Cellular Theses

Embed Size (px)

Citation preview

  • 7/27/2019 Cellular Theses

    1/215

    Master thesis

    CELLULAR BEAM-COLUMNS

    IN

    PORTAL FRAME STRUCTURES

    J.G. VerweijNovember 2010

  • 7/27/2019 Cellular Theses

    2/215

  • 7/27/2019 Cellular Theses

    3/215

    Master thesis

    CELLULAR BEAM-COLUMNS

    IN

    PORTAL FRAME STRUCTURES

    Thesiscommittee:

    Chairman

    Prof.Ir.F.S.K.Bijlaard,SectionSteel andTimberStructures

    Committeemembers

    Dr.A.Romeijn,SectionSteel andTimberStructures

    Ir.R.Abspoel,SectionSteel andTimberStructures

    Dr.Ir.P.C.J.Hoogenboom,SectionStructuralMechanics

    Ir.L.J.M.Houben,SectionRoadandRailwayEngineering

    Externalcommitteemember

    Dr.O.Vassart,ArcelorMittalR&D

    J.G.Verweij

    1155482

    DelftUniversityofTechnology

    CivilEngineering

    SectionSteelandTimberStructures

    November2010

  • 7/27/2019 Cellular Theses

    4/215

  • 7/27/2019 Cellular Theses

    5/215

    Preface 5

    PREFACE

    Thepresentdocumentformsthefinalreport

    ofmyMasterThesisProjectentitledCellular

    beamcolumnsinportalframestructures.This

    MasterThesishasbeencarriedoutasbeing

    partoftheMastersdegreeprogrammein

    CivilEngineering,SectionSteelandTimber

    Structures,atDelftUniversityofTechnology.

    Althoughinthepastalreadyalargedealof

    researchwasperformedintothesubjectofthe

    behaviourof(non)compositecellularbeams,

    almostnoattentionhasbeenpaidtotheapplicationofcellularmembersascolumns.

    Especiallytheuseinportalframestructures

    seemsattractiveforreasonsofaestheticsand

    thereforetheinvestigationofitsstructural

    behaviourisrelevant.Forthatreasonthe

    presentworkisdevotedtotheresearchofthe

    behaviourofcellularbeamcolumns.

    Partsofthisresearchhavebeenperformed

    whilebeingincompany.First,attheresearchdepartmentofArcelorMittalinEschsur

    Alzette,Luxembourg,whichenabledmeto

    makeuseoftheirknowledgeandsoftware.Second,attheofficeofIBTIngenieursin

    Bouwtechniek afirmofconsulting

    engineersinVeenendaal,TheNetherlands,

    thelastperiodwhilebeingonafulltime

    contractalready.

    IwouldliketothankrespectivelyDr.O.

    VassartandIr.A.vantLandfortheir

    willingnesstoprovidemethesefacilities.

    Moreover,Iwouldliketoexpressmygratitudetotheotherpersonsofthethesis

    committee:Prof.Ir.F.S.K.Bijlaard,Dr.A.

    Romeijn,Ir.R.AbspoelandDr.Ir.P.C.J.

    Hoogenboom.

    Finally,thanksgotoallwhohavesupported

    meatanytime,atanyplaceduringmy

    studiesatDelftUniversityofTechnology.

    Ede,November

    2010

    J.G.Verweij

  • 7/27/2019 Cellular Theses

    6/215

  • 7/27/2019 Cellular Theses

    7/215

    Tableofcontents 7

    TABLE OF CONTENTS

    PREFACE.......................................................... ........................................................... ..................................................... 5

    1 INTRODUCTION ................................................... ........................................................... ............................... 15

    1.1 MOTIVATION .................................................. ........................................................... ............................... 15

    1.2 OBJECTIVES ..................................................... ........................................................... ............................... 15

    1.3 SCOPE.................................................... ........................................................... ......................................... 15

    1.4 LIMITATIONS................................................... ........................................................... ............................... 16

    1.5 OUTLINE ......................................................... ........................................................... ............................... 16

    PARTI LITERATURESTUDY ......................................................... ........................................................... ............ 19

    2 INTRODUCTIONTOCELLULARBEAMCOLUMNS....................................................... ..................... 21

    2.1 OPEN

    WEB

    SECTIONS.......................................................... ........................................................... ........... 212.2 PRODUCTIONMETHODS ..................................................... ........................................................... ........... 21

    2.3 APPLICATIONAREA.................................................. ........................................................... ..................... 23

    2.4 CURRENTRESEARCHSTATUS ....................................................... ........................................................... . 26

    2.5 FUTUREDESIGNDEVELOPMENT................................................... ........................................................... . 32

    2.6 ADVANTAGESANDDISADVANTAGES.................................................... .................................................. 32

    3 MECHANICALBEHAVIOUROFBEAMSWITHWEBOPENINGS ............................................... ..... 33

    3.1 INTRODUCTION ........................................................ ........................................................... ..................... 33

    3.2 GLOBALBENDINGANDSHEAR..................................................... ........................................................... . 33

    3.3 LATERALTORSIONALBUCKLING ........................................................... .................................................. 34

    3.4 WEBPOSTFAILUREMECHANISMS ......................................................... .................................................. 35

    3.5 ADDITIONALFAILUREMODES...................................................... ........................................................... . 36

    3.6 SERVICEABILITYPERFORMANCE................................................... ........................................................... . 36

    3.7 BEHAVIOURATELEVATEDTEMPERATURE...................................................... ......................................... 37

    3.8 SUMMARYOFFAILUREMECHANISMS .................................................... .................................................. 37

    4 DESIGNMETHODSFORCELLULARBEAMS.......................................................... ............................... 39

    4.1 INTRODUCTION ........................................................ ........................................................... ..................... 39

    4.2 LWODESIGNMETHOD....................................................... ........................................................... ........... 39

    4.2.1 INTRODUCTION...................................................... ........................................................... ........... 39

    4.2.2 SECTIONCLASSIFICATION.......................................................... .................................................. 40

    4.2.3 GLOBALBENDINGRESISTANCE .......................................................... ......................................... 41

    4.2.4 SHEARRESISTANCE.......................................................... ........................................................... . 41

    4.2.5 SHEARBUCKLINGCAPACITY ..................................................... .................................................. 43

    4.2.6 VIERENDEELBENDINGRESISTANCE ................................................... ......................................... 43

    4.2.7 BENDINGRESISTANCEOFTEES ........................................................... ......................................... 44

    4.2.8 INTERACTIONWITHNORMALFORCE ........................................................... ............................... 45

    4.2.9 WEBPOSTHORIZONTALSHEAR ......................................................... ......................................... 45

    4.2.10 WEBPOSTBUCKLING..................................................... ........................................................... . 45

    4.2.11 PATTERNLOADING........................................................ ........................................................... . 47

    4.2.12 SERVICEABILITYBEHAVIOUR ................................................... .................................................. 47

    4.2.13 STIFFENERREQUIREMENTS ...................................................... .................................................. 48

    4.2.14 GEOMETRICALLIMITATIONS ................................................... .................................................. 49

    4.2.15 GENERALDESIGNCONSIDERATIONS.......................................................... ............................... 49

    4.2.16 SOFTWARETOOL ............................................................ ........................................................... . 51

    4.3 BACKGROUNDSOFTHEACBPROGRAM ......................................................... ......................................... 51

  • 7/27/2019 Cellular Theses

    8/215

    8 Tableofcontents

    4.3.1 INTRODUCTION...................................................... ........................................................... ........... 51

    4.3.2 VIERENDEELBENDING..................................................... ........................................................... . 51

    4.3.3 LATERALTORSIONALBUCKLING ....................................................... ......................................... 52

    4.3.4 WEBPOSTBUCKLING....................................................... ........................................................... . 52

    4.3.5

    SERVICEABILITY

    BEHAVIOUR ..................................................... .................................................. 54

    4.4 COMPLEMENTARYUSAGE ............................................................ ........................................................... . 55

    5 PORTALFRAMEDESIGNACCORDINGTOTHEEUROCODES....................... ................................ 57

    5.1 INTRODUCTION ........................................................ ........................................................... ..................... 57

    5.2 STANDARDS .................................................... ........................................................... ............................... 57

    5.2.1 INTRODUCTION...................................................... ........................................................... ........... 57

    5.2.2 DUTCHTGB1990SERIES ........................................................... .................................................. 57

    5.2.3 HONGKONGSTEELCODE ........................................................ .................................................. 57

    5.3 GLOBALANALYSIS.................................................... ........................................................... ..................... 58

    5.3.1 INTRODUCTION...................................................... ........................................................... ........... 58

    5.3.2 GEOMETRICALNONLINEARITY ......................................................... ......................................... 58

    5.3.3 MATERIALNONLINEARITY....................................................... .................................................. 59

    5.3.4 IMPERFECTIONS...................................................... ........................................................... ........... 60

    5.3.5 STRUCTURALSTABILITY................................................... ........................................................... . 62

    5.4 DESIGNOFBEAMCOLUMNS......................................................... ........................................................... . 64

    5.4.1 CROSSSECTIONALRESISTANCE.......................................................... ......................................... 64

    5.4.2 BUCKLINGRESISTANCE.................................................... ........................................................... . 65

    5.5 NONUNIFORMMEMBERS................................................... ........................................................... ........... 71

    5.6 CONCLUSION.................................................. ........................................................... ............................... 73

    PARTIINUMERICALRESEARCH ............................................................... ....................................................... 75

    6 INTRODUCTION ................................................... ........................................................... ............................... 77

    7 DESCRIPTIONOFTHEFINITEELEMENTSOFTWAREANDTOOLS ............................................. 79

    7.1 INTRODUCTION ........................................................ ........................................................... ..................... 79

    7.2 FINITEELEMENTSOFTWARESAFIR............... ........................................................... ............................... 79

    7.2.1 CAPABILITIESANDPROGRAMSTRUCTURE ................................................... ............................... 79

    7.2.2 ELEMENTTYPES ..................................................... ........................................................... ........... 82

    7.2.3 MATERIALLAWS.................................................... ........................................................... ........... 84

    7.2.4 SAFIRSHELL........................................................... ........................................................... ........... 84

    7.3 PREPROCESSORS ...................................................... ........................................................... ..................... 84

    7.3.1 INTRODUCTION...................................................... ........................................................... ........... 84

    7.3.2 CRYSTALPRO......................................................... ........................................................... ........... 84

    7.3.3 MAILLEURPORTIQUE ...................................................... ........................................................... . 867.4 POSTPROCESSORDIAMOND ........................................................ ........................................................... . 86

