

    18(2), 1–15. https://doi.org/10.1029/2002PA000846

    Ayliffe, L. K., Gagan, M. K., Zhao, J., Drysdale, R. N., Hellstrom, J. C., Hantoro, W.

    S., et al. (2013). Rapid interhemispheric climate links via the Australasian

    monsoon during the last deglaciation. Nature Communications, 4(2908), 1–6.

    https://doi.org/10.1038/ncomms3908

    Bakker, P., Clark, P. U., Golledge, N. R., Schmittner, A., & Weber, M. E. (2017).

    Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet

    discharge. Nature Publishing Group. https://doi.org/10.1038/nature20582

    Bemis, B. E., Spero, H. J., Bijma, J., & Lea, D. W. (1998). Reevaluation of the oxygen

    isotopic composition of planktonic foraminifera: Experimental results and revised

    paleotemperature equations. Paleoceanography, 13(2), 150–160.

    https://doi.org/10.1029/98PA00070

    Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., et al. (2001).

    Persistent solar influence on north atlantic climate during the Holocene. Science,

    294(5549), 2130–2136. https://doi.org/10.1126/science.1065680

    Cheng, H., Sinha, A., Verheyden, S., Nader, F. H., Li, X. L., Zhang, P. Z., et al. (2015).

    The climate variability in northern Levant over the past 20,000 years. Geophysical

    Research Letters, 42(20), 8641–8650. https://doi.org/10.1002/2015GL065397

    Cheng, Hai, Sinha, A., Wang, X., Cruz, F. W., & Edwards, R. L. (2012). The Global

    Paleomonsoon as seen through speleothem records from Asia and the Americas.

    Climate Dynamics, 39(5), 1045–1062. https://doi.org/10.1007/s00382-012-1363-7

    Cobb, K. M., Adkins, J. F., Partin, J. W., & Clark, B. (2007). Regional-scale climate

    influences on temporal variations of rainwater and cave dripwater oxygen isotopes

    in northern Borneo. Earth and Planetary Science Letters, 263, 207–220.

    https://doi.org/10.1016/j.epsl.2007.08.024

    Debret, M., Sebag, D., Crosta, X., Massei, N., Petit, J., Chapron, E., & Bout-

    Roumazeilles, V. (2009). Evidence from wavelet analysis for a mid-Holocene

    transition in global climate forcing. Quaternary Science Reviews, 28(25–26),

    2675–2688. https://doi.org/10.1016/j.quascirev.2009.06.005

  • 216 Marfasran Hendrizan et al.

    Dubois, N., Oppo, D. W., Galy, V. V., Mohtadi, M., Van Der Kaars, S., Tierney, J. E.,

    et al. (2014). Indonesian vegetation response to changes in rainfall seasonality over

    the past 25,000 years. Nature Geoscience, 7(7), 513–517.

    https://doi.org/10.1038/ngeo2182

    Fan, W., Jian, Z., Bassinot, F., & Chu, Z. (2013). Holocene centennial-scale changes of

    the Indonesian and South China Sea throughflows: Evidences from the Makassar

    Strait. Global and Planetary Change, 111, 111–117.

    https://doi.org/10.1016/j.gloplacha.2013.08.017

    Gordon, A. L. (2005). Oceanography of the Indonesian Seas. Oceanography, 18(4),

    14–27. https://doi.org/10.5670/oceanog.2005.18

    Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J., Ayliffe, L. K., Hellstrom, J.

    C., et al. (2009). Increasing Australian – Indonesian monsoon rainfall linked to

    early Holocene sea-level rise. Nature Geoscience, 2, 636–639.

    https://doi.org/10.1038/ngeo605

    Hendrizan, M., Kuhnt, W., & Holbourn, A. (2017). Variability of Indonesian

    Throughflow and Borneo Runoff During the Last 14 kyr. Paleoceanography, 32,

    1054–1069. https://doi.org/10.1002/2016PA003030

    Henry, L. G., Mcmanus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., &

    Keigwin, L. D. (2016). North Atlantic ocean circulation and abrupt climate change

    during the last glaciation. Science, 353(6298), 470–474.

    https://doi.org/10.1126/science.aaf5529

    Katz, M. E., Cramer, B. S., Franzese, A., Hönisch, B., Miller, K. G., Rosenthal, Y., &

    Wright, J. D. (2010). Traditional and Emerging Geochemical Proxies in

    Foraminifera. The Journal of Foraminiferal Research, 40(2), 165–192.

    https://doi.org/10.2113/gsjfr.40.2.165

    Khider, D., Jackson, C. S., & Stott, L. D. (2014). Assessing millennial-scale variability

    during the Holocene: A perspective from the western tropical Pacific.

