33
1 Short Notes of Cement Chemistry NARENDRA KUMAR KANCHKAR Quality Controller(Cement) [email protected] Cement History: Joseph Aspdin took out a patent in 1824 for "Portland Cement," a material he produced by firing finely-ground clay and limestone until the limestone was calcined. He called it Portland Cement because the concrete made from it looked like Portland stone, a widely-used building stone in England. In 1845, Isaac Johnson made the first modern Portland Cement by firing a mixture of chalk and clay at much higher temperatures, similar to those used today. At these temperatures (1400C-1500C), clinkering occurs and minerals form which are very reactive and more strongly cementitious. -Development of rotary kilns - Addition of gypsum to control setting - Use of ball mills to grind clinker and raw materials Rotary kilns gradually replaced the original vertical shaft kilns used for making lime from the 1890s. Rotary kilns heat the clinker mainly by radiative heat transfer and this is more efficient at higher temperatures, enabling higher burning temperatures to be achieved. Also, because the clinker is constantly moving within the kiln, a fairly uniform clinkering temperature is achieved in the hottest part of the kiln, the burning zone. The two other principal technical developments, gypsum addition to control setting and the use of ball mills to grind the clinker, were also introduced at around the end of the 19th century. In india first cement plant installation at Porbandar (Gujrat) in 1914 Cement Definition: Cement is a binder, a substance that sets and hardens independently, and can bind other materials together such as sand, bricks (civil material). Cement is defined as a hydraulic binder which when mixed with water forms a paste which sets and hardens by mass of hydration reaction and processes and which after hardening, retains its strength and hardening even under water, Cement used in construction is characterized as hydraulic or non-hydraulic. Hydraulic cements (Portland cement) harden because of hydration chemical reactions that occur independently of the mixture's water content; they can harden even underwater or when constantly exposed to wet weather. The chemical reaction that results when the anhydrous cement powder is mixed with water produces hydrates that are not water-soluble. Material made by heating a mixture of limestone and clay in a kiln at about 1450 C, then grinding to a fine powder with a small addition of gypsum. Combination of C3A, C3S, C2S, C4AF and mix gypsum in few quantity is called cement.

Cement Testing.pdf

Embed Size (px)

Citation preview

  • 1

    Short Notes of Cement Chemistry NARENDRA KUMAR KANCHKAR

    Quality Controller(Cement)

    [email protected]

    Cement History:

    Joseph Aspdin took out a patent in 1824 for "Portland Cement," a material he produced

    by firing finely-ground clay and limestone until the limestone was calcined. He called it Portland

    Cement because the concrete made from it looked like Portland stone, a widely-used building

    stone in England.

    In 1845, Isaac Johnson made the first modern Portland Cement by firing a mixture of

    chalk and clay at much higher temperatures, similar to those used today. At these temperatures

    (1400C-1500C), clinkering occurs and minerals form which are very reactive and more strongly

    cementitious.

    -Development of rotary kilns

    - Addition of gypsum to control setting

    - Use of ball mills to grind clinker and raw materials

    Rotary kilns gradually replaced the original vertical shaft kilns used for making lime from

    the 1890s. Rotary kilns heat the clinker mainly by radiative heat transfer and this is more

    efficient at higher temperatures, enabling higher burning temperatures to be achieved. Also,

    because the clinker is constantly moving within the kiln, a fairly uniform clinkering temperature

    is achieved in the hottest part of the kiln, the burning zone.

    The two other principal technical developments, gypsum addition to control setting and

    the use of ball mills to grind the clinker, were also introduced at around the end of the 19th century.

    In india first cement plant installation at Porbandar (Gujrat) in 1914

    Cement Definition:

    Cement is a binder, a substance that sets and hardens independently, and can bind

    other materials together such as sand, bricks (civil material).

    Cement is defined as a hydraulic binder which when mixed with water forms a paste

    which sets and hardens by mass of hydration reaction and processes and which after hardening,

    retains its strength and hardening even under water,

    Cement used in construction is characterized as hydraulic or non-hydraulic. Hydraulic

    cements (Portland cement) harden because of hydration chemical reactions that occur

    independently of the mixture's water content; they can harden even underwater or when

    constantly exposed to wet weather. The chemical reaction that results when the anhydrous

    cement powder is mixed with water produces hydrates that are not water-soluble.

    Material made by heating a mixture of limestone and clay in a kiln at about 1450 C, then

    grinding to a fine powder with a small addition of gypsum.

    Combination of C3A, C3S, C2S, C4AF and mix gypsum in few quantity is called cement.

  • 2

    Cement Manufacturing Technologies: Wet Process Dry Suspension (SP) Process Dry Pre calciner (PC) Process (Present time use)

    Wet Process: These plant are characterized by low technology, low capacity, high man power and high energy consumption.the maximum capacity of the wet process plant operating in India is only 300 TPD.

    Dry Suspension (SP) Process: In SP plant, the ground raw meal is feed to a four stage Pre-heater system.the hot air coming out of kiln is used for pre heating the could feed entering the system. The material as it comes out of pre heater enters the kiln partial calcined (about 40%) at a temperature of 800OC. the kiln is used only for carrying out the remaining calcinations and sintering. The cooling of clinker is done in the cooler and cooler air is used back in the kiln for combustion. Generally ball mill used for grinding limestone.

    Dry Pre Calciner (PC) Process:the dry Pre-calciner plant is advancement over the dry SP plant. An additional vessel called the Precalciner is provided. The ground raw meal after getting preheated in the pre heater system (6 stage pre-heater) enters the calciner. The fuel is partly (extant of 60%) fired in the calciner. The additional heated is used for completing the calcinations reaction before the material enters the kiln. the kiln is used only for carrying out the sintering reaction. Generally VRM and roll press used for grinding limestone.

    6 stage pre-heater:

    S.No. Cyclone name Temperature (Approx)

    Getting sample loss Degree ofcalcinations

    1. 1F& 2F 280-332OC 30-33 % 10 % 2. 1E& 2E 370-420OC 25-30 % 23 % 3. 1D & 2D 540-600OC 20-25 % 40 % 4. 1C & 2C 630-710OC 15-20 % 55 % 5. 1B & 2B 770-850OC 10-15 % 24 % 6. 1A & 2A 857-890OC 2-5 % 90-95 %

    4 Zone occurs in kiln: -1.Dehydration Zone(1100OC) 2. Calcinations Zone(1250

    OC)3. Clinkersition Zone

    (1400OC) 4. Cooling Zone.(1000

    OC)

  • 3

    *Examples of raw materials for portland cement manufacture. Calcium Silicon Aluminum Iron Coal Limestone Clay Clay/Bauxite Clay Anthracite Marl Marl Shale Iron ore Bituminous Calcite Sand Fly ash Mill scale Lignite Aragonite Shale Aluminium ore refuse Shale Pith Shale Fly ash

    Blast furnace dust Pet Cock

    Sea Shells Rice hull ash

    Cement kiln dust Slag

    *Summary of the different ways to represent some cement minerals and products. Chemical Name Chemical Formula Oxide Formula Cement

    Notation Mineral Name

    Tricalcium Silicate Ca3SiO5 3CaO.SiO2 C3S Alite Dicalcium Silicate Ca2SiO4 2CaO.SiO2 C2S Belite Tricalcium Aluminate Ca3Al2O6 3CaO.Al2O3 C3A Aluminate Tetracalcium Aluminoferrite

    Ca2AlFeO5 4CaO.Al2O3.Fe2O3 C4AF Ferrite

    Calcium hydroxide Ca(OH)2 CaO.H2O CH Portlandite Calcium sulfate dihydrate CaSO4.2H2O CaO.SO3.2H2O C H2 Gypsum Calcium oxide CaO CaO C Lime

    Reaction Occurring in Pre heater to kiln:

    1. Evaporation of free water - 100oC 2. Release of combine water from clay - 500oC 3. Dissociation of magnesium carbonate - 900oC 4. Dissociation of Calcium carbonate - above900oC 5. Dissociation of lime and clay - 900oC-1200oC 6. Commencement of liquid formation - 1200oC-1280oC 7. Further formation of liquid and completion - above1280oC

    Of clinker compound

    Phase of Clinker formation:

    It is know that fuel economy or improved burn ability in the formation of clinker can be effected through the following stage of clinker burning.