    8 GLOBALBUCKLINGOFCELLULARMEMBERS..................................................... ............................... 87

    8.1 INTRODUCTION ........................................................ ........................................................... ..................... 87

    8.2 THEORETICALANALYSIS .................................................... ........................................................... ........... 87

    8.3 FINITEELEMENTMODEL..................................................... ........................................................... ........... 89

    8.3.1 INTRODUCTION...................................................... ........................................................... ........... 89

    8.3.2 SUPPORTCONDITIONS ..................................................... ........................................................... . 89

    8.3.3 USEOFIMPERFECTIONS ................................................... ........................................................... . 91

    8.3.4 LOADAPPLICATION......................................................... ........................................................... . 94

    8.4 PARAMETERSTUDY .................................................. ........................................................... ..................... 948.4.1 SETUP .......................................................... ........................................................... ..................... 94

    8.4.2 BASEPROFILEIPE140 ...................................................... ........................................................... . 98

  • 7/27/2019 Cellular Theses

    9/215

    Tableofcontents 9

    8.4.3 BASEPROFILEIPE330 ...................................................... .......................................................... 101

    8.4.4 BASEPROFILEIPE600 ...................................................... .......................................................... 103

    8.4.5 BASEPROFILEHE200A.................................................... .......................................................... 107

    8.4.6 BASEPROFILEHE650M................................................... .......................................................... 107

    8.5

    CONCLUSION

    .................................................. ........................................................... ............................. 108

    9 WEBPOSTBUCKLINGINCOMPRESSEDCELLULARMEMBERS ................................................. 111

    9.1 INTRODUCTION ........................................................ ........................................................... ................... 111

    9.2 THEORETICALANALYSIS .................................................... ........................................................... ......... 111

    9.2.1 LWOMODEL ......................................................... ........................................................... ......... 111

    9.2.2 ARCELORSMODEL .......................................................... .......................................................... 112

    9.2.3 COMPARISONANDCONCLUSION....................................................... ....................................... 113

    9.3 FINITEELEMENTMODEL..................................................... ........................................................... ......... 114

    9.3.1 INTRODUCTION...................................................... ........................................................... ......... 114

    9.3.2 SUPPORTCONDITIONS ..................................................... .......................................................... 114

    9.3.3 USEOFIMPERFECTIONS ................................................... .......................................................... 115

    9.3.4 LOADAPPLICATION......................................................... .......................................................... 115

    9.4 PARAMETERSTUDY .................................................. ........................................................... ................... 115

    9.4.1 SETUP .......................................................... ........................................................... ................... 115

    9.4.2 BASEPROFILEIPE140 ...................................................... .......................................................... 117

    9.4.3 BASEPROFILEIPE330 ...................................................... .......................................................... 118

    9.4.4 BASEPROFILEIPE600 ...................................................... .......................................................... 120

    9.4.5 BASEPROFILEHE200A.................................................... .......................................................... 122

    9.4.6 BASEPROFILEHE650M................................................... .......................................................... 123

    9.5 CONCLUSION.................................................. ........................................................... ............................. 125

    PARTIIICASESTUDY......................................................... ........................................................... ...................... 127

    10 PORTALFRAMESTRUCTURESUSINGCELLULARMEMBERS...................................................... 129

    10.1 INTRODUCTION ........................................................ ........................................................... ................... 129

    10.2 DESIGNUSINGTHELWOMETHOD........................................................ ................................................ 129

    10.2.1 STRUCTUREOFTHEEXCELTOOL...................................................... ....................................... 129

    10.2.2 ANALYSISPROCEDURE ............................................................ ................................................ 129

    10.3 DESIGNUSINGFEAINSAFIR ..................................................... .......................................................... 133

    10.3.1 INTRODUCTION.................................................... ........................................................... ......... 133

    10.3.2 SECONDORDERNONLINEARINPLANEANALYSISWITH2DBEAMELEMENTS ....................133

    10.3.3 SECONDORDERNONLINEAR3DFINITEELEMENTANALYSISWITHSHELLELEMENTS......... 134

    10.4 CASESTUDY .................................................... ........................................................... ............................. 135

    10.4.1 STRUCTURALSYSTEM..................................................... .......................................................... 13510.4.2 LOADCASE1:DISTRIBUTEDVERTICALLOAD ....................................................... ................... 135

    10.4.3 LOADCASE2:HORIZONTALPOINTLOADS .......................................................... ................... 136

    10.4.4 LOADCASE3:COMBINATIONOFBOTHVERTICALANDHORIZONTALPOINTLOAD .............. 138

    10.5 CONCLUSION.................................................. ........................................................... ............................. 139

    11 CONCLUSIONSANDRECOMMENDATIONS......................................................... ............................. 141

    11.1 INTRODUCTION ........................................................ ........................................................... ................... 141

    11.2 CONCLUSIONS .......................................................... ........................................................... ................... 141

    11.3 RECOMMENDATIONS.......................................................... ........................................................... ......... 142

    REFERENCES .................................................. ........................................................... ................................................. 143

    ANNEXES ........................................................ ........................................................... ................................................. 151

    A EUROPEANSTANDARDS....................................................... ........................................................... ......... 153

  • 7/27/2019 Cellular Theses

    10/215

    10 Tableofcontents

    A.1 INTRODUCTION ........................................................ ........................................................... ................... 153

    A.2 EUROCODE3:PART11 ...................................................... ........................................................... ......... 154

    A.3 EUROCODE3:PART15 ...................................................... ........................................................... ......... 154

    B FEMRESULTSOFPARAMETERSTUDYINTOGLOBALBUCKLING............................................ 157

    B.1 INTRODUCTION ........................................................ ........................................................... ................... 157

    B.2 BASEPROFILEIPE140......................................................... ........................................................... ......... 157

    B.2.1 BUCKLINGABOUTTHEWEAKAXIS .................................................... ....................................... 157

    B.2.2 BUCKLINGABOUTTHESTRONGAXIS ........................................................... ............................. 160

    B.3 BASEPROFILEIPE330......................................................... ........................................................... ......... 164

    B.3.1 BUCKLINGABOUTTHEWEAKAXIS .................................................... ....................................... 164

    B.3.2 BUCKLINGABOUTTHESTRONGAXIS ........................................................... ............................. 168

    B.4 BASEPROFILEIPE600......................................................... ........................................................... ......... 171

    B.4.1 BUCKLINGABOUTTHEWEAKAXIS .................................................... ....................................... 171

    B.4.2 BUCKLINGABOUTTHESTRONGAXIS ........................................................... ............................. 175

    B.5 BASEPROFILEHE200A ...................................................... ........................................................... ......... 178

    B.5.1 BUCKLINGABOUTTHEWEAKAXIS .................................................... ....................................... 178

    B.5.2 BUCKLINGABOUTTHESTRONGAXIS ........................................................... ............................. 181

    B.6 BASEPROFILEHE650M...................................................... ........................................................... ......... 185

    B.6.1 BUCKLINGABOUTTHEWEAKAXIS .................................................... ....................................... 185

    B.6.2 BUCKLINGABOUTTHESTRONGAXIS ........................................................... ............................. 188

    C FEMRESULTSOFPARAMETERSTUDYINTOWEBPOSTBUCKLING........................................ 191

    C.1 INTRODUCTION ........................................................ ........................................................... ................... 191

    C.1.1 ARCELORMODELFORWEBPOSTBUCKLING ......................................................... ................... 191

    C.1.2 ARCELORMODELFORVIERENDEELBENDING ...................................................... ................... 193

    C.1.3 LWOMODELFORBOTHWEBPOSTBUCKLINGANDVIERENDEELBENDING........................... 196

    C.2 BASEPROFILEIPE140......................................................... ........................................................... ......... 198

    C.2.1 WEBPOSTWIDTHS0=50MM.................................................... ................................................ 198

    C.2.2 WEBPOSTWIDTHS0=100MM........................................................... ....................................... 199

    C.3 BASEPROFILEIPE330......................................................... ........................................................... ......... 200

    C.3.1 WEBPOSTWIDTHS0=50MM.................................................... ................................................ 200

    C.3.2 WEBPOSTWIDTHS0=100MM........................................................... ....................................... 201

    C.4 BASEPROFILEIPE600......................................................... ........................................................... ......... 202

    C.4.1 WEBPOSTWIDTHS0=62MM.................................................... ................................................ 202

    C.4.2 WEBPOSTWIDTHS0=124MM........................................................... ....................................... 203

    C.5 BASEPROFILEHE200A ...................................................... ........................................................... ......... 204

    C.5.1 WEBPOSTWIDTHS0=50MM.................................................... ................................................ 204

    C.5.2 WEBPOSTWIDTHS0=100MM........................................................... ....................................... 205C.6 BASEPROFILEHE650M...................................................... ........................................................... ......... 206

    C.6.1 WEBPOSTWIDTHS0=70MM.................................................... ................................................ 206

    C.6.2 WEBPOSTWIDTHS0=140MM........................................................... ....................................... 207

    D LISTOFCONTENTSDATADVD ................................................... .......................................................... 209

    E ARCELORPROFILLUXEMBOURG....................................... ........................................................... ......... 211

    F IBTINGENIEURSINBOUWTECHNIEK .......................................................... ....................................... 213

    G ADDRESSES .................................................. ........................................................... ....................................... 215

  • 7/27/2019 Cellular Theses

    11/215

    Listofsymbols 11

    LIST OF SYMBOLS

    Thefollowingsymbolsareusedthroughoutthisreport.Someofthesearedifferentfromthatare

    usedinthereferredpublicationsinordertopreventmisunderstandings.Furthermorenotethatthesubscripttisusedthroughoutthisreport,whenaformulaappliestoboththebottomandtoptee.

