16
Gosper's Glider Gun creating "gliders" in the cellular automaton Conway's Game of Life [1] Cellular automaton From Wikipedia, the free encyclopedia A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model studied in computability theory, mathematics, physics, complexity science, theoretical biology and microstructure modeling. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. [2] A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t = 0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the stochastic cellular automaton and asynchronous cellular automaton. The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a twodimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, Stephen Wolfram engaged in a systematic study of onedimensional cellular automata, or what he calls elementary cellular automata; his research assistant Matthew Cook showed that one of these rules is Turingcomplete. Wolfram published A New Kind of Science in 2002, claiming that cellular automata have applications in many fields of science. These include computer processors and cryptography. The primary classifications of cellular automata, as outlined by Wolfram, are numbered one to four. They are, in order, automata in which patterns generally stabilize into homogeneity, automata in which patterns evolve into mostly stable or oscillating structures, automata in which patterns evolve in a seemingly chaotic fashion, and automata in which patterns become extremely complex and may last for a long time, with stable local structures. This last class are thought to be computationally universal, or capable of simulating a Turing machine. Special types of cellular automata are reversible, where only a single configuration leads directly to a subsequent one, and totalistic, in which the future value of individual cells depend on the total value of a group of neighboring cells. Cellular automata can simulate a variety of realworld systems, including biological and chemical ones. Contents 1 Overview 2 History 3 Classification 3.1 Reversible 3.2 Totalistic

Cellular Automata

Embed Size (px)

DESCRIPTION

Cellular Automata

Citation preview

  • Gosper'sGliderGuncreating"gliders"inthecellularautomatonConway'sGameofLife[1]

    CellularautomatonFromWikipedia,thefreeencyclopedia

    Acellularautomaton(pl.cellularautomata,abbrev.CA)isadiscretemodelstudiedincomputabilitytheory,mathematics,physics,complexityscience,theoreticalbiologyandmicrostructuremodeling.Cellularautomataarealsocalledcellularspaces,tessellationautomata,homogeneousstructures,cellularstructures,tessellationstructures,anditerativearrays.[2]

    Acellularautomatonconsistsofaregulargridofcells,eachinoneofafinitenumberofstates,suchasonandoff(incontrasttoacoupledmaplattice).Thegridcanbeinanyfinitenumberofdimensions.Foreachcell,asetofcellscalleditsneighborhoodisdefinedrelativetothespecifiedcell.Aninitialstate(timet=0)isselectedbyassigningastateforeachcell.Anewgenerationiscreated(advancingtby1),accordingtosomefixedrule(generally,amathematicalfunction)thatdeterminesthenewstateofeachcellintermsofthecurrentstateofthecellandthestatesofthecellsinitsneighborhood.Typically,theruleforupdatingthestateofcellsisthesameforeachcellanddoesnotchangeovertime,andisappliedtothewholegridsimultaneously,thoughexceptionsareknown,suchasthestochasticcellularautomatonandasynchronouscellularautomaton.

    Theconceptwasoriginallydiscoveredinthe1940sbyStanislawUlamandJohnvonNeumannwhiletheywerecontemporariesatLosAlamosNationalLaboratory.Whilestudiedbysomethroughoutthe1950sand1960s,itwasnotuntilthe1970sandConway'sGameofLife,atwodimensionalcellularautomaton,thatinterestinthesubjectexpandedbeyondacademia.Inthe1980s,StephenWolframengagedinasystematicstudyofonedimensionalcellularautomata,orwhathecallselementarycellularautomatahisresearchassistantMatthewCookshowedthatoneoftheserulesisTuringcomplete.WolframpublishedANewKindofSciencein2002,claimingthatcellularautomatahaveapplicationsinmanyfieldsofscience.Theseincludecomputerprocessorsandcryptography.

    Theprimaryclassificationsofcellularautomata,asoutlinedbyWolfram,arenumberedonetofour.Theyare,inorder,automatainwhichpatternsgenerallystabilizeintohomogeneity,automatainwhichpatternsevolveintomostlystableoroscillatingstructures,automatainwhichpatternsevolveinaseeminglychaoticfashion,andautomatainwhichpatternsbecomeextremelycomplexandmaylastforalongtime,withstablelocalstructures.Thislastclassarethoughttobecomputationallyuniversal,orcapableofsimulatingaTuringmachine.Specialtypesofcellularautomataarereversible,whereonlyasingleconfigurationleadsdirectlytoasubsequentone,andtotalistic,inwhichthefuturevalueofindividualcellsdependonthetotalvalueofagroupofneighboringcells.Cellularautomatacansimulateavarietyofrealworldsystems,includingbiologicalandchemicalones.