    = Formation of 2CaO.Fe2O3 :- 800oC = Formation of 2CaO.Fe2O3.CaO.Fe2O3 :-900oC = Formation of 2CaO.SiO2+2CaO.Al2O3 :-1000oC SiO2+Ferrite Phase = Formation of 2CaO.SiO2, 5CaO.3(Al2O3) :-1100oC 5CaO.Al2O3, 3CaO.SiO2, Ferrite Phase = Formation of 2CaO.SiO2, 3CaO.SiO2 :-1200oC

  • 4

    12CaO.7Al2O3, SiO2+2CaO.Fe2O3, 3CaO.SiO2, = Formation of 3CaO.Al2O3, 3CaO.SiO2 :-1300oC 2CaO.SiO2 + Ferrite Phase = Formation of 3CaO.Al2O3, 3CaO.SiO2 :-1400oC 2CaO.SiO2+ Ferrite Phase

    Effects of Various Factors on Raw mix Burnability:

    Characteristic /Modulus

    Limiting range

    Preferable range

    Effects

    Silica modulus (SM) 1.9-3.2 2.3-2.7

    If SM High Result in hard burning, high fuel consumption, difficulty in coating formation, radiation from shell is high, deteriorates the kiln lining

    Alumina modulus (AM) 1.5-2.5 1.3-1.6

    If AM High Impacts harder burning, high fuel consumption, Increases C3A decreases C4AF, reduces liquid phase & kiln output, if AM is too low and raw mix is without free silica, clinker sticking and balling is too high.

    Lime saturation

    factor (LSF) 0.66-1.02 0.92-0.96

    A higher LSF Make it difficult to burn raw mix, increases C3S, reduces C2S, deteriorates refractory lining, increases radiation from shell, increases kiln exit gas temperature.

    Free silica 0-3 As low as possible

    A higher silica Increases fuel and power consumption, causes difficulty in coating formation, deteriorates refractory, increases radiation of heat kiln shell,

    MgO 0-5 0-3 A higher MgO Favours dissociation of C2S and CaO and lets C3S form quickly, tends the balling easy in the burning zone and affects kiln operation.

    Alkalies 0-1 0.2-0.3%

    A high alkali Improves burnability at lower temperature & deteriorates at higher, increase liquid content and coating formation, lowers the solubility of CaO in melt, breaks down alite & belite phases, creates operational problem due to external & internal cycle.

    Sulphur compound 0-4 0.5-2%

    A higher Sulphur compound Acts as an effective mineraliser and modifier of alkali cycle by forming less volatiles,

    Fluorides 0-0.6 0.03-0.08% A higher fluorides Leads to modify the kinetic of all burning reaction , lowers the temperature of C3S formation by 150-200

    Chlorides 0.06 Up to 0.015%

    A higher chlorides Higher Cl forms more volatiles % causes operational problem due to its complete volatilization in burning zone, increases liquid formation & melting point of the absorbed phase is drastically change.

  • 5

    Phase data for a Type I OPC paste made with a w/c of 0.45.

    Volume % Phase Density (g/cm3) At Mixing Mature Paste C3S 3.15 23.40 1.17 C2S 3.28 7.35 0.78 C3A 3.03 4.42 0.00

    C4AF 3.73 2.87 1.39 Gypsum (CH2) 2.32 3.47 0.00 C-S-H (solid)a 2.65 0 29.03

    C-S-H (with gel pores)b 1.90 0 49.99 Portlandite (CH) 2.24 0 13.96 Ettringite (AFt) 1.78 0 6.87

    Monosulfoaluminate (AFm) 2.02 0 15.12 Water 1.00 58.49 31.69

    Gel porosity -- 0 20.96 Capillary porosity -- 58.49 10.73

    Bulk Density:(RAW & FINAL PRODUCT)

    Cilnker = 1360 Kg/M3,Gypsum = 1.38 Mt/M

    3, Iron = 2700 Kg/M

    3,Lime stone = 1400 Kg/M

    3

    Fly ash = 550 Kg/M3,Coal = 850 Kg/M

    3, Sand = 1600 Kg/M

    3,Cock = 480-640 Kg/M

    3,

    Cement = 1500 Kg/M3,Raw meal = 1250 Kg/M

    3,

    Properties of the major cement minerals:

    About 90-95% of a Portland cement is comprised of the four main cement minerals, which are C3S, C2S, C3A, and C4AF, with the remainder consisting of calcium sulfate, alkali sulfates, unreacted (free) CaO, MgO, and other minor constituents left over from the clinkering and grinding steps. The four cement minerals play very different roles in the hydration process that converts the dry cement into hardened cement paste. The C3S and the C2S contribute virtually all of the beneficial properties by generating the main hydration product, C-S-H gel. However, the C3S hydrates much more quickly than the C2S and thus is responsible for the early strength development. The C3A and C4AF minerals also hydrate, but the products that are formed contribute little to the properties of the cement paste. As was discussed in the previous section, these minerals are present because pure calcium silicate cements would be virtually impossible to produce economically. The crystal structures of the cement minerals are quite complex, and since these structures do not play an important role in the properties of cement paste and concrete we will only present the most important features here. More detailed information can be found in the book by Taylor. The hydration reactions of the cement minerals are covered in Section5.3.

    Tricalcium Silicate (C3S) C3S is the most abundant mineral in Portland cement, occupying 4070 wt% of the cement, and it is also the most important. The hydration of C3S gives cement pastes most of its strength, particularly at early times. Pure C3S can form with three different crystal structures. At temperatures below 980C the equilibrium structure is triclinic. At temperatures between 980C 1070C the structure is monoclinic, and above 1070C it is rhombohedral. In addition, the triclinic and monoclinic structures each have three polymorphs, so there are a total of seven possible structures. However, all of these structures are rather similar and there are no significant differences in the reactivity. The most important feature of the structure is an awkward and asymmetric packing of the calcium and oxygen

  • 6

    ions that leaves large holes in the crystal lattice. Essentially, the ions do not fit together very well, causing the crystal structure to have a high internal energy. As a result, C3S is highly reactive. The C3S that forms in a cement clinker contains about 3-4% of oxides other than CaO and SiO2. Strictly speaking, this mineral should therefore be called alite rather than C3S. However, as discussed in Section 3.2, we will avoid using mineral names in this monograph. In a typical clinker the C3S would contain about 1 wt% each of MgO, Al2O3, and Fe2O3, along with much smaller amounts of Na2O, K2O, P2O5, and SO3.These amounts can vary considerably with the composition of the raw materials used to make the cement, however. Of the three major impurities, Mg and Fe replace Ca, while Al replaces Si. One effect of the impurities is to stabilize the monoclinic structure, meaning that the structural transformation from monoclinic to triclinic that would normally occur on cooling is prevented. Most cements thus contain one of the monoclinic polymorphs of C3S.

    There exist seven known polymorphs between room temperature and 1070 oC: three triclinic (denoted with T), three monoclinic (M) and one rhombohedral (R) polymorph. Due to incorporations in the alite crystal lattice, M1 and M3 polymorphs are present mostly in industrial clinker. Cooling clinker from 1450oC, inversion of the R polymorph to M3 and further more to M1 occurs, forming small crystals (M3) rich in substituents or large crystals, poor in substituted ions (M1). Especially, high MgO- concentrations promote high nucleation, resulting in formation of small automorphic M3- crystals.The different polymorphs do not show significant differences in the hydraulic properties.