    Paleoceanography, 29, 143–159. https://doi.org/10.1002/2013PA002534

    Konecky, B., Russell, J., & Bijaksana, S. (2016). Glacial aridity in central Indonesia

    coeval with intensified monsoon circulation. Earth and Planetary Science Letters,

    437, 15–24. https://doi.org/10.1016/j.epsl.2015.12.037

    Kuhnt, W., Holbourn, A., Xu, J., Opdyke, B., Deckker, P. De, Röhl, U., & Mudelsee,

    M. (2015). Southern Hemisphere control on Australian monsoon variability during

    the late deglaciation and Holocene. Nature Communications, 6(5916), 1–7.

    https://doi.org/10.1038/ncomms6916

  • Centennial-Millennial Climate Variability in the Makassar Strait… 217

    Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B.

    (2004). A long-term numerical solution for the insolation quantities of the Earth.

    Astronomy and Astrophysics, 428(1), 261–285. https://doi.org/10.1051/0004-

    6361:20041335

    Lee, J. Y., & Wang, B. (2014). Future change of global monsoon in the CMIP5. Climate

    Dynamics, 42, 101–119. https://doi.org/10.1007/s00382-012-1564-0

    Lepot, M., Aubin, J., & Clemens, F. H. L. R. (2017). Interpolation in Time Series  :

    An Introductive Overview of Existing Methods , Their Performance Criteria and

    Uncertainty Assessment. Water, 9(796), 1–20. https://doi.org/10.3390/w9100796

    Levi, C., Bassinot, F., Guichard, F., Cortijo, E., Waelbroeck, C., Caillon, N., et al.

    (2007). Low-latitude hydrological cycle and rapid climate changes during the last

    deglaciation. Geochemistry Geophysics Geosystems, 8, 1–11.

    https://doi.org/10.1029/2006GC001514

    Liu, J., Bin, W., Ding, Q., Kuang, X., Soon, W., & Zorita, E. (2009). Centennial

    Variations of the Global Monsoon Precipitation in the Last Millennium  : Results

    from ECHO-G Model. Journal of Climate, 22, 2356–2371.

    https://doi.org/10.1175/2008JCLI2353.1

    Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova,

    O. K., et al. (2013). NOAA Atlas NESDIS 73 WORLD OCEAN ATLAS 2013

    Volume 1  : Temperature, 1(September).

    Lüning, S., & Vahrenholt, F. (2016). The Sun’s role in climate. In Evidence-Based

    Climate Science: Data Opposing CO2 Emissions as the Primary Source of Global

    Warming: Second Edition (pp. 283–305). https://doi.org/10.1016/B978-0-12-

    804588-6.00016-1

    Mathworks. (2019). Data Analysis R 2019 b. The MathWorks, Inc. 1 Apple Hill Drive

    Natick, MA 01760-2098.

    Mohtadi, M., Oppo, D. W., Steinke, S., Stuut, J. W., Pol-holz, R. De, Hebbeln, D., &

    Lückge, A. (2011). Glacial to Holocene swings of the Australian – Indonesian

    monsoon. Nature Geoscience, 4, 540–544. https://doi.org/10.1038/ngeo1209

    Mohtadi, M., Prange, M., & Steinke, S. (2016). Review Palaeoclimatic insights into

    forcing and response of monsoon rainfall. Nature, 533, 191–199.

    https://doi.org/10.1038/nature17450

    Mohtadi, M., Prange, M., Schefuß, E., & Jennerjahn, T. C. (2017). Late Holocene

    slowdown of the Indian Ocean Walker circulation. Nature Communications, 8(1),

    1–8. https://doi.org/10.1038/s41467-017-00855-3

  • 218 Marfasran Hendrizan et al.

    Morimoto, M., Abe, O., Kayanne, H., Kurita, N., Matsumoto, E., & Yoshida, N. (2002).

    Salinity records for the 1997 – 98 El Nino from Western Pacific corals.