    Thesubscript referstopropertiesorforcesactingonaninclinedsection.Additionalsymbolsare

    definedwheretheyfirstoccur.

    a throatthicknessofthefilletweld

    fA crosssectionalareaoftheflange

    sA crosssectionalareaofahorizontalstiffener

    bA crosssectionalareaofthebottomtee

    tA crosssectionalareaofthe(top)tee

    wA crosssectionalareaoftheweb

    vA shearareaofanunperforatedsection

    v ,oA shearareaofaperforatedsection

    v, tA shearareaofateesection

    b flangewidth

    w shearbucklingfactorforcontributionoftheweb

    add additionaldeflectionduetoasingleopeningatpositionx

    b purebendingdeflectionofthebeam

    sw deflectionduetopermanentloads

    od depth(ordiameter)ofawebopening

    bd b fh t ,depthofthewebofthebotto= mtee

    b, effd effectivedepthofthewebofthebottomtee(tomeetclassificationlimits)

    td t fdistanceofthecriticalsectionfromthejointbetweenthetwohalfposts

    h t= ,depthofthewebofthe(top)tee

    wd

    y235 with f in

    2N / m m ,coefficientforsecti/ f= onclassificationy

    modifiedcoefficientforsectionclassification(toallowfortheeffectofaxialtension)1 *e equivalentgeometricalimperfection

    se offsetdistanceofcentreofstiffenerfromtipoftheweb

    E elasticmodulusofsteel

    fM0

    naturalfrequency partialfactorforresistanceofcrosssections

    M1 partialfactorforresistanceofmemberstoinstabilityassistedbymemberchecks shapefactorforsheararea

    h heightofthesection

    bh depthofthebottomtee

    th depthofthe(top)tee

    wh depthofthewebofthesection

    i radiusofgyration

    angle(ofinclinedsectiontotheverticalthroughthehole)

    vwf designshearstrengthofafilletweld

    yf yieldstrengthofsteel

  • 7/27/2019 Cellular Theses

    12/215

    12 Listofsymbols

    y,redf reducedyieldstrengthtoaccountforhighshearforce

    r

    ss

    ysf yieldstrengthofstiffener

    ywf designstrengthoftheweld

    s,

    s

    EdF designaxialforceinstiffene

    ,RdF axialresistanceofstiffener

    ok modificationfactorforthedeflectionforlongopenings

    slendernessofwebpost

    1 slendernessvaluetodeterminetherelativeslenderne nondimensional(relative)slendernessofwebpost

    ectionclassification)

    ndingmomentresistancedueto

    post

    ions

    gs

    localshearstress

    t ced

    fM criticalsection

    e

    o

    A effectivelengthofwebpostforwebpostbuckling

    actuallengthofopeningA

    o ,

    v ,

    effA effectivelengthofopeningforstabilityoftheweb(s

    effA effectivelengthofopeningforVierendeelbending

    w,effA

    effectivelengthofwebpostforwebpostbucklingw

    A widthofthewebpostatthecriticalsectionlocation

    L lengthofthebeam

    n numberofsidesofthestiffener(singlesidedstiffener:1,doublesidedstiffener:2)

    numberofopeningsalongthebeamoN

    shearutilisationfactor(todeterminethereducedbehighshearforce)

    actingonthewebc (design)compressivestress

    c,Rd designcompressivestrengthofthewebpost

    w,Rd principalstressresistance

    ctw,Sd principalcompressivestressatthecriticalseings centretocentrespacingofadjacentopen

    inos edgetoedgespacingofadjacentopen

    openingtobeamendes enddistancefrom

    Ed designvalueofthe

    sft flangethicknes

    st stiffenerthickness

    wt webthickness

    w,eff effectivewebthickness,redu

    EdM designbendingmoment

    hM webpostbendingmoment

    h ,eM elasticbendingresistanceofthewebpost

    theh,ef effectivewebpostbendingmoment,actingat

    pl,tM plasticbendingmomentresistanceofthetoptee

    bM bendingmomentresistanceofthebottomtee

    b, redM reducedbendingmomentresistanceofthebottomtee(duetoaxialandshearforce)

    fthe(top)tee

    entresistanceofthetoptee(duetoaxialandshearforce)tM bendingmomentresistanceo

    t,redM reducedbendingmom

    vM appliedVierendeelmoment

    EdN

    designnormal

    force

    bN normalforceinbottomtee

    tN normalforcein(top)tee

  • 7/27/2019 Cellular Theses

    13/215

    Listofsymbols 13

    pl,tN plasticnormalforceresistanceofatee

    pl,fN plasticnormalforceresistanceoftheflange

    b, RdV shearbucklingcapacity

    bw, RdV contributionofthewebtotheshearbucklingcapacity

    bw, o, RdV contributionofthewebtotheshearbucklingcapacityofaperforatedweb

    EdV designshearforce

    bV shearforceinbottomtee

    tV shearforcein(top)tee

    hV horizontalshearforceinthewebpost

    h,RdV shearresistanceofthewebpost

    pl,RdV plasticshearresistanceofunperforatedsection

    hW sectionmodulusofthewebpostatthecriticalsectionlocation

    elasticneutraldepthofteefromouteredgeofflange

    plasticneutraldepthofteefromouteredgeofflange

    ey

    py

  • 7/27/2019 Cellular Theses

    14/215

  • 7/27/2019 Cellular Theses

    15/215

    Introduction 15

    1 INTRODUCTION

    1.1 Motivation

    CellularmemberssteelIshapedstructuralelementswithcircularwebopeningsat

    regularintervalshavebeenusedasbeams

    formorethan30yearsnow.However,in

    certaincountries,liketheNetherlandsand

    Belgium,applicationseemstolackbehind.

    Thiscanprobablybeattributedtoacombi

    nationoffactors:unfamiliaritywiththese

    beams,thepresentconcretemindedpractise

    formultistoreybuildings,andalackof

    localiseddesignguides.

    Althoughcellularcolumnsarelesscommon,

    examplesareavailable.However,inresearch

    publicationsnoattentionispaidtothistopic.

    Structuralengineersthereforehavetobase

    theirdesignsonsimplifiedmethodsof

    analysisandgoodengineeringjudgement.

    Inordertoexploitthefullcapacityofcellular

    columnsasoundbasisisneededandthusa

    desireexistsforamorerefinedapproach.

    Thesubjectofcellularmemberscametomy

    attentionmainlybecauseoftworeasons.

    Firstly,anopenthesissubjectwasavailable

    forresearchingthepossibilityofusingplate

    girderswithcircularopeningsinbridges.

    Secondly,atthefirmofconsultingengineers

    whereIdidmyworkplacement,Ingenieurs

    burovoorBouwtechniek,theyonceapplied

    cellularcolumnsinacarshowroom.Becauseofalackofexistingdesignguidance,

    theyhadtofindtheirownwayinmakingthe

    calculations.Admittedlythesewerequite

    conservative.Knowingthis,Ithoughtittobe

    worthwhiletogetamorerefinedpredictionof

    thecapacityofthesemembers.

    Inmysearchforinformationonthesubjectof

    cellularmembersIcontactedIr.J.Naessens

    fromtheStaalinfocentruminBelgium.

    Headvisedmetogetintouchwithsome

    peoplewithinArcelorMittal,aworldwideoperatingsteelcompany.Thisresultedinan

    invitationtocometotheirresearch

    departmentinEschsurAlzette,Luxembourg.

    Itwasaconsiderationofparticularinterest

    thattomakereliablepredictionsbasedwith

    FEMcalculations,realtestdataisneededfor

    calibratingthemodels.Becausethesetest

    resultsareconfidential,andthecalculation

    modeltobeproposedneedstobeverified,itwasdecidedthatitwouldbebesttocarryout

    apartoftheresearchworkatArcelorMittals

    offices.

    1.2 Objectives

    Theobjectivesofthisresearcharetwofold:

    toinvestigatethebehaviourofcellularmembersunderaxialload

    todevelopasuitableandeasytouse

    calculationmethodforportalframesusingcellularbeamsandcolumns

    1.3 Scope

    Thepresentinvestigationdealswiththe

    behaviourofasinglebaypitchedroofportal

    frameusingcellularbeamcolumns.Although

    someapplicationexamplesareavailable

    wherecellularmembershavebeenusedas

    columnsandinportalframestructures,no

    guidanceexistsforthedesignofthese.Furthermoreexperimentalandnumericaltest

    evidencelacksandthedesignexperienceis

    limitedtothesellerstechnicalassistance.

    Theuseofcellularbeamsinportalframe

    structureshasbeenrecognisedasatopicof

    interestwithinArcelorMittalalready,but

    workonaprojecttoinvestigateitsbehaviour

    andapplicationpossibilitieswaspostponed

    duetoashiftinresearchpriorities.

  • 7/27/2019 Cellular Theses

    16/215

    16 Introduction

    Inthisresearchasimpleandstraightforward

    calculationmethodforportalframes

    consistingofcellularbeamcolumnshasbeen

    developedandimplementedinMicrosoft

    ExcelusingVisualBasicforApplications.

    Firsttheliteraturestudydiscussesexisting

    designmethodsforcellularbeamsandfor

    portalframes.Inthesubsequentnumerical

    researchcellularcolumnbehaviourhasbeen

    studiedinordertorevealpossibledifferences

    withthatofplainwebbedsections.3Dfinite

    elementportalframeanalyseswerecarried

    outtoverifyboththeproposedcalculation

    methodanditsimplementation.Finallythecalculationmethodhasbeenappliedtoa

    portalframestructureusingcellularmembers,

    andtheresultshavebeencomparedwith3D

    finiteelementcalculations.

    1.4 Limitations

    Thisstudyislimitedtothestudyofthe

    structuralbehaviourofcellularbeams

    columnsincoldsituationonly(normal

    temperaturerange,notinfireconditions).Furthermorethefollowinglimitationshold:

    onlysymmetricalsections nocompositedesign nocurvedbeams notaperedbeamsandcolumns onlycircularandelongatedwebpost

    openingsarecovered

    Thelastlimitisbasedonthemostcommon

    fabricationprocessandtheexpectedreasonof

    application:aesthetics.

    1.5 Outline

    Thepresentreportisdividedintothreeparts,

    eachsubdividedinanumbersofchapters.

    PARTILITERATURESTUDY

    Chapter2givesageneralintroductionto

    cellularbeamcolumnswithinformationon

    productionmethods,applicationareaandthecurrentstateoftheartinresearch.

    Chapter3paysattentiontothevariousfailure

    mechanismsthatmightoccurforbeamswith

    webholes.Theinteractionbetweenbending

    momentandshearforcearoundweb

    openingsisdiscussedqualitatively,andtheadditionalpossiblefailuremodesthatare

    introducedbythepresenceofwebholesare

    presented.Furthermoretheserviceability

    behaviourisdealtwith.

    Chapter4addressesexistingcalculation

    methodsforcellularbeams.Theadditional

    checksrequiredforbeamswithregularweb

    openingsarepresented.

    ThereaftertheapproachasdevelopedintheECSCprojectLargewebopeningsforservice

    integrationincompositeconstructionis

    comparedwiththetheoreticalbackgroundsof

    thededicatedcomputerprogramARCELOR

    CellularBeams.

    Thetreatmentofthesebothmethodshasbeen

    limitedtothecaseofnoncompositesimply

    supportedcellularbeams,whereofthe

    openingsareplacedatthecentreline.