    Dicalcium Silicate (C2S) As with C3S, C2S can form with a variety of different structures. There is a high temperature structure with three polymorphs, a structure in that is in equilibrium at intermediate temperatures, and a low temperature structure. An important aspect of C2S is that -C2S has a very stable crystal structure that is completely uncreative in water. Fortunately, the structure is easily stabilized by the other oxide components of the clinker and thus the form is never present in portland cement. The crystal structure of C2S is irregular, but considerably less so than that of C3S, and this accounts for the lower reactivity of C2S. The C2S in cement contains slightly higher levels of impurities than C3S. According to Taylor, the overall substitution of oxides is 4-6%, with significant amounts of Al2O3, Fe2O3, and K2O. The second largest clinker phase in Portland cement is belite. Its hydration product develops similar strength in cement as alite, only much more slowly. Belite makes up between 15 and 30 wt.% of Portland cement clinker and consists of 60-65 wt.% CaO, 29-35 wt.% SiO2 and 4-6 wt.% substituted oxides, mainly Al2O3 and Fe2O3, but also K2O, Na2O, MgO, SO3 and P2O5.7 Belite crystallizes in five polymorphs: -belite, H-belite, L-belite, -belite (H = high and L = low symmetry) and -belite (Fig. 2-7), which differ in structural and hydraulic properties. The - polymorphs are the most hydraulic forms of belite, whereas -belite is a non-hydraulic polymorph and does not account for the setting and hardening of cement. -belite is also a hydraulic polymorph, but less hydraulic than the - polymorphs. It is the most common polymorph in industrial Portland cement clinker. A phenomenon, that needs to be prevented by trace compounds inclusions, is disintegration (dusting) of clinker, which happens if -C2S is not stabilized during cooling and/or by inclusions affording a part --C2S inversion. -C2S crystals are less dense (more voluminous) than -C2S crystals, which causes cracking of other -C2S crystals, forming a voluminous powder and dust

  • 7

    Tricalcium Aluminate (C3A) Tricalcium aluminate (C3A) comprises anywhere from zero to 14% of a portland cement. Like C3S, it is highly reactive, releasing a significant amount of exothermic heat during the early hydration period. Unfortunately, the hydration products of formed from C3A contribute little to the strength or other engineering properties of cement paste. In certain environmental conditions (i.e., the presence of sulfate ions), C3A and its products can actually harm the concrete by participating in expansive reactions that lead to stress and cracking. Pure C3A forms only with a cubic crystal structure. The structure is characterized by Ca+2 atoms and rings of six AlO4 tetrahedra. As with C3S, the bonds are distorted from their equilibrium positions, leading to a high internal energy and thus a high reactivity. Significant amounts of CaO and the Al2O3 in the C3A structure can be replaced by other oxides, and at high levels of substitution this can lead to other crystal structures. The C3A in portland cement clinker, which typically contains about 13% oxide substitution, is primarily cubic, with smaller amounts of orthorhombic C3A. The C3A and C4AF minerals form by simultaneous precipitation as the liquid phase formed during the clinkering process cools, and thus they are closely intermixed. This makes it difficult to ascertain the exact compositions of the two phases. The cubic form generally contains ~4% substitution of SiO2, ~5% substitution of Fe2O3, and about 1% each of Na2O, K2O, and MgO. The orthorhombic form has similar levels, but with a greater (~5%) substitution of K2O.

    Tetracalcium Aluminoferrite (C4AF) A stable compound with any composition between C2A and C2F can be formed, and the cement mineral termed C4AF is an approximation that simply the represents the midpoint of this compositional series. The crystal structure is complex, and is believed to be related to that of the mineral perovskite. The actual composition of C4AF in cement clinker is generally higher in aluminum than in iron, and there is considerable substitution of SiO2 and MgO. Taylor. reports a typical composition (in normal chemical notation) to be Ca2AlFe0.6Mg0.2Si0.15Ti0.5O5. However, the composition will vary somewhat depending on the overall composition of the cement clinker.

    *Set up and solve a system of four equations and four unknowns to find the mineral composition of the cement. Once the total amount of C, S, A, and F residing in the cement minerals has been calculated by adjusting the total oxide composition of the cement or clinker (steps 1 and 2) and the ratio of the oxides within each of the main cement minerals has been estimated (step 3), a system of four equations in four unknowns can be set up and solved for the amount (in wt%) of each cement mineral. Using the cement oxide composition for proficiency cement #135 given in Table 3.4 and the mineral oxide compositions given in Table 3.5 results in the following set of equations:

    0.716C3S + 0.635C2S + 0.566C3A + 0.475C4AF = 62.52 (C) 0.252C3S + 0.315C2S + 0.037C3A + 0.036C4AF = 21.34 (S) 0.010C3S + 0.021C2S + 0.313C3A + 0.219C4AF = 4.40 (A) 0.007C3S + 0.009C2S + 0.051C3A + 0.214C4AF = 3.07 (F)

    a Formula =1.7C-S-4H. b Formula =1.7C-S-1.6H.

  • 8

    Rate of Clinker Phase on Properties of Cement:

    C3A C3S C2S C4AF Setting time Rapid Quick Slow - Hydration Rapid Fast Slow Rapid Early strength High-1day High-14 day Low - Late strength - Less High - Heat of Hydration(cal/g)

    207 120 62 100

    Resistance to Chemical attack

    Poor Moderate High High

    Dying Shrinkage - - low - Alite C3S = Responsible for early Strength. Belite C2S = Give ultimate (late) Strength along with alite. Aluminate C3A = Contributes to early strength, Help faster setting, Liberates more heat in

    concrete C4AF = Not contribution to Strength, Requited to reduce the burning Temperature

    for clinkerisationMostly occurs as a glassy interstitial phase.

    Specification of Various Type of Cement:

    TYPE OF CEMENT LOI MgO IR SO3

    Fineness

    (M2/Kg)

    Soundness

    Lechate- Auto Clave

    Setting Time

    IST- FST

    Compressive Strength

    3 7 28 Days(N/mm2)

    33 G

    5%Mx 6%Mx 4% Mx 3%Mx >225 10mm-0.8% 30-600 16 22 33

    43 G

    5% Mx 6%Mx

    3% Mx 3%Mx >225

    10mm-0.8% 30-600 23 33 43

    53 G

    4%Mx 6%Mx 3% Mx 3%Mx >225 10mm-0.8% 30-600 27 37 53

    Low heat cement

    5% Mx 6%Mx

    4% Mx 3%Mx >320

    10mm-0.8% 60-600 10 16 35

    Rapid hardening - 6%Mx

    4% Mx 3%Mx >325

    10mm-0.8% 30-600 27 - -

    Sulphate Resisting

    5% Mx 6%Mx

    4% Mx

    2.5% Mx >225

    10mm-0.8% 30-600 10 16 33

    Masonary Cement - 6%Mx

    - 3%Mx 15%Mx in 45M 10mm -1% 90m-24H - 3 5 Hydrophobic

    cement 5% Mx 6%Mx

    4% Mx 3%Mx >350

    10mm-0.8% 30-600 16 22 31

    Super sulphate -

    10%Mx

    4% Mx

    1.5% Mx >400 5mm - --- 30-600 15 22 30

    White cement

    - 6%Mx 2% Mx - >225 10mm-0.8% 30-600 15 20 30

    PSC

    5% Mx 8%Mx

    5% Mx 3%Mx >225

    10mm-0.8% 30-600 16 22 33

    PPC

    5% Mx 6%Mx

    FORM

    ULA 3%Mx >300 10mm-0.8% 30-600 16 22 33

    Special Test:PPC Drying Shrinkage 0.15%max,

  • 9

    Important Formula Use in Cement Analysis.

    Hydraulic Modulus: HM = CaO SiO2 + Al2O3 +Fe2O3 (Typical Range: 1.7 to 2.3)

    Silica Ratio: SM = SiO2 Al2O3 +Fe2O3 (Typical Range: 1.8 to 2.7)

    Alumina Ratio: AM = Al2O3 Or Iron Modulus Fe2O3 (Typical Range: 1.0 to 1.7)

    Lime saturation Factor: (For OPC Cement) LSF = CaO- 0.7 SO3

    2.8 SiO2 + 1.2Al2O3 +0.65Fe2O3 (Typical Range: 0.66 to 1.02)

    Lime saturation Factor :( Lime stone) LSF = CaO X 100

    2.8 SiO2 + 1.2Al2O3 +0.65Fe2O3 (Typical Range: 95 to 110)

    Lime saturation Factor: (if Alumina modulus >0.64) - LSF = CaO

    2.8 SiO2 + 1.65Al2O3 +0.35Fe2O3 (Typical Range: 92 to 108)

    Lime saturation Factor: (if Alumina modulus 0.64)

    C3S = 4.071 CaO (7.602 SiO2+ 6.718 Al2O3 +1.43Fe2O3+2.8SO3)Note: CaO = CaO - F/CaO C2S = 2.867 SiO2 - 0.7544 C3S C3A = 2.65 Al2O3 - 1.692 Fe2O3 C4AF = 3.043 Fe2O3 C3S = Tri Calcium Silicate. (Molecular weight = 228 g/g mol) C2S = Di Calcium Silicate. (Molecular weight = 172 g/g mol) C3A = Tri Calcium Aluminate. (Molecular weight =270 g/g mol) C4AF = Tetra Calcium Aluminate Ferate. (Molecular weight = 486 g/g mol)

    (if Alumina modulus 0.64) Note: CaO = CaO - F/CaO C3S = 4.071 CaO (7.602 SiO2+ 6.718 Al2O3 +1.43Fe2O3+2.85 SO3) C2S = 2.867 SiO2 - 0.7544 C3S C3A = 2.65 Al2O3 - 1.692 Fe2O3 C4AF = 3.043 Fe2O3