    Contents

    1Overview2History3Classification

    3.1Reversible3.2Totalistic

  • TheredcellsaretheMooreneighborhoodforthebluecell.

    3.2Totalistic3.3Relatedautomata

    4Elementarycellularautomata5Rulespace6Biology7Chemicaltypes8Applications

    8.1Computerprocessors8.2Cryptography8.3Errorcorrectioncoding

    9Modelingphysicalreality10Seealso

    10.1Specificrules10.2Problemssolved10.3Seealso

    11Referencenotes12References13Externallinks

    Overview

    Onewaytosimulateatwodimensionalcellularautomatoniswithaninfinitesheetofgraphpaperalongwithasetofrulesforthecellstofollow.Eachsquareiscalleda"cell"andeachcellhastwopossiblestates,blackandwhite.Theneighborhoodofacellisthenearby,usuallyadjacent,cells.ThetwomostcommontypesofneighborhoodsarethevonNeumannneighborhoodandtheMooreneighborhood.[3]Theformer,namedafterthefoundingcellularautomatontheorist,consistsofthefourorthogonallyadjacentcells.[3]ThelatterincludesthevonNeumannneighborhoodaswellasthefourremainingcellssurroundingthecellwhosestateistobecalculated.[3]ForsuchacellanditsMooreneighborhood,thereare512(=29)possiblepatterns.Foreachofthe512possiblepatterns,theruletablewouldstatewhetherthecentercellwillbeblackorwhiteonthenexttimeinterval.Conway'sGameofLifeisapopularversionofthismodel.AnothercommonneighborhoodtypeistheextendedvonNeumannneighborhood,whichincludesthetwoclosestcellsineachorthogonaldirection,foratotalofeight.[3]Thegeneral

    equationforsuchasystemofrulesiskks,wherekisthenumberofpossiblestatesforacell,andsisthe

    numberofneighboringcells(includingthecelltobecalculateditself)usedtodeterminethecell'snextstate.[4]Thus,inthetwodimensionalsystemwithaMooreneighborhood,thetotalnumberofautomata

    possiblewouldbe229,or1.34 10154.

    Itisusuallyassumedthateverycellintheuniversestartsinthesamestate,exceptforafinitenumberofcellsinotherstatestheassignmentofstatevaluesiscalledaconfiguration.[5]Moregenerally,itissometimesassumedthattheuniversestartsoutcoveredwithaperiodicpattern,andonlyafinitenumberofcellsviolatethatpattern.Thelatterassumptioniscommoninonedimensionalcellularautomata.

  • TheredcellsarethevonNeumannneighborhoodforthebluecell,whiletheextendedneighborhoodincludesthepinkcellsaswell.

    Atorus,atoroidalshape

    JohnvonNeumann,LosAlamosIDbadge

    Cellularautomataareoftensimulatedonafinitegridratherthananinfiniteone.Intwodimensions,theuniversewouldbearectangleinsteadofaninfiniteplane.Theobviousproblemwithfinitegridsishowtohandlethecellsontheedges.Howtheyarehandledwillaffectthevaluesofallthecellsinthegrid.Onepossiblemethodistoallowthevaluesinthosecellstoremainconstant.Anothermethodistodefineneighborhoodsdifferentlyforthesecells.Onecouldsaythattheyhavefewerneighbors,butthenonewouldalsohavetodefinenewrulesforthecellslocatedontheedges.Thesecellsareusuallyhandledwithatoroidalarrangement:whenonegoesoffthetop,onecomesinatthecorrespondingpositiononthebottom,andwhenonegoesofftheleft,onecomesinontheright.(Thisessentiallysimulatesaninfiniteperiodictiling,andinthefieldofpartialdifferentialequationsissometimesreferredtoasperiodicboundaryconditions.)Thiscanbevisualizedastapingtheleftandrightedgesoftherectangletoformatube,thentapingthetopandbottomedgesofthetubetoformatorus(doughnutshape).Universesofotherdimensionsarehandledsimilarly.Thissolvesboundaryproblemswithneighborhoods,butanotheradvantageisthatitiseasilyprogrammableusingmodulararithmeticfunctions.Forexample,ina1dimensionalcellularautomatonliketheexamplesbelow,theneighborhoodofacellxitis{xi1t1,

    xit1,xi+1t1},wheretisthetimestep(vertical),andiistheindex(horizontal)inonegeneration.