    Chapter5dealswiththeEurocoderegulations

    forthestructuraldesignofpitchedroofportal

    frames.Itdiscusseshowbothmaterialand

    geometricalnonlinearityaredealtwith,both

    onaglobalandalocallevel.Furthermorethe

    rulesthatrelatetononuniformmembersare

    explained.

    PARTIINUMERICALRESEARCH

    Chapter6introducesthesecondpartofthis

    report,namelythenumericalinvestigation

    intothestructuralbehaviourofcellularbeam

    columns.

    Chapter7firstexplainsthebackgroundsof

    thespecialisedfiniteelementcodeSAFIRthat

    hasbeenusedthroughouttheresearch,

    followedbyadiscussionoftheaccompanying

    toolsneededforpre andpostprocessingtheresults.

  • 7/27/2019 Cellular Theses

    17/215

    Introduction 17

    Chapter8givesadetaileddescriptionofthe

    studyofglobalflexuralbucklingofcellular

    members,madeinordertoconfirmthe

    theoreticalresultsacquiredintheliterature

    study.Afteranelaborateexplanationofthesetupoftheparameterstudyperformed,its

    resultsarepresentedanddiscussed.From

    theseitisconcludedthattheproposed

    simplifiedrulefordeterminingtheflexural

    bucklingcapacityofcellularcolumnscanbe

    appliedsafely.

    Chapter9presentstheresultsofanother

    parameterstudyintowebpostbucklingof

    cellularbeamcolumnswhileloadedinaxialcompression.Theimplicationsonboththe

    LWOmodelandArcelorsownmodelfor

    webpostbucklingarefirstanalysed

    analytically,andthesetheoreticalresultsare

    validatedagainsttheresultsofthefinite

    elementparameterstudy.

    PARTIIICASESTUDY

    Chapter10illustratestheknowledgegainedinthepreviousparts.TheLWOmethodis

    appliedtothedesignofportalframesusing

    cellularmembers.Thereforeadesigntoolis

    developedinMicrosoftExcelusingVBA.

    Fordifferentloadcases,thepredictedfailure

    behaviouriscomparedwith2Dand3Dfinite

    elementanalyses,andtheExceltool

    developedisfoundtodeliversaferesults.

    Finallychapter11summarizestheconclusionsthatcanbedrawnfromtheresearchper

    formed,andgivesrecommendationsfor

    furtherresearch.

    Thereportisconcludedbyalistofreferences

    andanumberofannexes,givingsome

    backgroundsontheEuropeanstandardsas

    appliedinthisresearchandmoredetailed

    resultsofthebothparameterstudies.

    Furthermoreadatadvdisattachedtothereportwhichcontainsallanalysisdataandthe

    spreadsheetsandsoftwarethathasbeenused.

  • 7/27/2019 Cellular Theses

    18/215

  • 7/27/2019 Cellular Theses

    19/215

    Literaturestudy 19

    PART I-

    LITERATURE STUDY

  • 7/27/2019 Cellular Theses

    20/215

  • 7/27/2019 Cellular Theses

    21/215

    Literaturestudy 21

    2 INTRODUCTION TO CELLULAR BEAM-COLUMNS

    2.1 Open-web sections

    Cellularbeamcolumnsshortlycellularbeamsbelongtothelargergroupofsteel

    sectionswithwebopenings,thuscreatinga

    highermomentofinertiatoweightratio.

    Whenusedasfloorbeams,openwebsections

    ontheirturnareapartofthegroupoffloor

    systemswhichprovideameanstoincorporate

    buildingserviceswithinthestructuraldepth

    ofthefloor.Basicallyspeakingtwooptions

    existforhighlyservicedofficebuildings:

    eitherminimisethestructuralzonesothatthebuildingservicescanpassbeneath,or

    integratethestructuralmembersandthe

    buildingserviceswithinthesamehorizontal

    zone[Chung2002].

    Integratedfloorsystemscompriseamongst

    othersfabricatedbeamswithtaperedwebs,

    haunchedbeams,trusses,stubgirders,slim

    floorsystemsandbeamswithsingleor

    multiplewebopenings.Becauseinthese

    systemstheavailabledepthforconstructionisalmostequaltothefloordepth,areduced

    overallheightofthebuildingcanbeachieved,

    therebyreducingcladdingcosts.Nowadays,

    inmostcasesthedesignoffloorbeamswith

    webopeningsiscarriedoutrecognisingthe

    compositeactionbetweenthesteelbeamand

    theconcreteslabontopofit.

    Figure2.1 Serviceintegrationthroughweb

    openingsincellularfloorbeams

    Figure2.2

    Variousopeningshapesincellularfloorbeams

    of

    g

    .Alldimensionscanbeadjusted,butnobeneficial

    filletweldeffectispresent.

    Morecommonlyappliedisanotherprocess,

    thatconsistsofflamecuttingthewebofan

    existingHorIshapedhotrolledsection,and

    thenweldingtheseparatedsectionstiptotip

    together.Thematerialthatgetscutoutbythe

    twowayflamecuttingprocessisreusedinthe

    steelmills.AmongstothersArcelorMittal

    (Luxembourg)andWestok(UK)usethismethodtoproducetheircellularbeams.

    Steelmemberscanbeequippedwithsingle

    multiplewebopenings,whichcantake

    differentshapes.Whentheseopeningsare

    circularandregularlyspaced,themembers

    aredesignatedcellular.Dependingonthe

    fabricationprocessotheropeningshapesare

    possible,includingsquare,rectangular,

    hexagonal(standardcastellatedsection)andoctagonalshapes.

    2.2 Production methods

    Cellularbeamsareproducedbyarangeof

    steelmanufacturers,usingtheirownpatented

    processes.TheprocessappliedbyFabsec(UK)

    istofabricatethewholegirderbywelding

    profiledsteelplatestoformtheflangesand

    thewebofthesection.Priortotheweldin

    process,openingsarecutinthewebplate

  • 7/27/2019 Cellular Theses

    22/215

    22 PartI

    Figure2.3 Fabricationprocess:flame

    cuttingofhotrolledprofiles

    Figure2.4 Fabricationprocess:weldingthe

    separatedteesectionstogether

    Manufacturersofcellularbeamsinother

    countriesareCMCSteelProducts(USA),

    beprecamberedsuchthatthedeathload

    deflectionswillnotgovernthedesign.

    Producingcurvedorta

    MacsteelTrading(SouthAfrica),Peiner

    TrgerGmbH(Germany)andGrnbauerBV

    (TheNetherlands).Somemanufacturers(e.g.

    Westok,MacsteelTrading)produceexclusivelycellularbeams,whileforothers(e.g.

    ArcelorMittal,PeinerTrgerGmbH)theyonly

    formapartoftheirwholeproductrange.

    Whenproducingcellularbeamsbyflamecut

    tingandwelding,thetopandbottomsections

    donothavetobethesame:byusingdifferent

    basesectionsitispossibletoproducean

    asymmetriccellularsection.

    Bothproductionprocessesallowtheheightof

    theresultingsectiontobeadjustedtoagreat

    peredsectionsisalso

    thecentroidalline.Curved

    ng

    tees.

    ness

    esupports

    r

    ora

    imple(vertical)flat.Whereconcentrated

    loadsareintroducedsimpleplatescanbe

    weldedabovetheopeningstoavoidlocal

    plasticdeformation(ovalisation).

    Itispreferablethough,toavoidinfillsand

    stiffenersasmuchaspossiblebyadjustingthera

    extend.Allbeamsaremadeaccordingtothe

    specificationsofthedesigner.Theycaneasily

    providedinthesameprocessflow.Tapered

    cellularbeamsareproducedbycuttingthewebatanangleto

    beamsareproducedbyadjustingthecutti

    patterntocreatedifferentbottomandtop

    Thentheseteesarebenttotherequiredradii

    andweldedtogether.

    Curvinginplanisalsopossible,butcaremust

    betakenofthefactthatthetorsionalstiff

    isrelativelylow.

    Whenthechosensectionfailstoperform

    satisfactory,thebeamcanbereinforcedlocally.Inhighshearareasnearth

    itmaybenecessarytofillorreinforceoneo

    moreopenings.Bucklingofawebpostcanbe

    avoidedbyaddingtwoparthoops,

    s

    cellconfigu tion,toreducecosts.

    Figure2.5 Circularreinforcedopenings

    Figure2.6 Arrangementofsimplepla

    avoidlocalplasticdeformation

    testo

  • 7/27/2019 Cellular Theses

    23/215

    Literaturestudy 23

    Figure2.7

    Filledwebopeningsatsuppforincreasedshearresist

    ortance

    Figure2.8

    Webpoststiffenersandheadedstudsforcompositeapplica

    isreallyaviablealternative,moreover,that

    integrateddesignmayleadtoalowerpr

    tion

    a

    beamsthanwhenusewould

    her

    k

    causesto

    erthanthatofstandard

    olledprofiles.

    Ithashoweverbeenshownbymanysuccessfuldesigns(especiallyintheUK,butamong

    othersalsoinGermanyandFrance)thatsteel

    iceof

    r

    eatly

    ellularbeamscontributetoasoundand

    Comparedtocastellatedbeamswithhex

    gonalopeningshapes,andthusnomaterial

    losstheflexibilityinsteadofstandard

    dimensions,isamajoradvantage.Therefore

    theuseofoptimisedcellularsectionswill

    resultinlighter

    bemadeofthemostefficientcastellated

    sections.Cellularbeamsareavailableindifferentsteel

    grades.Usuallyfloorbeamsrequirehigher

    steelgradeslikeS355andS460,wherethe

    standardgradeS235sufficesforroofbeams.

    2.3 Application area

    Cellularbeamsarewidelyusednowadays.

    However,incertaincountries,liketheNet

    lands(andBelgium),applicationseemstolac

    behind.Itseemsthatthereisalotofunfamiliarityandalackoflocaliseddesign

    guidesforpracticewiththesebeams.

    Buttherearemorefundamental

    pointout.First,intheNetherlandsmulti

    storeybuildingswithmorethanfourfloors

    aretraditionallythedomainofconcrete[BmS

    2002].Second,thepriceofindividualcellular

    beamsisindeedhigh

    r

    thetotalbuilding,notwithstandingthehighe

    priceoftheindividualcellularbeams.

    Theuseofcellularbeamsforfloorstructures

    iswelldeveloped.Compositeconstruction

    makesshallowerandlighterconstruction

    possible.Boththeloadbearingcapacityandthestiffnessofthebeamareenhancedgr

    bycompositeaction.Cellularfloorbeamsmay

    beusedaslongspansecondarybeams,or

    heavilyloadedprimarybeams.