  • 10

    Liquid Value: LV= 1.13C3A +1.35C4AF + MgO +Alkalies

    Burnability Index: BI = C3S C4AF + C3A

    Burnability Factor: BF = LSF + 10 SM 3(MgO + Alkalies)

    Coal Analysis: NCV = 8455 114 (M% + Ash %) Cal/gm UHV = 8900 138 (M % + Ash %) Cal/gm GCV = PC X 86.5 (60*M %) PC = 100- (1.1*Ash + M %) CV = % C*8000 + % H*32000 100 100

    Coal Consumption: = Coal feed X 100 Clinker Production

    Ash absorption: = % of ash in fuel X coal consumption 100

    Raw meal to clinker factor: = 100-ash absorption 100-LOI

    Specific Heat: V = NCV X % of coal Consumption 100

    Insoluble Residue: IR (max %) = X+4 (100-X) (Note: X= % of Fly ash) 100 Blain : Blain = Time X Factor

    Factor = STD Blain Time

    Bogus Factor :as per duda book C4AF = C4AF/ Fe2O3 = 486/160=3.043, C3A = C3A / Al2O3 = 270/102= 2.65, C3A/ Fe2O3 = 270/160= 1.69, C2S = C2S /SiO2= 172/60=2.87,C2S /C3S= 172/228=0.75, C3S = C3S/ CaO = 228/56= 4.07,

    LSF =

  • 11

    CYCLONE LOSS: = 100(KF loss Cyclone loss)

    (100 Cyclone loss) X KF loss

    Clinker to cement factor: = Clink.+Flyash/Slag+additives(kg) Clinker consumed (kg)

    Chemical Composition (General):

    LOI SiO2 Al2O3 Fe2O3 CaO MgO Na2O +K2O

    SO3 F / CaO

    C3S C2S C3A C4AF

    PPC 5.0 31.0 4.5 3.5 43.0 5.0 1.4 -

    Clinker 0.5 21-22 5-6 3-5 62-65 3-6 .5-1.0 .2-1.0 .5-2 48 28 8 12

    Limestone 34 12 2.4 1.6 43.0 3.8

    Iron Ore 10 13 14 71 1 1.5

    Letrite

    Gypsum 16 14 1 1 34 1 .5 42

    Mni Gyps

    Fly ash 5mx 50-60 20-33 2-7 2-10 5 Mx 1.5mx 2.75mx

    Physical Analysis of PPC: TEST- Residue (sieve), Blain, Normal consistence, Setting time, Compressive strength,

    Soundness-(AC&LC)

    Blain (IS -4031 part-2) = 300 M2/kg minimum

    NC/SC Setting time Strength Auto clave Le-chate

    IS- 4031 Part-4 Part-5 Part-6 Part-3 Part-3

    Lab

    Tempture

    270C 20C 270C 20C 270C 20C 270C 20C 270C 20C

    Lab/Chamber

    R-Humidity

    65% 5, Not less than

    90%

    65% 5, Not less than 90%

    65% 5, Not less than 90%

    65% 5, Not less than

    90%

    65% 5, Not less than

    90%

    Sample

    weight

    300/400 gm 300/400 gm 200gm-cm,

    600gm-1s+2s+3s

    300/400 gm 100 gm

    Water

    Requirement

    Req.waterX100 sample weight

    NC*0.85*S.Wt

    100

    (NC+3) *800

    4 100

    =NC NC*0.78*S.wt

    100

    Apparatus Vicat

    apparatus

    Vicat apparatus Vibrating & CSTm AC machine

    2150C,

    21 kg/cm2

    Water Bath

    100oC

    Expend Time As possible

    vicat Reading

    5-7 cm

    As possible

    vicat Reading 5-

    7 cm

    72 1hour- 16mpa 168 2hour-22mpa 672 4hour- 33mpa (MPa=N/Kg*0.2032)

    RH-C-24hour

    ACM-3 Hour

    WB-24hour

    H.WB-3 Hour

    Other

    Use needle

    10mm

    Use needle

    2&5mm

    Gauging

    1min dry, 4 min wet

    Gauging

    5 min

    Cube size 60-70mm 60-70mm 70mm 25,250mm 35mm

    IS

    Requirement

    Initial 30 min

    minimum

    Final-600 min

    maximum

    3 day- 16mpa 7 day- 22mpa

    28 day- 33mpa

    0.8 % max 10 mm max

    X 100

  • 12

    FLY ASH Analysis (IS-1727) TEST- BLAIN (Minimum 320),Lime Reactivity(min. 4.5 MPa), Dry Shrinkage (max .15), Comparative

    Strength (Not less than 80%)

    Lime Reactivity Dry Shrinkage Comparative Strength

    Lab Temp.

    /RH 27

    OC 2 / 65% 5 27OC 2 / 65% 5 27OC 2 / 65% 5

    Test

    Specimen 50mm 25/250mm 50mm

    Require

    Sample

    1: 2M: 9

    H. Lime: Pozz: Sand

    150:300M:1350gm

    0.2N :0.8 :3

    Pozz : Ce

    ment : Sand

    60N:240:900gm

    0.2N :0.8 :3

    Pozz : Cement : Sand

    100N:400:1500gm

    0.8 :3

    Cement : Sand

    400:1500gm

    Require

    Water (Table

    Flow)

    70 5% with 10 drop in 06 Second

    100-115% with 25

    drop in 15 Second

    105 5% with 25 drop in 15 Second

    Age of

    Testing 10 Day 35 Day 7,28,90 Day 3,7,28, Day

    Testing

    Condition

    2day RH chamber

    (272OC&>90%)

    8day Environment

    Cmb.

    (502OC&>90%)

    24 hour RH chamber

    (272OC&>90%) 6day water tank-I

    (272OC 28day Environment

    Chamber

    (272OC& 50%)-II

    24 hour RH chamber

    (272OC&>90%)

    7,28,90day water

    tank

    (272OC)

    24 hour RH

    chamber

    (27OC&>90%)

    7,28,90day

    water tank

    (272OC)

    Dry shrinkage= II-I

    28 dya not less than

    80% to blank

    strength

    Blank Strength

    M=Specific gravity of Pozz. Specific gravity of H. lime

    N=Specific gravity of Pozz. Specific gravity of cement

    N=Specific gravity of Pozz. Specific gravity of cement

    STI (Scheme of testing & inspection)

    Form-1:FORMAT FOR MAINTENANCE OF TEST RECORDS WEIGHMENT CONTROL AT PACKING STAGE (Clause 6.2) Date Shift No. Of Bag Net mass of bags from nozzles No.1, No. 2, Remark

    Form-2:RAW MATERIAL TESTING (CL.7 of STI) Date of receipt of

    material Date of testing Name of the

    Material Source of supply and

    consignment No. Details of analysis for Specified requirements

    Form-3:PRODUCTION DATA (POST GRINDING DETAILS OF PRODUCTION ACCEPTED & REJECTEDFOR ISI MARK) Shift Quantity Passed for ISI Marking Rejected Remarks

    Form-4-A:POZZOLANA (One sample per week) Column 6 of Table 1A (A) Calcined clay pozzolana Date Fitness Lime Reactivity CompressiveStrength at 28 Days Drying ShrinkageMax

    Form-4-B :FLY ASH POZZOLANA (See Column 6 of Table 1 A) SO2+A1203 SiO2 MgO SO3 Na2O LOI Fineness Lime Compressive Drying Soundness

  • 13

    +Fe203 sulphur reactivity Strength Shrikage Auto clave

    Form-5:CLINKER (DAILY COMPOSITE SAMPLE) (See Column 6 of Table 1A) Laboratory Ball-Mill Testing is required to be done when there is change in the source of Raw Material or change in design

    Date of manuacture

    Total loss of Ignition

    Insoluble Residue

    SiO2 CaO AlO FeO SO MgO LSFLime SaturationFactor

    Alunina Factor

    Sample Pass/Fails

    Disposal/ Action

    -6-A:CLINKER GROUND WITH GYPSUM (Daily composite sample) (Note under Column 6 of Table 1 A) Date of Grinding

    Fineness Soundness AC - LC

    Setting time IST - FST

    Compressive Strength 3day- 7day- 28day

    Sample Pass//fail

    Disposal/Actio n taken if sample fails

    Form-6-B:CLINKER GROUND WITH GYPSUM & POZZOLANA (Column 6 of Table I A) Date of Grinding