    History

    StanislawUlam,whileworkingattheLosAlamosNationalLaboratoryinthe1940s,studiedthegrowthofcrystals,usingasimplelatticenetworkashismodel.[6]Atthesametime,JohnvonNeumann,Ulam'scolleagueatLosAlamos,wasworkingontheproblemofselfreplicatingsystems.[7]VonNeumann'sinitialdesignwasfoundeduponthenotionofonerobotbuildinganotherrobot.Thisdesignisknownasthekinematicmodel.[8][9]Ashedevelopedthisdesign,vonNeumanncametorealizethegreatdifficultyofbuildingaselfreplicatingrobot,andofthegreatcostinprovidingtherobotwitha"seaofparts"fromwhichtobuilditsreplicant.Neumannreadapaperentitled"Thegeneralandlogicaltheoryofautomata"attheHixonSymposiumin1948.[7]Ulamwastheonewhosuggestedusingadiscretesystemforcreatingareductionistmodelofselfreplication.[10][11]NilsAallBarricelliperformedmanyoftheearliestexplorationsofthesemodelsofartificiallife.

    UlamandvonNeumanncreatedamethodforcalculatingliquidmotioninthelate1950s.Thedrivingconceptofthemethodwastoconsideraliquidasagroupofdiscreteunitsandcalculatethemotionofeachbasedonitsneighbors'behaviors.[12]Thuswasbornthefirstsystemofcellularautomata.LikeUlam'slatticenetwork,vonNeumann'scellularautomataaretwodimensional,withhisselfreplicatorimplementedalgorithmically.Theresultwasauniversalcopierandconstructorworkingwithinacellularautomatonwithasmallneighborhood(onlythosecellsthattouchareneighborsforvonNeumann's

  • cellularautomata,onlyorthogonalcells),andwith29statespercell.[13]VonNeumanngaveanexistenceproofthataparticularpatternwouldmakeendlesscopiesofitselfwithinthegivencellularuniversebydesigninga200,000cellconfigurationthatcoulddoso.[13]Thisdesignisknownasthetessellationmodel,andiscalledavonNeumannuniversalconstructor.[14]

    Alsointhe1940s,NorbertWienerandArturoRosenbluethdevelopedamodelofexcitablemediawithsomeofthecharacteristicsofacellularautomaton.[15]Theirspecificmotivationwasthemathematicaldescriptionofimpulseconductionincardiacsystems.Howevertheirmodelisnotacellularautomatonbecausethemediuminwhichsignalspropagateiscontinuous,andwavefrontsarecurves.[15][16]AtruecellularautomatonmodelofexcitablemediawasdevelopedandstudiedbyJ.M.GreenbergandS.P.Hastingsin1978seeGreenbergHastingscellularautomaton.TheoriginalworkofWienerandRosenbluethcontainsmanyinsightsandcontinuestobecitedinmodernresearchpublicationsoncardiacarrhythmiaandexcitablesystems.[17]

    Inthe1960s,cellularautomatawerestudiedasaparticulartypeofdynamicalsystemandtheconnectionwiththemathematicalfieldofsymbolicdynamicswasestablishedforthefirsttime.In1969,GustavA.Hedlundcompiledmanyresultsfollowingthispointofview[18]inwhatisstillconsideredasaseminalpaperforthemathematicalstudyofcellularautomata.ThemostfundamentalresultisthecharacterizationintheCurtisHedlundLyndontheoremofthesetofglobalrulesofcellularautomataasthesetofcontinuousendomorphismsofshiftspaces.

    In1969,GermancomputerpioneerKonradZusepublishedhisbookCalculatingSpace,proposingthatthephysicallawsoftheuniversearediscretebynature,andthattheentireuniverseistheoutputofadeterministiccomputationonasinglecellularautomaton"Zuse'sTheory"becamethefoundationofthefieldofstudycalleddigitalphysics.[19]