    Geophysical Research Letters, 29(11), 1–4.

    https://doi.org/10.1029/2001GL013521

    Muller, J., Kylander, M., Wüst, R. A. J., Weiss, D., Martinez-cortizas, A., Legrande,

    A. N., et al. (2008). Possible evidence for wet Heinrich phases in tropical NE

    Australia  : the Lynch’s Crater deposit. Quaternary Science Reviews, 27, 468–

    475. https://doi.org/10.1016/j.quascirev.2007.11.006

    Novello, V. F., Vuille, M., Cruz, F. W., Stríkis, N. M., Paula, M. S. De, Edwards, R.

    L., et al. (2016). Centennial-scale solar forcing of the South American Monsoon

    System recorded in stalagmites. Scientific Reports, 6(24762), 1–8.

    https://doi.org/10.1038/srep24762

    Oppo, D. W., Rosenthal, Y., & Linsley, B. K. (2009). 2,000-year-long temperature and

    hydrology reconstructions from the Indo-Pacific warm pool. Nature, 460, 1113–

    1116. https://doi.org/10.1038/nature08233

    Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., & Fernandez, D. P. (2007).

    Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial

    Maximum. Nature, 449, 452–456. https://doi.org/10.1038/nature06164

    Rannik, U., & Vesala, T. (1999). Autoregressive filtering versus linear detrending in

    estimation of fluxes by the eddy covariance method. Boundary-Layer

    Meteorology, 91, 259–280.

    Regenberg, M., Steph, S., Nürnberg, D., Tiedemann, R., & Garbe-schönberg, D.

    (2009). Calibrating Mg / Ca ratios of multiple planktonic foraminiferal species

    with δ18O-calcification temperatures  : Paleothermometry for the upper water

    column. Earth and Planetary Science Letters, 278, 324–336.

    https://doi.org/10.1016/j.epsl.2008.12.019

    Schroder, J. F., Holbourn, A., Kuhnt, W., & Küssner, K. (2016). Variations in sea

    surface hydrology in the southern Makassar Strait over the past 26 kyr. Quaternary

    Science Reviews, 154, 143–156.

    Schröder, J. F., Kuhnt, W., Holbourn, A., Beil, S., & Zhang, P. (2018). Deglacial

    Warming and Hydroclimate Variability in the Central Indonesian Archipelago.

    Paleoceanography and Paleoclimatology, 974–993.

    https://doi.org/10.1029/2018PA003323

    Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., et al.

    (2019). Detecting Change in the Indonesian Seas. Frontiers in Marine Science, 6,

  • Centennial-Millennial Climate Variability in the Makassar Strait… 219

    1–24. https://doi.org/10.3389/fmars.2019.00257

    Stott, L., Cannariato, K., Thunell, R., Haug, G. H., Koutavas, A., & Lund, S. (2004).

    Decline of surface temperature and salinity in the western tropical Pacific Ocean

    in the Holocene epoch. Nature, 431, 2–5.

    https://doi.org/10.1038/nature02809.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.

    Torrence, C., & Compo, G. P. (1997). A Practical Guide to Wavelet Analysis. Bulletin

    of the American Meteorological Society, 79(1), 61–78.

    https://doi.org/10.1016/j.biopha.2017.10.142

    Visser, K., Thunell, R., & Stott, L. (2003). Magnitude and timing of temperature change

    in the Indo-Pacific warm pool during deglaciation. Nature, 421, 3667–3670.

    https://doi.org/10.1038/nature01331.1.

    Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., et al.

    (2008). Mid- to Late Holocene climate change: an overview. Quaternary Science

    Reviews, 27, 1791–1828. https://doi.org/10.1016/j.quascirev.2008.06.013

    Xie, P., & Arkin, P. A. (1997). Global Precipitation: A 17-Year Monthly Analysis

    Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs.

    Bulletin of the American Meteorological Society, 78(11), 2539–2558.

    https://doi.org/10.1175/1520-0477(1997)0782.0.CO;2

    Zielhofer, C., Köhler, A., Mischke, S., Benkaddour, A., Mikdad, A., & Fletcher, W. J.

    (2019). Western Mediterranean hydro-climatic consequences of Holocene ice-

    rafted debris (Bond) events. Climate of the Past, 15(2), 463–475.

    https://doi.org/10.5194/cp-15-463-2019

  • 220 Marfasran Hendrizan et al.

    Supplementary Figure 1. Histogram of interpolated SO217-18517 dataset. a.

    Normal distribution of sea surface temperature (SST), b. Normal distribution of

    δ18Osw, c. Normal distribution of δ18O

    Supplementary Figure 2. Coefficient correlation between original and interpolated

    SO217-18517 dataset. a. Sea surface temperature (SST), b. δ18Osw, c. δ18O