    Fineness Soundness AC - LC

    Setting time IST - FST

    Compressive Strength 3day- 7day- 28day

    Dry shrinkage (Weekly)

    Sample Pass/fail

    Disposal/Actio

    Form-7: PORTLAND POZZOLANA CEMENT GRINDING/ BLENDING (Daily/Weekly Composite sample) (Column 5 of Table 1B) Date of Grinding

    Loss on Ignition

    MgO Insoluble Material

    SO3 Fineness Soundness Le-ch Auto Clave

    Setting Time IST /FST

    Compressive Strength 3 7 28 days

    Drying Shrinkage (Weekly)

    Sample Pass/Fail

    Action take

    Form-8:PORTLAND POZZOLANA CEMENT CRINDING (For Alternate hourly Samples) (Column 5 of Table 1B) Date of Grinding

    Time at Fineness Setting Time (IST)-(FST)

    Sample fail/pass

    Mode of disposal/Action taken if sample fails

    Form-9:PORTLAND POZZOLANA CEMENT PACKING STAGE (Daily/Weekly Composite Samples) (Column 6 of Table 1B) Date of Pcking

    Loss On Igniti on

    MgO Insoluble Materia

    SO3 Chloride Content (Weekly

    Fine ness

    Soundness Le Auto Ch Clav

    Setting time IST-FST

    Compressive Strength 3 7 28 days

    Drying Shrinkage (Weekly)

    Sample Pass /Fail

    Mode of disposal/Action taken if sample fails

    Form-10:(See Clause 3 of STI) S.No. Date Calibration Result of Calibration (Test records indicating

    details of standard values and observed values for each equipment to be kept in proforma for which various columns be devised; as required)

    Name of Equipment Action taken if equipment found defective

    Sl. No. (If any) Remarks

    FREQUENCY OF CALIBRATION: Blaines apparatus- Daily with licensee sown Standard cement sampleand once in a month with standard

    cement samples supplied by NCCBM. Compressive strength -Once in a month with licensees own proving ring and the proving ring shall be calibrated once Testing machine in two years from the recognized calibrating agency like NPL/NABL accredited Lab or Proving ring manufacturer having NPL certified calibrator.

    Apply Load Reading-1 R-2 R-3 Average True Load Error % Std. Differ.

    5,10,15,20 1+2+3/ 3 =app. load*avg. load /Std. difference

    =true.Load-app.Load)*100 /applied load

    Autoclave pressure gauge - Once in a six months either by licensees own dead weight Pressure gauge or from Approved independent agency /NABL accredited Lab or manufacturer of such gauge having NPL certified calibrator.(dead weight Pressure gauge in 4year)

  • 14

    Vibration machine - Once in a month by licensees own tachometer. The tachometer shall be calibrated once in three Years from approved out Side agency /NABL accredited Lab having NPL certified calibrator. (12000 400 RPM)

    Chemical analysis Type of analysis: 1 Gravimetric- IR, SO3, SiO2, R2O3 (Residual Oxide/3rd group) 2 Volumetric- CaO, MgO (Fe2O3, Al2O3) 3 Spectroscopy 1.Flame Photo metter-K2O, Na2O (Uncoloured element) 2. UV-Spectro metter TiO2, P2O5, MnO2, (Coloured & miner) 4 X-ray Method

    Solution Prepare: Normality: Equivalent weight

    Volume in letter.

    (Equivalent weight = In acid from:- Molecular weight Removal H+ ion

    In Basic from:- Molecular weight Removal OH- ion

    Molaritiey: Gram mole number Volume in letter.

    (1000ppm=1gm chemical dissolved in 1000ml or1 Litter) (1ppm= 1gm chemical dissolved in 100000ml or 1000 Litter)

    Soiled chemical to solution (formula) = ENV 1000 (E=equivalent weight, N= Require Normality, V= Require volume)

    Liquid chemical to solution formula = N1V1 =N2V2 Density = Mass

    Volume

    Important Molecular weight.

    O-16, Na-23, Mg-24, Al-27, Si-28, S-32, Cl-34, K-39, Ca-40, Fe-55.8, Zn-65.39

    CaCO3 =100, SiO2=60, Al2O3=102, Fe2O3 =160, MgO= 40, Na2O= 62, K2O = 94 C3S=228, C2S= 172, C3A= 270, C4AF= 486, CaSO4.2H2O =145

  • 15

    Titrate with NaOH

    (0.2N) slow titration

    Lime Stone- TC&MC

    Q.1 why multiply 1.786 for CaO? = CaO/CaCo3 Q.2 why multiply 2.09 for MgO? = MgO/MgCo3 Q.3 why multiply 0.84 for MC?

    Take 50 ml HCL (0.4N) in conical Flask

    Add 1.0 gm lime stone sample

    Boil minimum 2min

    Add Indicator-

    Phynopthleen C20H14O4

    Mwt-318.33,pH-8.2-9.8

    Cool

    Take NaOH Burette

    reading TC = 100-Burette reading

    Add excess10/20ml

    NaOH (0.2N)

    Boil about 1min.

    Add Indicator-

    Thymopthleen

    Cool

    Titrate with HCL (0.4N)

    Fast titration

    Take HCL Burette

    reading MC = [Ex.NaOH-{2*HCL-BR}] X0.84

    End point white to

    pink colour

    End point purple

    to white- pink

    Solution use: = NaOH (0.2N) 40(Mwt)*0.2(N)*1000(ml)/1000= 8gm/L = HCL(0.4N) 36.46(Mwt)*100/35.4(Purity)=87.28ml/L-1N =87.28ml/L-1N* 0.4 (Req.N)=34.91 ml/L = Indicator dissolved in Alcohol

    Calculation: CC = TC MC CaO = CC / 1.786 MgO = MC / 2.09

  • 16

    Cement- IR & SO3

    Q.1 what is IR? Material which is not reacts (dissolved) with Acid and basis. Q.2 why multiply 34.3 for SO3? Because So3 is found in BaSO4 Form = (SO3/BaSO4)*100 = (80/137+32+64)*100 = (80/233)100 =0.3433*100 = 34.33

    IR (max %) = X+4 (100-X) (Note: X= % of Fly ash) 100 =methyl Orange use checking for alkali removes.

    1.0 gm cement sample Dissolved 1:1 HCL

    Heat below boils Temp. 15 minute

    Filter- 40 N. paper

    Wash Hot water

    Filtrate Residue

    Boil + add hot BaCl2

    10 ml React with Na2CO3 -30

    ml

    Wash with 1:99 HCl & Hot water Wash Hot water

    Dryad in Oven

    Ignited at 1000oC Minimum 30 min

    Weight IR

    Slowly Cool for ppt

    form (4 hour)

    Filter 42 N paper

    Dryad in Oven

    Ignited at 1000oC

    Weight

    Weight X 34.3 = SO3

    Solution use: = 2N- Na2CO3= 10.6 gm sodium carbonate dissolved in 100 ml distilled water (Eq.wt = 53, Mwt 105.99 g/mol) = 1:1 HCL = 50 ml HCL dissolved in 50 ml Distil water.(Mwt 36.46 g/mol) = BaCl2 = 10 gm BaCl2 dissolved in 100 ml distilled water.

    For Acid

    reaction

    For Base

    reaction

    IR= Final weight-Initial weight

    Heat 10 minute below boil temp.

    Filter- 40 N. paper

    For Alkali

    remove

  • 17

    Clinker, Cement & Raw material (SiO2, R2O3) All Raw materials & Cement Clinker Sample

    Wash Crucible with H2O

    add NH4Cl + Bake on Hot

    plate & cool it Filter with 40N paper

    Add HCL (1:1), 20-30 ml

    +Heat

    0.5 gm sample in beaker

    Add NH4Cl 2-3gm (mix well)

    0.5 gm sample + Fusion mix.