    Flexibilityintheuseofthefloorareaand

    reductionofthestoreyheightandthusofthe

    costforthefaadearethemainreasonswhy

    c

    economicaldesign.

    Figure2.9 Hotelatrium

  • 7/27/2019 Cellular Theses

    24/215

    24 PartI

    Designproceduresandprogramsare

    availablenowadays,whichenableeasy

    calculationforawiderangeofpossibilities.

    dandunstiffenedopenings,regularand

    b red.

    Calculationproceduresfordeterminingthe

    fireresistanceofthesesectionshavebeen

    developedtoo.Ingeneralafireengineering

    calculationusingfiniteelementmethodswill

    benecessary.Althoughmethodsforamore

    straightforwardassessmentoftherequired

    thicknessesofintumescentcoatingsare

    available,usuallytheyrelyonconfidentialtestresultsandthereforehavealimitedrangeof

    application.Furthermorepublictestresultson

    thebehaviourofcellularbeamsprotected

    withintumescentcoatingssuggestthatitwill

    rulesto

    ercurvedorflat.

    Forcurvedroofscellularbeamsaretheideal

    solution,becausecurvingofthebeamsisalreadypartoftheproductionprocessandas

    suchavailableatnoextracost.

    Moreover,economiesareachievedin

    comparisonwithplaincurvedbeamsdueto

    weightsavings.Theradiusofthearchisnot

    limitedbythefullspanlength,butbythe

    partswhereofdetotalarchconsists.

    Anotherwellappreciatedfacetofcurved

    cellularbeamsistheirinherentaesthetical

    valueandtheirlightimpression.Intherangeofroofspansofover30m,cellular

    beamsareabletoserveasanalternativeto

    latticegirders,havingtheadvantageoflower

    costoflabour.Longspansofover50mhave

    beenrealisedalready.

    Compositeandnoncompositedesigns,

    symmetricandasymmetricdesigns,stiffene

    allowfortheincreasedwebposttemperature.

    Inroofstructurescellularbeamsarealso

    frequentlyapplied,eith

    irregularwe openingsareallcove

    bedifficultto

    specifysimplegeneric

    Figure2.10 Apartmentbuilding Figure2.11 Officebuilding

    Figure2.13 CurvedroofbeamsFigure2.12 Parkinggarage

  • 7/27/2019 Cellular Theses

    25/215

    Literaturestudy 25

    Figure2.14 Industrialhall Figure2.15 Sportshall

    Figure2.16 Roofstructurewithcurved

    cellularbeams

    Figure2.17 Cellularportalframestructure

    withtaperedperforatedcolumns

    practice,

    .

    columns:economicsandaesthetics.In

    d

    full

    Inbeamstheloadingismostlyresistedby

    bendingaction,whileincolumnsnormallyaxialforcesdominate.Becausetheweb

    contributesmoretothe(pure)axialcapacity

    thantothebendingmomentresistance(inthe

    strongdirection),theinfluenceofweb

    perforationsonthepureaxialcapacityismore

    severe.

    However,forslendercolumnsitisnotthe

    pureaxialcapacitybutthebucklingresistance

    (intheweakdirection)thatgovernscolumn

    b amongstothe tion

    f

    e

    reaxialload

    ial

    outperforations,butwith

    reducedhorizontaldisplacements.

    Contrarytotheconsiderableamountof

    researchdevotedtothebehaviourofcellularbeams,resultingindesignguidesfor

    nopublisheddesignguideexistsforthe

    applicationofcellularmembersascolumns.

    Despitethelackofsoundlaboratorytest

    evidenceandtheabsenceofpracticaldesign

    methods,stillprojectarerealisedinwhich

    cellularmembersareappliedvertically

    Thereseemtobetwoprimaryreasonstouse

    cellular

    tallsinglestructures,suchashighbaywarehousesandsocalledsupersheds,thechoice

    ismainlydrivenbyeconomics.Theincreased

    inertiaofcellularcolumnsisrequiredto

    minimisethehorizontaldeflectionsinduce

    bywindloads.Inlowerheightcolumnsthe

    decisiontousecellularcolumnsismorelikely

    tobedrivenbyaesthetics.

    Obviouslytheaxialcapacityofcellular

    columnsislessthanthatofsectionswitha

    crosssectionalarea.Atfirstsighttheimpactofcreatingwebholesseemsmuchgreaterfor

    columnsthanfor(longspan)beams.

    design.This ucklingcapacitydepends,rs,ontheradiusofgyra

    beingthesquarerootofthesecondmomento

    inertiadividedbythearea.Bythepresenceof

    awebopeningthisradiusincreases,andso

    doesthebucklingfactor(ratiobetweenth

    bucklingcapacityandthepu

    capacity).Forslendercolumnsthisincrease

    almostoutweighsthereductioninpureax

    loadcapacity,sothatthebucklingloadofa

    cellularcolumnisnearlyequaltothatofthesamememberwith

  • 7/27/2019 Cellular Theses

    26/215

    26 PartI

    Figure2.18 Highbayportalframestructu

    usingcellularmembers

    re

    Figure2.19 Cellularwindcolumnsto

    supportaglassfaade

    Lowerheightcolumnsusuallyhaveahigher

    degreeofaxialloadcapacityutilisationand

    sufferlessfrombucklinginstability,andthus

    theapplicationofcellularcolumnsisnot

    likelytoproveeconomical.Butalthoughthestructuralperformancemay

    benotoptimalasisthecaseformany

    solutionsthevisualattractiveappearanceo

    cellularcolumnsmayverywellgivereas

    usethemanyway.

    Structuralefficiencyisjustoneofallpossib

    f

    onto

    le

    design ple,itisverywell

    pos l nsofaestheticsitis

    opriate.

    But t willbethemo c lution,becausenoextra

    trea e

    :beamswitheitherindividual

    urther

    with

    openingsontheelasticstressdistributionhas

    [1974].

    However,for

    acquiredsolu

    estimatingth am.

    Suggesteddesignmethodsmostoftenhavea

    criteria.Forexam

    sib ethatforreaso

    decidedthattaperedcolumnsareappr

    in hatcaseacellulartaperste onomicalso

    tm ntisrequired.

    2.4 Current research status

    Beamswithwebopeningshavebeena

    popularresearchthemeoverthepastfew

    decades.Themanyresearchprojects,com

    prisingboththeoreticalandexperimental

    investigations,canbesubdividedintotwo

    maincategoriesorwithmultiple(regularlyspaced)web

    openings.Theseopeningsmaybetreatedas

    individualwhenthespacingbetweenthe

    openingsissufficientlylargetoensurethat

    adjacentopeningsdonotinteract.F

    moreitispossibletodistinguishbetween

    takingintoaccountthecompositeaction

    theconcretefloorslabornot,andwhether

    openingreinforcementisdealtwith.Inthe

    pastallthesecategorieswereapproachedasseparatedesignproblems[Darwin2000].

    Forover100yearstheinfluenceofcreating

    beenstudied,e.g.byChan&Redwood

    anumberofreasonsthe

    tionsarenotveryusefulfor

    eresistanceofaperforatedbe

    verylimitedscopeofapplicability,andgive

    onlyacoarseapproximationofthebeamssresistancebytodaysstandards.Elasticdesign

    alsoignoresloadcapacityafterfirstyield,

  • 7/27/2019 Cellular Theses

    27/215

    Literaturestudy 27

    andisthereforeespeciallyinappropriatefo

    beamswithrectangularwebopenings,whe

    largepeakstresseswilloccurduetolocal

    bending.Thereforequitealotofresearchhas

    beencarriedouttodevelopmoreconveniedesignmethods,andtopointoutwhichlimits

    areapplicable.

    Becauseofthehighspecificationsinbuilding

    servicesinmodernbuildingcon

    r

    re

    nt

    struction,

    rgeindividualopeningsareoftenformedin

    thewebsofsteelbeamstoprovidepassageat

    specificlocations.Theseopeningsmayhavea

    severepenaltyontheloadcarryingcapacities

    offloorbeams,theinfluencedependingonthe

    shape,sizeandlocationofthewebopening.Inthe1980sand1990salargenumberoftests

    onsteelandcompositebeamswithdiscrete

    rectangularopeningswereconductedatdif

    ferentuniversities.Asaresult,practical

    designrecommendationsweredevelopedand

    publishedeitherasseparatepublications:

    CIRIA/SCIP068 Darwin1990

    orasarticlesinthetechnicaljournals:

    Redwood&Cho1993 ASCE1992

    Thesedesign tional

    rulesandcrit the

    res

    nin

    ned

    f

    the

    o&Chung2002].

    la

    Chung&Lawson2001methodsprovideaddi

    eriatowhichthedesignin

    openingsregionshastobetested.Procedu

    fordeterminingtheincreaseindeflection

    weredevelopedtoo,mosttimesbasedon

    elementarybendingtheory,butwithsuitable

    modificationtoaccountforthereductio

    shearstiffness.Whilethesemethodsaregearedtothedesign

    ofbeamswithrectangularopenings,beams

    withcircularwebopeningsmaybedesig

    byexploitingsimilaritiesinthebehaviouro

    rectangularandcircularopenings.

    Acommonlyusedruleistomultiplythe

    diameterofacircularwebopeningbya

    favourablefactorof0.450.50todetermine

    lengthofanequivalentrectangularopening.

    ThisrulewasfirstproposedbyRedwood[1973],anditprovidesasafethoughconser

    vativeapproximation[K

    Figure2.20 DealingwithVierendeel

    bendingeitherbyanequiv

    rectangularopeningorby

    inclinedsectionverifications

    Forotheropeningshapes,suchamo

    alent

    dificationpossibletoo.Inacomprehensiveparametric

    studyusingthefiniteelementmethod,itwas

    t

    variousshap rly

    beingthe

    ,

    is

    shownthats eelbeamswithwebopeningsof

    esandsizesbehavesimila

    amongsteachotherunderawiderangeof

    appliedmomentsandshearforces,thekey

    dimensionalparameterofinfluence

    criticalopeninglength.Thisholdsforthe

    failuremodes,theloaddeflectionbehaviour

    theyieldpatternsaswellasfortheshapeofthemomentshearinteractioncurves[Liu&

    Chung2003,Chungetal2003].

    Figure2.21

    Similarmomentshearinteractioncurvesfor

    variousopeningshapes

  • 7/27/2019 Cellular Theses

    28/215

    28 PartI

    Castellatedbeamswereusedinthe1930s

    already.Especiallyinthetimewhenmateri

    costswerehighandlabourcostslow,itwas

    attractivetodevisemethodswhichincr

    thestiffnessofsteelmembers,withoutincreasingtheweightofsteelrequired.