    In Platinum crucible

    Fuse 1000oC for 1 hour

    Add HCL (1:1), 20-30 ml

    Add Con. HCL- 5ml,

    Bake on Hot plate & cool it

    Add HCL (1:1), 10-20 ml

    +Distilled water + Heat

    Filtrate Residue

    Heat it +Add NH4Cl 2-3gm Wash with hot Distilled water

    Boil it + Add HNO3 (1:1), 0.5ml

    Add NH4OH (1:1)

    Dry (oven) + Ignite at 1000oC

    Filter with 41N paper

    SiO2= (F wt I wt)*200

    2 drop H2SO4 + 2 drop H2O

    Add 20 ml HF

    Put on Hot plate & dry

    SiO2= (F wt I wt)*200

    Filtrate in 500ml

    flask

    Residue

    R2O3= (F wt I wt)*200

    Dry (oven) + Ignite at 1000oC

    CaO & MgO Process

    next page

    Use Solution:

    NH4OH(1:1)

    250 ml NH3 + 250 ml H2O

    HNO3 (1:1)-

    Fusion mix.= (Na2CO3+K2CO3)

    Reaction:

    = M SiO3 + 2HCl M Cl2 + H2SiO3

    = H2SiO3+ Evaporation SiO2 +(H2O)

    = SiO2 + Impu. + 4HF SiF4 +2H2O H2SiO3 + 2H2 SiF6

    = (FeCl3 + AlCl3) + 3NH4OH {Fe(OH)3 + Al(OH)3} + 3NH4Cl

    ={Fe(OH)3 + Al(OH)3} + Ignition Fe2O3 + Al2O3

    Oxidizing

    agent

    Isolate

    R2O3

    ppt

    form

  • 18

    Clinker, Cement & Raw material (CaO, MgO)-EDTA method

    For-CaO For- MgO

    (end colour red- pink to blue)

    (end colour red- pink to purple)

    Take 20 ml aliquot solution

    After filtrate R2O3 solution make up 500 ml

    Add Tri ethanol amine (TEA)

    5 ml (For Isolation), C6H15NO3,

    Mwt-149.19 g/m

    Add Glycerol 5 ml

    (For Isolation), C3H8O3,

    Mwt-92.10 g/m

    Add Patton & Reader (P&R)

    Indicator, C21H14N2O7S

    Mwt-438.42 g/m

    Add 10-20 ml Sodium (4.0N)

    Hydroxide NaOH (For pH-12)

    Mwt-40 g/m

    Titrate with EDTA

    (ethylene di amine tetra

    acetate) Mwt-372.34 g/m

    {0.05608 X mol. EDTA(0.01)X V1 X Vmu X100} D.F.

    Volume taken X Sample weight

    = V1- EDTA Burette reading

    = Vmu- Volume make up

    = Difference Factor - as per EDTA standard

    Take 20 ml aliquot solution

    Add Tri ethanol amine (TEA)

    5 ml (For Isolation), C6H15NO3,

    Mwt-149.19 g/m

    Add Eriochrome black T (EBT)

    Indicator, C20H2N3NaO7S

    Mwt-461.38 g/m

    Add 10-20 ml Buffer Solution

    (For pH-10)

    Mwt-000 g/m

    Titrate with EDTA

    (ethylene di amine tetra

    acetate) Mwt-372.34 g/m

    {0.04032 X mol. EDTA(0.01)X (V2- V1)X Vmu X 100} D.F.

    Volume taken X Sample weight

    = V1- EDTA Burette reading

    = V2- Cao titration BR

    = Vmu- Volume make up

    = DF as per EDTA standard

    Solution Use:

    = Buffer solution- 70 gm NH4Cl dissolved in 570

    ml NH4OH.

    = 4.0N NaOH- 160 gm dissolved in 1000 ml H2O.

    =EDTA- 3.7224 gm dissolved in H2O 100 ml and

    make up 1000 ml solution.

    = Zn solution (0.01N)-0.6537 gm diss. In 0.1N HCL

    Reaction:

    = Ca2+

    + EDTA.2Na+

    2Na++ EDTA.Ca

    2+

    Di Sodium Salt

    E.D.T.A STANDARDISATION (Difference Factor)

    = 10 ml Zn sol (0.1N).+ EBT +Buffer sol. Titrate

    with EDTA (end colour pink to blue)

    M1V1=M2V2, M2=0.01 X 10ml /B.R.

  • Ferric Oxide (Fe2O3) Testing by EDTA method in Cement (In OPC)

    Make the solution to 250 ml in a standard volumetric flask after removal of silica. Measure 25 ml of acid

    solution of the sample through pipette in a flask. Add very dilute ammonium

    clear the turbidity with ahydrochloric acid(1:10) and a few drops in excess to

    Add 100 mg of sulphosalicylic acid and titrate with 0.01M EDTA solution carefully to a colouress or pale

    CALCULATION:

    1 ml of 0.01M EDTA = 0.7985 mg Fe

    Fe2O3(%) = 0.07985 X V X M X 250 X 100

    Where,V= volume of EDTA used andW= weight of sample M = Molarity of EDTA

    19

    Ferric Oxide (Fe2O3) Testing by EDTA method in Cement (In OPC)

    Make the solution to 250 ml in a standard volumetric flask after removal of silica. Measure 25 ml of acid

    solution of the sample through pipette in a flask. Add very dilute ammonium hydroxide (1:6) till turbidity

    appears.

    clear the turbidity with a minimum amount of dilute hydrochloric acid(1:10) and a few drops in excess to

    adjust the pH 1 to 1.5. Shake well.

    Add 100 mg of sulphosalicylic acid and titrate with 0.01M EDTA solution carefully to a colouress or pale

    yellow solution.

    CALCULATION:-

    1 ml of 0.01M EDTA = 0.7985 mg Fe2O3

    (%) = 0.07985 X V X M X 250 X 100 W X 25

    Where,V= volume of EDTA used and W= weight of sample M = Molarity of EDTA

    Make the solution to 250 ml in a standard volumetric flask after removal of silica. Measure 25 ml of acid

    solution of the sample through pipette in a flask. Add 1:6) till turbidity

    minimum amount of dilute hydrochloric acid(1:10) and a few drops in excess to

    Add 100 mg of sulphosalicylic acid and titrate with 0.01M EDTA solution carefully to a colouress or pale

  • Alumina (Al2O3) Testing by EDTA method in Cement

    After testing of FeEDTA to the same flask add 1ml H3PO4(1:3)

    and 5 ml of H2SO4(1:3) and one drop of thymol

    add ammonium acetate solution by stirring until the colour changes from red to yellow add 25 ml of ammonium acetate in

    Heat the solution to boiling for one minute and then cool.Add 0.5 mg solid xylenol orange

    indicator and bismuth nitrate solution slowly with

    Add 2-3 ml of bismuth nitrate solution in Titrate with EDTA to a sharp yellow endpoint

    CALCULATION:- 1 ml of 0.01M EDTA = 0.5098 mg Al

    Al2O3(%) = 0.05098 X V1 X M X 250 X 100 W X 25

    V1= V2-V3-(V4 X factor of Bi(NOWhere,V1= volume of EDTA for aluminaV2 = total volume of EDTA used in titrationV3 = volume of EDTA used for iron

    V4 = total volume of bismuth nitrate solution used in the titration.

    W= weight of sample M = Molarity of EDTA

    20

    Alumina (Al2O3) Testing by EDTA method in Cement

    After testing of Fe2O3 add 15 ml of standard EDTA to the same flask add 1ml H3PO4(1:3)

    and 5 ml of H2SO4(1:3) and one drop of thymol blue into a flask

    add ammonium acetate solution by stirring until the colour changes from red to yellow add 25 ml of ammonium acetate in excess to attain a pH of

    5.5 -6.0

    Heat the solution to boiling for one minute and then cool.Add 0.5 mg solid xylenol orange

    indicator and bismuth nitrate solution slowly with constant stirring.

    3 ml of bismuth nitrate solution in excess. Titrate with EDTA to a sharp yellow endpoint

    1 ml of 0.01M EDTA = 0.5098 mg Al2O3

    (%) = 0.05098 X V1 X M X 250 X 100 W X 25

    (V4 X factor of Bi(NO3)3 Where,V1= volume of EDTA for alumina

    of EDTA used in titration V3 = volume of EDTA used for iron

    V4 = total volume of bismuth nitrate solution

  • 21

    RapidCaoof Clinker/PPCby KMnO4 method (ASTM) PPC Cement Clinker Sample /OPC

    Wash Crucible with H2O Add NH4OH (1:1)

    until Colour yellow

    0.2 gm sample + Add 1:1 Hcl 0.2 gm sample + Fusion mix.

    In Platinum crucible

    Fuse 1000oC for 1 hour

    Add HCL (1:1), 20-30 ml

    Just Boil+ Continue in Hot Plate

    Add methyl Orange- few

    drop

    Just Boil

    Add lump sum 0.2 gm

    OXALIC Acid (until Colour

    lightly pink)

    Add 20ml hot Ammonium

    Oxalate (50%) (White)

    Filter with 40 No. Paper

    Wash with hot water

    Take Residue in beaker

    Aliquot

    solution

    OUT

    Titrate with KMnO4

    (0.01772 N)

    KMnO4 STANDARDISATION

    *5.6 gm KMnO4 dissolved in

    1000ml H2O for 0.1772N

    Solution.