    Earlystudiesconcentratedoninplane

    responseinboththeelasticandplasticra

    Theoreticalsolutionswerederived,an

    extensivemeasurementsweremadeof

    stressdistributionsacrossthecrosssectio

    al

    ease

    nges.

    d

    the

    n.

    s

    al

    ciably

    is

    of

    g

    Amongthevariousmethodsusedarephoto

    elasticinvestigations,elementarybeam

    theory,curvedbeamanalysis,Vierendeel

    analogy,finitedifferencetechniques,variousfiniteelementschemes,etc.[Gibson&Jenkin

    1957,Kolosowski1964,Nethercot&Kerd

    1982,Nadjaietal2007].

    Whileelementarybeamtheory(witha

    reducedwebsection)isthesimplestmethod

    ofanalysisofacastellatedbeam,theresults

    calculatedbythismethoddeviateappre

    fromtheactualvaluesforstressesand

    deflections.Thisisbecauselocalbending

    neglectedinthisapproach[Handbookcastellatedbeams].

    TheapplicationofthetheoryforVierendeel

    beamstotheopeningregionsprovedmore

    successfulandisstillbeingused.Atan

    openinglocationthecrosssectionconsists

    twoTsections.Theycarrytheglobalbendin

    momentasaxialforceandtheshearcauses

    additionallocalbendingmoments.

    Figure2.22 Comparisonofexperimentaland

    predictedflangestresses

    Usuallythepointofcontraflexureisass

    umed

    ith

    lar

    kling

    er

    idual

    uldbe

    nal

    failuremechanismsareintroducedlike

    formationofaVierendeelmechanism,

    bucklingofthewebposts,weldruptureand

    horizontalshearfailureofthewebpost.

    Quantitativedataonthelateralbuckling

    behaviourofcastellatedbeamswasprovidedbyKerdal,whoshowedthatthisbehaviouris

    similartothatofplainwebbedbeams[PhD

    Kerdal,Nethercot&Kerdal1982].

    Withtheincreaseofcalculationpossibilities

    andtobeinlinewithnewbuildingcodes,

    designmethodswereupdatedandrefinedto

    allowamoreaccurate,andthusmore

    competitivepredictionoftheultimateload

    e

    assessmentof na[Zaarour&Redwood1996,Redwood&

    edwood2000].

    90s.Their

    intr u modernbuilding

    pra s orsin

    .

    atmidlengthoftheTsections,togetherw

    alinearvariationoverdeopening.

    Becausewebholesincastellatedandcellu

    beamsarecloselyspaced,theycaninteractwitheachother,whichmayleadtobuc

    orcripplingoftheposts.Theseinteraction

    effectsrequiredueattention,asforslend

    webstheycangoverntheultimateload

    capacity[Uenoyo&Redwood1978].

    Effectivelyabeamcontainingwebholes

    behaveslikeanassemblyofindiv

    structuralcomponents,andthusitsho

    checkedagainstdifferentpossiblefailure

    modes.TheseweresummarisedbyKerdalinareviewofearliercarriedoutexperimental

    programmes[Kerdal&Nethercot1984].

    Comparedtoplainwebbedbeams,the

    presenceofwebholesmeansthatadditio

    capacity.Att ntionwaspaidtoanimproved

    thewebbucklingphenome

    Demirdjian1998]andtotheeffectof

    compositeactiononcastellatedbeams

    [Redwood&Cho1993,R

    CellularbeamswerefirstusedinSwitzerland

    inthe1970s[Stahlbau1970s],butapplication

    becamecommonnotbeforethe19

    od ction,togetherwith

    cti es,liketheuseoflongspanflo

    officesandthetendencytodesignmoreslenderstructures,causedarevivalinthe

    researchtobeamswithwebopenings

  • 7/27/2019 Cellular Theses

    29/215

    Literaturestudy 29

    Ofcoursealotofresearch,boththeoreti

    andnumerical,wascarriedoutbythemanu

    facturersofcellularbeamsthemselves.

    cal

    CI)

    r

    n

    g

    crosssection.

    low

    Openingsinwebs

    o

    d,

    sh

    e

    ngmoment,andtheHigh

    e

    l

    atsat

    In1990theSteelConstructionInstitute(S

    intheUKpublishedaguidespecificallydirectedtowardsthecalculationofcellula

    beams[SCIP100].Thecalculationmethodin

    thisguide,entitledDesignofcompositeandno

    compositecellularbeams,consistsincomparin

    theappliedactionsonaninclinedsectionwith

    theresistanceofthatsection,wherebythe

    inclinationangleisvariedsothatiterations

    arerequiredtolocatethecritical

    Alinearinteractionformulaisusedtoal

    forcoexistenceofshearforcesandbendingmoments.

    Thismethodwaslaterincorporatedintothe

    draftannexprestandardEurocode311

    AmendmentA2:AnnexN

    [ENV199311,AnnexN].Whenitcamet

    convertingtheENVstoENs,itwasdecided

    nottoconvertAnnexN,becausenoconsensus

    couldbereachedbetweentheparticipating

    countriesonthelevelofdetailtobeinclude

    andalsotolimitthevolumeofEC3.Ithasbecomecommonpractisetodistingui

    betweentheLowMomentSide(LMS),wher

    thelocalbendingmomentcounteractsthe

    globalbendi

    MomentSide(HMS),wherethelocaland

    globalmomentactinthesamedirection.

    IntheapproachofSCIP100theultimate

    capacityislimitedbytheformationofone

    plastichingeattheLowMomentSide.

    BecauseitwasexpectedthatfortruefailurbyaVierendeelmechanismfourplastic

    hingesarerequired,thismechanismwas

    investigatedinmoredetailbyChungeta

    [2001]andasimpleempiricalmomentshear

    interactioncurvewasproposed.

    Itappearsthatshearyieldingisvery

    importantasitpromotestheformationof

    plastichingesattheHighMomentSide.Inthe

    paperadesignmethodisproposedinwhich

    loaddistributionacrossthewebopeningthresultsfromtheformationofplastichinge

    boththeLMSandHMSisincorporated.

    Figure2.23

    LowMomentSide(LMS)and

    hibited.

    are

    r

    is

    cal

    arinteractioncurvesareoften

    citts

    its p

    HighMomentSide(HMS)

    Themethodisvalidforclass1/2(plastic/

    compact)sectionsontheassumptionthat

    instabilityispro

    Chungrecognisestwodesignapproachesto

    assessthestructuralbehaviourofbeamswith

    webopenings[Chungetal2001]:

    Tsectionapproach

    perforatedsectionapproachIntheTsectionapproachallglobalactions

    representedaslocalforcesandmomentsand

    thesearecheckedagainstthesection

    capacitiesoftheTsections,takinginto

    accountthecombinedeffectofaxialandshea

    forceonthebendingmomentcapacity.

    Theperforatedsectionapproachaimsat

    comparingtheglobalactionsdirectlywiththe

    capacityoftheperforatedsectionunder

    coexistingshearforceandbendingmoment,e.g.inASCE[1992]andChungetal[2001].

    Thedesignprocedureinthefirstmethod

    rathercomplicated.Duetothecomplexityof

    theinteraction,usuallysimplificationsare

    madeinordertolimitthecalculationeffort,

    leadingtoconservativeresults.

    Inthesecondmethodsimple,empiri

    momentshe

    used.Althoughthedesignrulesarerelatively

    simple,theempiricalnatureoftheimpliallowancefortheVierendeelmomentlimi

    sco eofapplicability.

  • 7/27/2019 Cellular Theses

    30/215

    30 PartI

    The signsoftware

    ng

    Furthermorethemethodtoverifytheweb

    postbucklingphenomenahasbeengreatly

    improved,andalsothemethodtocalculate

    deflections.

    Sofaralmostallresearchdescribedtookplace

    eitherintheUSAorCanadaorintheUnited

    Kingdom(bySCI).Guidanceintendedforuse

    inmainlandEuropehasbeenratherlimited.

    Forexample,inDutchonlyinformationontheanalysisofcastellatedbeamsisavailable,

    whichisentirelybasedonasmartapplication

    methodsofc ndapplicationis

    methodusedinthede

    providedbyArcelorMittaltakesitsstarti

    pointinthemethodasdescribedinSCIP100

    andAnnexN(inclinedTsections).Itsscope

    howeverhasbeenextendedtocoverasymmetricandcompositebeamsaswell.

    ofthecurrent

    Noreference

    buildingcodes[BmSConstrA].

    ismadetomoreadvanced

    lculation,aa

    limitedtostandardcastellatedbeamranges.

    WhenitbecameclearthatAnnexNwouldnot

    beincludedinthefinalEurocode,workwas

    undertakenwiththeobjectivetoupdateand

    improvetherulesoftheAnnex,towidenitsscopetocompositegirdersandtocometo

    designrecommendationsatanEuropean

    level.In2001theECSCprojectLargeweb

    openingsforserviceintegrationincompositefloors

    [LWO]startedandwasfinishedin2003.

    Figure2.24 Oneoftheoutcomesofthe

    LWO+project:designsoftware

    Theaimoftheprojectwastoexperimentally

    andtheoreticallyinvestigatethebehaviouro

    steelandcompositebeamswithweb

    openings.Alltestresultscouldbeverifiedby

    adequatefiniteelementsimulations.Forpostbuckling,anewmodel

    f

    webwasproposed

    al

    f

    edas

    e

    seof

    ated.

    te

    d

    w

    old

    realtest

    fire

    whichisabletodealwithrectangular,circular

    andelongatedopeningsinaconsistent

    mannerusingastrutanalogy.

    LWOnotonlycoversdesignundernorm

    (cold)conditions,butalsounderfire

    conditions.Furthermoreworkwasperformed

    tocontributetoimprovedmanufactureo

    cellularbeams.

    Theoutcomesoftheprojectareanextensivedesignguide,togetherwithacondensed

    versioninEurocodestyleformat(propos

    anewAnnexN),simplifieddesignaidsto

    quicklyestimateasectionsizeinpredesign

    stageandasoftwareforthecalculationof

    compositebeamscontainingwebopenings.

    Regardingthebehaviourinfireconditions,it

    wasconcludedthatingeneraltheinneredge

    ofopeningsshouldbeprotectedinorderto

    avoidaspecificassessmentofthetemperaturfield.Becauseonlyoneloadedtestwas

    conducted,nodefiniteguidanceontheu

    sprayedprotectioncouldbeformul

    In2005theLWOprojectwasfollowedbya

    RFCSvalorisationproject[LWO+]topromo

    theknowledgegained(finishedin2006).