    *0.67 gm OXALIC Acid + H2O+

    1:1 H2So4 titrate with KMno4.

    Factor = 56/BR

    B.R. X 0.5 X Factor / Sample

    wt.

    Add H2SO4 (1:1)

  • 22

    Fast CaO

    Take 0.5gm sample

    Add 1:1 Hcl (20 ml Approx)

    Just Boil

    Filter With 41 No Paper in 500 ml round bottom

    flask& make up 500 ml

    Filter

    Out

    Cool & shake well

    Take 20 ml aliquot sample in Conical Flask

    Add approx 5 ml glycerol

    Add Approx 1 ml TEA

    Add NaOH ( 2 pellet)

    Wine Red Color

    Add P&R Indicator 0.05gm (Approx)

    Sky Blue

    Titrate With 0.01N EDTA

    (until No Color Change)

    Calculate

    {0.05608 X mol. EDTA(0.01)X V1 X Vmu X100} D.F.

    Volume taken X Sample weight

    = V1- EDTA Burette reading

    = Vmu- Volume make up

    = Difference Factor - as per EDTA standard

    OR

    BR X 2.804 = CaO%

    (For 20 ml Volume taken)

  • 23

    Iron (Raw material) -Dichromate method:(ASTM)

    Clinker sample

    0.5 gm sample + Fusion mix. In

    Platinum crucible

    Fuse in 1000oC minimum 30 min

    Cool and wash Pt. crucible with

    1:1 HCl

    Wash crucible with Distilled

    water 0.5 gm clinker sample dissolved

    in HCl -1:1

    Boil & add SnCl2 Drop wise till

    colourless solution

    Completely cool (Room Temp.)

    Add Barium di phenol Salfonate

    (BDS) Indicator

    Add 5-10 ml HgCl2 and Acid

    mixture Masking agent

    Titrate with K2Cr2O7Potassium

    dichromate

    Iron= B.R X Factor (K2Cr2O7)

    Solution Preparation:

    =Acid mix.- 15% H2SO4+ 15%H3PO4 +70% H2O

    =K2Cr2O7(N/16) 3.07 gm dissolved in 1000ml

    H2O

    =BDS 1gm dissolved in 100 ml dil. HCL (10%)

    =SnCl2 5 gm dissolved in 100 ml dil. HCL (10%)

    =Fusion mix Na2CO3+K2CO3

    = HgCl2- 56 gm dissolved in 1000ml H2O

    Reaction:

    = 2Fe3+

    + Sn2+

    2Fe2+

    + Sn4+

    = 2Fe2+

    + K2Cr2O7 2Fe3+

    K2Cr2O7calibration to FAS

    = take 20 ml H2O + 0.5 gm FAS +

    Acid mixture +BDS Ind. + titrate with

    Potassium dichromate

    Factor= 20/BR

  • 24

    Free Lime Test:(Clinker)

    = Normality of HCL =. Purity *1000*Specific Gravity / 100 * Equivalent wt

    = Normality of HCL =. (36 * 1000 * 1.18)/100*36.5 = 11.64 N.(N1)

    = So 0.1N HCL=N1V1 = N2V2, =11.64*V2 = 0.1*1000, =V2= 0.1*1000/11.64 = 8.59ml

    Take 1 gm Clinker sample in

    beaker

    Add 10 ml Ethylene Glycol

    Put for 45 min in water bath

    Filter with 40N paper

    Filtrate Residue out

    Add Bromocrsol Grate Green

    Indicator

    Titrate with 0.1N HCL

    End Colour Green to golden

    Yellow

    F/CaO= B.R X 0.28 (HCL Factor)

    Solution Preparation:

    = 1 Glycerol : 5 Ethanol

    Reaction:

    Ca(OH)2 + 2HCl CaCl2 + H2O

    Factor= CaO / 2 HCL

  • 25

    Cloride Test (Cl):-0.1% max

    Take 1 gm sample in beaker

    Dissolved 1:3 HNO3

    Filter 41N paper in Conical

    Take aliquot sample

    Add 10 ml AgNO3 (0.1N) Residue out

    Add 2ml Nitro Benzene

    Add 4 Drop Ferric Indicator

    NH4.Fe (SO4)2.12H2O

    Titrate with Ammonia thyo

    saynte (.01N) NH4SCN

    End Colour white to

    Solution Preparation:

    Reaction:

    M Cl2 + 2 HNO3 M(NO3)2+2HCl

    HCl + AgNO3 AgCl + HNO3

    AgNO3 + NH4SCN AgSCN + NH4NO3

    0.3546 X 100 X (10-BR)

    Sample weight

  • 26

    Alkali Test (Na2O+K2O):-( PPC=0.8% max)

    *Pre heater Coating sample in (about) Na2O= 1-2% & K2O=12-16%.

    Take 0.25 gm sample in

    Platinum crucible

    10 ml HF and backing

    Add 2ml HNO3

    Add 10 ml HClO4

    (Per Choleric acid)

    Put Hot plate & up to Syrupy

    Residue out

    Extract dissolved to 1:1 HNO3

    in bicker

    Filter 41N paper in 250 ml

    Volumetric Flack

    Make up 250 ml with H2O

    Solution Preparation:

    Blank Solution: 2.5 ml HNO3 + 2.5 ml

    Alumina sulphate + 250 ml H2O.

    Standard Solution:

    NaCl: 1.885 NaCl Dissolved In 1000ml

    H2O (for 1000ppm).

    KCl: 1.583 KCl Dissolved In 1000ml H2O

    (for 1000ppm).

    Volume makeup X 100 X ppm reading

    Sample weight X 106

  • 27

    Reactiv Silica Test: (Fly ash) (IS-3812)

    Take 0.5 gm sample in beaker

    Add 50 ml HCl (1:1)

    Boil and Cool

    Add 16 gm KOH

    4 hour Put on Hot plate &

    Volume maintain 60 ml by

    H2O

    Filter 40N Paper Residue out

    Aliquot Solution bake

    Dissolved with 1:1 HCl + Heat

    Filter 40N paper

    Residue dry in oven

    Residue Ignite 1000OC

    RS= Initial Wt. Final Wt.

    *200

  • 28

    Sulpher Test: (Coal), ESCHKA Method (IS 1350-P3)

    Coal Grading: Coal is the combination of Organic (Carbon) and Inorganic (Si02, R2O3 etc) material. It is use for heating purpose. Grade A+M % UHV cal/g

    A 6200

    B 19.5-24.0 6200-5600

    C 24.0-28.7 5600-4940

    D 28.7-34.1 4940-4200

    E 34.1-40.2 4200-3360

    F 40.2-47.1 3360-2400

    G 47.1-55.1 2400-1300

    Un-grade >55.1

  • 29

    Indian Standard ReferenceUse in Cement Chemistry

    Cement IS 269:1989 Specification for ordinary Portland cement, 33 grade IS 455:1989- Specification for Portland slag cement IS 1489(Part 1):1991 Specification for Portland pozzolana cement Part 1 Flyash based IS 1489(Part 2):1991 Specification for Portland-pozzolana cement: Part 2 Calcined clay based IS 3466:1988 Specification for masonry cement IS 6452:1989- Specification for high alumina cement for structural use. IS 6909:1990 Specification for super sulphated cement IS 8041:1990 Specification for rapid hardening Portland cement IS 8042:1989 Specification for white Portland cement IS 8043:1991 Specification for hydrophobic Portland cement IS 8112:1989 Specification for 43 grade ordinary Portland (43-S) IS 8229:1986 Specification for oil-well cement. IS 12269:1987 Specification for 53 grade ordinary Portland IS 12269:535 Specification for TRS-T40 grade ordinary Portland IS 12330:1988 Specification for sulphate resisting Portland IS 12600:1989 Specification for low heat Portland cement

    Instrument use in cement analysis IS 12803:1989 Methods of analysis of hydraulic cement by X-ray fluorescence spectrometer. IS 12813:1989 Method of analysis of hydraulic cement by atomic absorption spectrophotometer

    Apparatus use in cement analysis IS 5512:1983 Specification for flow table for use in tests of hydraulic cements and pozzolanic

    materials IS 5513:1996 Specification for vicat apparatus. IS 5514:1996 Specification for apparatus used in Le-Chatelier test IS 5515:1983 Specification for compaction factor apparatus IS 5516:1996 Specification for variable flow type air-permeability apparatus (Blaine type) IS 14345:1996 Specification for autoclave apparatus

    Physical & Chemical Analysis of Cement IS 4031(Part 1):1996 Methods of physical tests for hydraulic cement: Part 1 Determination of

    fineness by dry sieving IS 4031(Part 2):1999 Methods of physical tests for hydraulic cement: Part 2 Determination of

    fineness by specific surface by Blaine air permeability method IS 4031(Part 3):1988 Methods of physical tests for hydraulic cement: Part 3 Determination of

    soundness IS 4031(Part 4):1988 Methods of physical tests for hydraulic cement: Part 4 Determination of

    consistency of standard cement paste IS 4031(Part 5):1988 Methods of physical tests for hydraulic cement: Part 5 Determination of initial

    and final setting times IS 4031(Part 6):1988 Methods of physical tests for hydraulic cement: Part 6 Determination of

    compressive strength of hydraulic cement (other than masonry cement) IS 4031(Part 7):1988 Methods of physical tests for hydraulic cement: Part 7 Determination of

    compressive strength of masonry cement IS 4031(Part 8):1988 Methods of physical tests for hydraulic cement: Part 8 Determination of

    transverse and compressive strength of plastic mortar using prism IS 4031(Part 9):1988 Methods of physical tests for hydraulic cement: Part 9 Determination of heat of

    hydration IS 4031(Part 10):1988 Methods of physical tests for hydraulic cement: Part 10 Determination of

    drying shrinkage

  • 30

    IS 4031(Part 11):1988 Methods of physical tests for hydraulic cement: Part 11 Determination of density

    IS 4031(Part 12):1988 Methods of physical tests for hydraulic cement: Part 12 Determination of air content of hydraulic cement mortar

    IS 4031(Part 13):1988 Methods of physical tests for hydraulic cement: Part 13 Measurement of water retentively of masonry cement

    IS 4031(Part 14):1989 Methods of physical tests for hydraulic cement: Part 14 Determination of false set

    IS 4031(Part 15):1991 Methods of physical test for hydraulic cement: Part 15 Determination of fineness by wet sieving

    IS 4032:1985 Method of chemical analysis of hydraulic cement IS 3535:1986 Methods of sampling hydraulic cement IS 12423:1988 Method for colorimetric analysis of hydraulic IS 4845:1968 Definitions and terminology relating to hydraulic cement. IS 5305:1969 Methods of test for P2O5. Pozzolana material IS 1727:1967 Methods of test for pozzolana materials. IS 12870:1989 Methods of sampling calcined clay pozzolana. IS 3812(Part 1):2003 Specification for pulverized fuel ash Part 1 For use as pozzolana in cement,

    cement mortar and concrete IS 3812(Part 2):2003 Specification for pulverized fuel ash Part 2 For use as admixture in cement

    mortar and concrete IS 6491:1972 Method of sampling fly ash IS 12089:1987 Specification for granulated slag for manufacture of Portland slag cement. Coal IS 1350:1984 (Part-I) Methods of test Proximate analysis IS 1350:1970 (Part-II) Methods of test Calorific value. IS 1350:1969 (Part-III) Methods of test Sulphur analysis IS 1350:1974 (Part-IV) Methods of test Ultimate analysis. IS 1350:1979 (Part-V) Methods of test Special Impurity. Lime stone IS 1760:1991 (Part- I to V) Methods of Chemical Analysis of Limestone. IS 1760 (Part 3):1992 Methods of chemical analysis of limestone, dolomite and alliedmaterials:

    Part 3 Determination of iron oxide, alumina, calcium oxideand magnesia Gypsum IS 1288:1982 Methods of test mineral gypsum. IS 1289:1960 Methods of sampling mineral gypsum IS 1290:1982 Mineral gypsum. Bag IS11652:1986 High density polyethylene (HDPE) woven sacks for packing cement IS 11653:1986 Polypropylene (PP) woven sacks for packing cement IS 12154:1987 Methods of Light weight jute bags for packing cement IS 12174:1987 Jute synthetic union bags for packing cement IS 2580:1995 Methods of Jute sacking bags for packing cement

    Sand and Other IS 169:1966Specification for atmospheric condition for testing. (for Physical Test) IS 397:2003 Statistical Quality Control. IS 460:1962Specification for test sieves. IS 650:1991 Specification for standard sand for testing of cement. IS 456:2000 Code of practice plain and reinforced concrete

  • 31

    IS 712:1964 Hydrated Limes. IS No. Important Point

    IS- 4032

    *The difference between check determinations by EDTA method

    shall not exceed 0.2 percent for calcium oxide and magnesia, 0.15, 0.2 percent for

    silicaand alumina, and 0.1 percent for other constituents.

    *The maximum acceptable difference in the percentage of each alkali

    Between the lowest and highest value obtained shall be 0.04.

    IS- 4031-P1

    * Check the sieve after every 100 sieving

    * EXPRESSION OF RESULTS

    Report the value of R, to the nearest 0. I percent, as the residue on the 90 pm

    sieve for the cement tested.

    The standard deviation of the repeatability is about 0.2 percent and of the

    reproducibility is about 0.3 percent.

    IS- 4031-P2

    The cement bed volume and the apparatus constant shall be recalibrated with

    the reference cement: a) after 1 000 tests, b) In the case of using:-another type of

    manometer fluid, another type of filter paper, anda new manometer tube; and c)

    at systematic deviations of the secondaryreference cement.

    IS- 4031-P3

    IS- 4031-P4

    IS- 4031-P5

  • 32

    Bag Testing:

    Mass

    75

    Leng

    th

    74

    Widt

    h

    48

    Stitc

    hes

    14

    Ends

    40

    Picks

    40

    Effective

    valve Size

    (10 x 22)

    Seepage of

    Cement

    Strength in KGF

    Fabric Seam

    (Gms

    ) (Cm) (Cm)

    Per

    Dm

    Per

    Dm

    Per

    Dm (Cm)

    MAX-100 (Gms/Ba

    g) Warp

    Way

    87

    Warp

    Elongations

    %

    Weft

    Way

    87

    Weft

    Elongations

    %

    Top/

    Bottom

    40

    69.0 74.0 48.5 14 39.00 39.0 11.0 22.50 55.0 89.1 21.0 86.1 21.0 42.0

    = CaCO3 Maximum = 8.00% + 1.00%

    Important Note.

    = In PPC Cement Fly ash use not less than 15% and not more than 35% =In PSC Cement Slag use not less than 25% and not more than 70% = Endothermic reaction occurs in kiln & Pre heater. = Exothermic reaction occurs in bomb calorimeter. = Coal analysis sample size is (pass 212) -212 micron. = 3.14 density of Portland cement. = Di butyl thylate use in manometer (Blain apparatus) due to low density &viscosity, non volatile, non hygroscopic liquid. (Air Permeability test).

    = In CST, Cube Breaking Speed 35 N/mm2 or 2.9 Kn/s (only For Cube Size 70.5mm) = During the calibration of CST/Balance maintain 272 or slandered equipment calibrated temperature, otherwise use factor K= 0.027% with obtained value. = Cement Expired as per BIS,in Bag 3 month and in bulk 6 months. (IS-8112) = purity of gypsum = CaSO4/ SO3 = 172/80 = 2.15(factor) = 1.6 ton CO2 generate in 1 ton clinker Production. = 1.8 GJ/t Energy consumed for 1 ton clinker production in 6 stage Pre heater. = Chromic Acid use forwashing glass ware. (10gm K2Cr2O7 + 200 ml H2SO4) K2Cr2O7 + 4 H2SO4 K2SO4+ Cr2(SO4)3+4 H2O + 3O

    X-ray: = n= 2d sin (n= number of wave, = wave length, d= distance two layer, sin= angle of wave)

    When bombarding of cathode ray on high melting point metal than reflected ray is called X ray.

    = C3S + H2O CSH + Ca (OH)2 + Fly ash CSH

    References:-(http://iti.northwestern.edu/cement/monograph/Monograph1_4.html) (http://www.understanding-cement.com/parameters.html) *Cement_Data_Book_Duda_III edition. * IS book 1727,3812,4031,4032,1350. * jaypee cement testing manual. * Taylor cement chemistry. Note: writer not responsible for any mistake.

  • 33

    Thank you.............