    TheresultsoftheECSCprojectwereupdate

    anddisseminatedtopractitioners,andane

    softwarewasdevelopedfordesigninc

    condition,togetherwiththepreparationofStateof theArtreportsindifferent

    languages.

    Thebackgroundtheorytothedesignmethod

    developedintheLWOprojectwasalso

    presentedinanumberofjournalpapers:

    Lawson&Hicks2005 Lawsonetal2006

    Thesealsocomparetheoutcomesofthe

    designmodeltoFEManalysesand

    results.However,specifictopicsliketheresistanceandthevibrationalbehaviourof

    thosebeamsarenotconsideredherein.

  • 7/27/2019 Cellular Theses

    31/215

    Literaturestudy 31

    Figure coating

    Fur ]

    was r

    prim r

    in

    .

    ar

    designandmanufactureofcellularbeams.

    Whiletheassessmentofvibrationalbehaviour

    offloorsusingcellularbeamsisanalogousto

    thatoffloorswithplainwebbedbeam,see

    VibrationGuide[2007],thebehaviourinfire

    conditionsisfarmorecomplex.

    Untilrecentlyalmostallresearchwascon

    cernedwithdesignincoldsituation.Inmore

    recentresearchattentionwaspaidtothe

    behaviourinfireconditionstoo.

    Fromafirstinvestigationitbecameclearthat

    theopeningsgiverisetoincreasedwebpost

    temperatures.Therebythestrengthofthe

    webpostmayverywellbecritical[TN2002].

    Theincreasedwebposttemperatureswere

    validatedandconfirmedforprotectedbeams

    byBailey[2004,UMIST].Forunprotectedsteel

    cellularbeamsnoincreaseinwebpost

    temperaturewasobserved.

    ichsaysto

    ut),

    ndthenincreasethethicknessby20%.

    fotherinformation,thisrulewas

    ofte a h

    intu e

    Howev

    results

    cannot

    We talshear)

    oftencand is

    zonere n.Therefore

    further

    theme

    cellular andtoprovidemore

    ealisticrulestodeterminetherequired

    tumescentcoatings.

    The h

    dea s.

    Gen iSCI nshave

    beenissuedtointumescentmanufactures,

    whichallowmorefavourablelimiting

    temperaturesbasedontheactualperformance

    oftheirparticularproduct.

    Ithasbecomeapparentthatfailuremodesare

    notnecessarilythesamefordesignatambient

    temperatureandinfireconditions.Therefore

    itisnotadequatetobasethefireprotection

    requirementsonroomtemperaturestructuralanalysis,asispossibleforplainbeams,buta

    separateanalysisatelevatedtemperatures

    mustbeconducted[Simms2007].

    Nowresearchiscarriedoutonthefire

    behaviourofcompositecellularbeams.Ithas

    beenpointedoutthatsomeaxialrestraintwill

    enhancetheultimateloadcapacityofcom

    positecellularbeamsinfireconditionsgreatly

    [ThesisRini].Furthermoreworkisgoingonto

    providequantitativedataonthestructuralwebpostfailuretemperatureofcomposite

    cellularbeams[Nadjaietal2007].

    2.25 Swellingofintumescent

    duetofire

    thermoreanAccessSteelresource[SN019

    epared.Thisdocument,whichisp

    a ilyaimedatpractisingengineers,

    providestheapproachthatwasdeveloped

    thescopeoftheLWOproject,andalsogives

    simpledesignrulesforopeningsoflimited

    sizeplacedatspecificlocations.

    Asaresultanunifiedanalyticaldesign

    methodforanalysisatambienttemperature

    wasmadeavailabletotheEuropeanmarket

    In2004theInternationalInstituteofCellul

    BeamManufactures(IICBM)wasformed,with

    theaimtohelpdevelopstandardsforthe

    IntheUnitedKingdompassivefireprotection

    (sprayed,board)forcastellatedbeamswas

    usuallybasedonarulewh

    determinetherequiredthicknessoffire

    protectionmaterialfortheoriginalsection(fromwhichthecastellatedsectionwasc

    a

    Inabsenceo

    n ppliedtocellularbeamsprotectedwit

    m scentcoatings(active)also.

    er,fromtheaforementionedtest

    itbecameclearthatthis20%rule

    besafelyappliedtocellularbeams.

    bpostfailure(buckling,horizon

    ontrolsthedesignofcellularbeams,thustheincreasedtemperaturesinth

    quirethoroughattentio

    researchwasconductedtounderstand

    chanicsofthestructuralbehaviourof

    beamsinfire,

    r

    thicknessofin

    SCIpreparedanumberofreportswhic

    lwiththefiredesignofcellularbeam

    er cdesignguidanceexistsintheformofRT1085.Productspecificversio

  • 7/27/2019 Cellular Theses

    32/215

    32 PartI

    2.5 Future design development

    Inviewoftheresearchworkalreadydone,

    someareasofinteresttobecoveredinfuture

    developmentsare:

    catenaryeffectinfireconditionsforcompositefloors

    firebehaviourofbeamswithrectangularwebopenings

    incorporationofaxialloadinganddifferenttypesofsupportconditions

    behaviouranddesignoftaperedcellularmembers

    Itisnotedherethatnoactivitiesfromthe

    IICBMhavebeenseensince2005.Twomain

    partnershowever,ArcelorMittalandWestok,haveagreedtocooperateinresearchactivities

    andtodevelopanewsoftwareforthedesign

    ofcellularbeamsjointly.Thissoftwarewill

    alsocoverthedesignoftaperedbeams,

    elongatedopenings,etc.Whenthefinal

    versionsoftheEurocodeswillcomeinto

    force,designersfromtheUnitedKingdomas

    wellasthosefrommainlandEuropewillbe

    abletousethesametool.

    2.6 Advantages and disadvantages

    Thissectionsummarizesthemainadvantages

    anddisadvantagesofcellularmembers.

    Advantages increasedspanspossible(flexibility) passageofservicesthroughweb

    openingsfeasible(functionality)

    specificationsareeasytoadjusttowardsspecificneeds(adaptability)

    theofferofanewmeansofarchitecturalexpression(appearance)

    availabilityofhighperformancedesigntools(support)

    materialsavingsandreductionofthenumberoffoundations(sustainability

    &economics)

    Disadvantages

    lesssuitableforconcentratedloads morecalculationeffortrequired severereductioninpureaxialcapacity increasedproductioncosts

  • 7/27/2019 Cellular Theses

    33/215

    Literaturestudy 33

    3 MECHANICAL BEHAVIOUR OF BEAMS WITH WEB OPENINGS

    3.1 Introduction

    Thepresenceoftheholesinthewebmeansthatthebeamsstructuralbehaviourwillbe

    differentinanumberofrespectsfromthatof

    plain,uniformmembers.Notonlytherelative

    importanceoftheusualmodesoffailureis

    altered,butalsonewpossiblefailure

    mechanismsareintroduced.Inthischapter

    themechanicalbehaviourofbeamswithweb

    openingsisdiscussed,togetherwitha

    descriptionofthevariouspossiblefailure

    mechanisms.Criteriatocheckagainstthesefailuremodesareprovidesinthenextchapter.

    Mostattentionisgiveninthischaptertothe

    behaviourandfailuremechanismsthatdiffer

    fromthatofplainwebbedbeams.Failure

    modesthatarelargelysimilartotheseof

    standardsectionsareonlybrieflytouched.

    Asnopublictestdataisavailableregarding

    thebehaviourofcolumnswithwebopenings,

    onlybeamsaredealtwithinthischapter.

    3.2 Global bending and shear

    Oneofthemostobviousobservationsfrom

    testsisthelargedependenceofthebehaviour

    ofbeamswithwebopeningsontheratioof

    momenttoshear,theM/Vratio.

    Forsimplysupportedbeamscarryinga

    uniformdistributedload,thelocationof

    maximumappliedmoment(midspan)differs

    fromthemaximumshearposition(atthe

    supports).Thereforefirstseparateattentionisgiventothebendingmomentcapacityandthe

    verticalshearcapacity.

    Astheglobalbendingmomentcapacityistoa

    largeextenddeterminedbytheflanges,the

    influenceofthewebperforationisrather

    small.Globalbendingofthebeamwillbe

    resistedpredominantlybytensioninthe

    bottomteeandcompressionintheuppertee.

    ItwasalreadydescribedbyToprac&Cooke

    [1959]thatinaspan,subjectedtoapurebendingmoment,theTsectionsaboveand

    belowtheholesyieldinamannersimilarto

    thatofaplainwebbedbeam.Thespreadof

    yieldtowardsthecentralaxiswasstoppedbythepresenceoftheholesbywhichtimethe

    twothroatsectionshadbecomecompletely

    plasticincompressionandintension.Halleux

    [1967]wasthefirsttointroduceplastictheory

    fortheanalysisofthebehaviourofcastellated

    beams.Forfullybracedspecimensunderpure

    bending,theoccurrenceofapureflexural

    mechanismwasobservedindeed.Thusthe

    behaviourisjustlikeaplainwebbedbeam.

    Itisobviousthattheinfluenceofwebholesontheshearcapacityismorepronounced.

    Generallyitisthewebthattransmitsthe

    verticalshearforce.Theshearcapacityatan

    openinglocationmaybecalculatedby

    additionoftherespectiveshearcapacitiesof

    thetopandbottomtee.

    Whenthebendingandtheshearmechanisms

    areconsideredseparately,theyarerarelythe

    criticalmodesoffailureincellularbeams.

    However,foropeningsintheregionwherebothshearforceandbendingmomentare

    present,additionalbendingiscreateddueto

    thetransferoftheshearforceacrossthe

    opening.

    ForlowM/Vratiostheeffectsofsecondary

    bendingmayevendominatetotheextend

    thatthesignofstressesattheLowMoment

    Sideisreversed.

    Figure3.1

    Failureofacompositebeam:

    b)lowmomenttoshearratio

    a)purebending

  • 7/27/2019 Cellular Theses

    34/215

    34 PartI

    Figure3.2 Vierendeelbendingover

    byisan

    llelogram.

    ften

    ties

    the

    losetothoseproducedinafullbendingsituation,andalsobecauseshortspans

    usuallycarryhigherloadssoshearforce

    bal)

    r

    ty.

    inw

    pport

    rtis

    ngs

    s

    rovisionsinthecodesforthedetermination

    ofthelateralbucklingstrengthofplain

    webbedbeamscouldalsobeusedfor

    castellatedbeams,makinguseofthecross

    sectionalpropertiesattheopeninglocation.

    Thealternativeapproachofcalculatingthe

    resistanceagainstlateralbucklingofthetee

    sectionincompression,withtheeffectiven uate

    lateralsuppo .

    arectangularopening

    Thismechanismwasfirstreportedby

    Alffillischetal[1957](andalsodiscussed

    Toprac&CookeandHalleux).Infactit

    extensionoftheflexuremechanism,butnow

    withV0.Itshowsaverypronounced

    distortioninthemannerofapara

    Becauseoftheanalogywiththestructural

    responseofaVierendeelgirder,theoccur

    renceofthesesecondaryeffectsiso

    labelledVierendeelbehaviour.

    Generallyfourplastichingesatthecorners

    ofaholearerequiredforthemechanismtodevelop.Failureduetothissocalled

    Vierendeelmechanism,orashearforce

    mechanism,isalwaysaccompaniedby

    excessiveplastificationattheplastichinge

    locations.Forlargesinglewebopeningsthis

    mechanismislikelybedecisive.

    TheVierendeelmomenthastoberesistedby

    Tsections,whosecapacityisreducedbythe

    presenceofaxialandshearforces.

    Fromthestudyofthegeometricalproperofcastellatedbeamswhichfailedduetothe

    formationofaVierendeelmechanism,itis

    clearthatthistypeofmechanismismore

    likelytodevelopinbeamswithsomecombi

    nationofashortspan,awidewebpostand

    shallowteesections[Kerdal&Nethercot

    1984].Thisisbecauseanincreasedsizeof

    webpostwillproducealargersecondary

    momentandthusstresseswhicharemore

    c

    becomedominantcomparedtothe(glo

    bendingmoment.Withincreasingopening

    lengththeVierendeelmomentwillfurthe

    increase,reducingtheultimateloadcapaci

    Enlargedopeningsarethereforebestplacedareaswhereshearforcesarerelativelylo

    andthefullbendingresistanceisnotyet

    utilised,i.e.intheareabetweenthesu

    andmidspan(forsimplysupportedbeams).

    3.3 Lateral-torsional buckling

    Forbeamsthatarenotaxiallyloaded,theonly

    globalbucklingmodeislateraltorsional

    buckling.Ifnoadequatelateralsuppo

    provided,thismodewillalmostalwaysbedominantovertheflexuremechanism.

    Althoughithasbeenshownthatthelateral

    torsionalbucklingcapacityisindeed

    influencedbythepresenceofwebopeni

    [Thevendran&Shanmugam1990],test

    revealednofundamentaldifferencesin

    behaviour:bothplainwebbedandcastellated

    beamsexhibitedthesamelaterallybuckled

    configurationconsistingofasmooth

    continuousprofileandnodistortionofthewebpostswasobserved[Kerdal&Nethercot

    1984].Thereforeitwasconcludedthatthe

    p

    lengthtake betweentwopointsofadeq

    rt,isknowntobeconservative

    Support

    Yielding orbuckling

    Cracking Concretecrushing

    Yielding

    Compression

    Tension

    Web-post buckling

    Web buckling

    Web-postbending

    Web-postshear

    spacedopenings(composite)

    Figure3.3 Modesoffailureatclosely

  • 7/27/2019 Cellular Theses

    35/215

    Literaturestudy 35

    3.4 Web-post failure mechanisms

    Largesinglewebopeningsareusuallyspac

    atsufficientdistancetoavoidinteraction.

    However,forcloselyspacedopeningsthis

    interactionisinevitableandsomenewfailure

    ed

    the

    ng

    ns

    .In

    in

    thetopandbottomtees.

    ive.

    owever,failureismore

    peningegion.Otherwisethebeamshouldbe

    reinforcedlocally.

    u isin

    manycasest hanism.From

    thehorizontalshearingforce,combinedwith

    theverticalshearforcesthatactonthetees,

    diagonaltensileandcompressiveactionis

    developedinthewebpost,whichmaycause

    (local)lateraltorsionalbuckling.

    modesareintroduced.

    Itfollowsfromhorizontalequilibriumthat

    webposthastotransmitahorizontalsheari

    force,beingequaltothedifferenceintensio

    inthebottomchords(positivebending)

    additionthewebpostsinasymmetricand

    compositebeamswillalsobesubjecttoin

    planebendingmomentsinordertomainta

    equilibriumbetween

    Fornarrowposts,thehorizontalshearcapacity,andforasymmetricopeningsthe

    purebendingresistancemightbedecis

    Forslenderpostsh

    likelytooccurbywebpostinstability.

    Ingeneraltwokindsofwebpostbuckling

    exist:lateraltorsionalbucklingduethe

    horizontalshearandwebcripplingunder

    concentratedloads.

    Thelattermodeisbestavoidedbynotplacing

    anyconcentratedloadaboveanor

    Webpostb cklingduetosheartransfer

    hecontrollingmec

    Figure3.4 Webpostyieldingdueto

    horizontalshear

    Figure3.5 Forcesinawebpostwithan

    asymmetricallyplacedopening

    Thetendencytobuckledependsonthewidth

    andheightofthewebpostandthed/tratioof

    theweb.Duetothecomplexityofthe

    problem,severaldesignmethodshavebeen

    proposed.ThemethodinSCIP100wasof

    empiricalnature,withalimitedscopeof

    y. ,

    resultingfrom

    simplebutmoregeneralstrutmodel,thatalso

    n nings.

    applicabilit Thepresentdesignmethod

    theLWOprojects,isbasedona

    coversrecta gularandasymmetricope

    Figure3.6 Webpostbucklingbehaviour

    Figure3.7 Webpostlateraltorsional

    bucklingdueto(vertical)shear

  • 7/27/2019 Cellular Theses

    36/215

    36 PartI

    Figure3.8 Horizontalweldrupture

    IntheACBprogramanothermodelforweb

    postbucklingisused,thatwasdevelopedaspartofanoptimisationstudytocellular

    beamscarriedoutbyCTICMonbehalfof

    Arcelor.Generallysaiditisamoreadvan

    a

    ced

    werederivedfromalarge

    ossiblefailuremodes.Inmanycases

    ringhaveprovedtobethe

    g

    .

    r,butlocalweb

    ucklingispreventedbyusingthelimiting

    valuesforaclass3webwhentheoutstandof

    thewebofacompressedteeisclassifiedclass4,sothattheelasticpropertiesareused.

    Shearbucklingcanoccurinhighshearareas

    (e.g.nearsupports)andisalsoinfluencedby

    thepresenceofwebopenings.Itmaygovern

    thedesignofabeamwithsingleopenings,but

    be uremodes

    aredominant

    ec

    herearetwoeffectsduetowebperforations

    h ,

    inginsteadofby

    lycalledadditional

    canbesignificantfor

    For l totaladditional

    def t doesnotexceed20%.

    Reg d haviouras

    runperfo sothat

    maybeestimatedbytheethods(allowingfor

    the

    model,whichalsocoversasymmetricsections

    andtakesintoaccountthepostcriticalreserve

    strength.However,thecoefficientsto

    calculatethecriticalforcesinthewebpost

    andintheTsectionsarenotavailablein

    public,asthey

    measurementprogrammeofwebpostimperfectionsinARCELORCellularBeams,

    whereoftheresultsareproprietary.

    3.5 Additional failure modes

    Apartfromtheabovementionedfailure

    mechanisms,therearesomeadditional

    p

    howevertheywillnotgovernthedesign.

    Theweldbetweenthetwohalvesofacellular

    beamthatisproducedfromhotrolledsectionsisalwaysassumednottoinfluence

    theglobalandlocalstructuralbehaviour.The

    requiredthicknessisdeterminedsuchthatthe

    horizontalshearforcecanbetransmitted.

    Ithasbeenshownthatitisnotnecessaryto

    makefullbuttwelds.Twosidedfilletweld

    withoutchamfe

    mostefficientandeconomicalsolution.

    Localflangebucklingispreventedbyusin

    class3platepartsorlower.Cellularbeamsmadeoutofhotrolledsectionsmostoften

    haveflangesthatareatleastclass2(compact),

    sothatthefullplasticcapacitycanbeutilised

    Thewebclassmaybehighe

    b

    forcellular amsusuallyotherfail

    .

    Forr tangularwebopenings,bucklingofthe

    compressedteeshouldbechecked.Incellular

    beamsthisfailuremechanismhasnotbeenobservedbeforereachingthecrosssectional

    capacityofthetee.Elongatedopeningswere

    showntobehavelikerectangularopenings,

    andthusaresusceptibletoteebucklingtoo.

    3.6 Serviceability performance

    T

    whic causeanincreaseindeflections.First

    thesecondmomentofareaisreducedwhich

    addstothepurebendingdeflection.Second,atanopeningpositionverticalloadhastobe

    transferredbylocalbend

    hear.Thistermisusuals

    sheardeflectionand

    lon pgo enings.

    thece lularbeams

    lec ionsusually

    ar ingvibrations,thesamebe

    ratedbeamsisobserved,fo

    thenaturalfrequencysam ae pproximationm

    effectoftheopenings).

    Figure cklingabovea

    rectangularopening

    3.9 Teebu

  • 7/27/2019 Cellular Theses

    37/215

    Literaturestudy 37

    3.7 perature

    As apter2,onbeforehand

    itc herthefailuremodeat

    creasedtemperaturewillbethesameasat

    se

    itions

    3.8 Summary of failure mechanisms

    Inconclusionsthereexistanumberoffailure

    mechanismsforbeamswithwebopenings.

    Fornoncompositecellularbeamstheycanbe

    summarisedasfollows:

    Globalfailuremodes

    purebending pureshear interaction lateraltorsionalbuckling

    Localinstabilitymodes

    shearbuckling

    localflangebuckling localwebbuckling

    )

    ckling

    webcrippling weldrupture

    Indesignitisnecessarytoensurethatall

    relevantfailuremechanismsareaddressed.

    However,thismayoftenbedoneinanimplicitway.Furthermore,itisnotedthatnot

    allmodesoffailureareasimportant.While

    theVierendeelmechanismhasbeen

    researchedextensively(e.g.byChung),for

    beamswithmultipleopeningsusuallyother

    failuremodesdominate.Cellularbeamsare

    likelytofailbywebpostbucklingandwhen

    thisisprevented,bylateraltorsionalbuckling.

    Optimisationisonlytobegainedwhen

    calculationmethodsforgoverningfailuremechanismsarerefined.

    Behaviour at elevated tem

    alreadynotedinch

    annotbesaidwhet

    in

    roomtemperature.Thewebopeningscauincreasedtemperaturesinthewebposts.

    Thereforeasepa