    Inthe1970satwostate,twodimensionalcellularautomatonnamedGameofLifebecamewidelyknown,particularlyamongtheearlycomputingcommunity.InventedbyJohnConwayandpopularizedbyMartinGardnerinaScientificAmericanarticle,[20]itsrulesareasfollows:Ifacellhastwoblackneighbors,itstaysthesame.Ifithasthreeblackneighbors,itbecomesblack.Inallothersituationsitbecomeswhite.Despiteitssimplicity,thesystemachievesanimpressivediversityofbehavior,fluctuatingbetweenapparentrandomnessandorder.OneofthemostapparentfeaturesoftheGameofLifeisthefrequentoccurrenceofgliders,arrangementsofcellsthatessentiallymovethemselvesacrossthegrid.Itispossibletoarrangetheautomatonsothattheglidersinteracttoperformcomputations,andaftermucheffortithasbeenshownthattheGameofLifecanemulateauniversalTuringmachine.[21]Itwasviewedasalargelyrecreationaltopic,andlittlefollowupworkwasdoneoutsideofinvestigatingtheparticularitiesoftheGameofLifeandafewrelatedrulesintheearly1970s.[22]

    StephenWolframindependentlybeganworkingoncellularautomatainmid1981afterconsideringhowcomplexpatternsseemedformedinnatureinviolationoftheSecondLawofThermodynamics.[23]Hisinvestigationswereinitiallyspurredbyaninterestinmodellingsystemssuchasneuralnetworks.[23]HepublishedhisfirstpaperinReviewsofModernPhysicsinvestigatingelementarycellularautomata(Rule30inparticular)inJune1983.[2][23]TheunexpectedcomplexityofthebehaviorofthesesimplerulesledWolframtosuspectthatcomplexityinnaturemaybeduetosimilarmechanisms.[23]Hisinvestigations,however,ledhimtorealizethatcellularautomatawerepooratmodellingneuralnetworks.[23]Additionally,duringthisperiodWolframformulatedtheconceptsofintrinsicrandomnessandcomputationalirreducibility,[24]andsuggestedthatrule110maybeuniversalafactprovedlaterbyWolfram'sresearchassistantMatthewCookinthe1990s.[25]

  • In2002Wolframpublisheda1280pagetextANewKindofScience,whichextensivelyarguesthatthediscoveriesaboutcellularautomataarenotisolatedfactsbutarerobustandhavesignificanceforalldisciplinesofscience.[26]Despiteconfusioninthepress,[27][28]thebookdidnotargueforafundamentaltheoryofphysicsbasedoncellularautomata,[29]andalthoughitdiddescribeafewspecificphysicalmodelsbasedoncellularautomata,[30]italsoprovidedmodelsbasedonqualitativelydifferentabstractsystems.[31]

    Classification

    Wolfram,inANewKindofScienceandseveralpapersdatingfromthemid1980s,definedfourclassesintowhichcellularautomataandseveralothersimplecomputationalmodelscanbedivideddependingontheirbehavior.Whileearlierstudiesincellularautomatatendedtotrytoidentifytypeofpatternsforspecificrules,Wolfram'sclassificationwasthefirstattempttoclassifytherulesthemselves.Inorderofcomplexitytheclassesare:

    Class1:Nearlyallinitialpatternsevolvequicklyintoastable,homogeneousstate.Anyrandomnessintheinitialpatterndisappears.[32]Class2:Nearlyallinitialpatternsevolvequicklyintostableoroscillatingstructures.Someoftherandomnessintheinitialpatternmayfilterout,butsomeremains.Localchangestotheinitialpatterntendtoremainlocal.[32]Class3:Nearlyallinitialpatternsevolveinapseudorandomorchaoticmanner.Anystablestructuresthatappeararequicklydestroyedbythesurroundingnoise.Localchangestotheinitialpatterntendtospreadindefinitely.[32]Class4:Nearlyallinitialpatternsevolveintostructuresthatinteractincomplexandinterestingways,withtheformationoflocalstructuresthatareabletosurviveforlongperiodsoftime.[33]Class2typestableoroscillatingstructuresmaybetheeventualoutcome,butthenumberofstepsrequiredtoreachthisstatemaybeverylarge,evenwhentheinitialpatternisrelativelysimple.Localchangestotheinitialpatternmayspreadindefinitely.Wolframhasconjecturedthatmany,ifnotallclass4cellularautomataarecapableofuniversalcomputation.ThishasbeenprovenforRule110andConway'sgameofLife.

    Thesedefinitionsarequalitativeinnatureandthereissomeroomforinterpretation.AccordingtoWolfram,"...withalmostanygeneralclassificationschemethereareinevitablycaseswhichgetassignedtooneclassbyonedefinitionandanotherclassbyanotherdefinition.Andsoitiswithcellularautomata:thereareoccasionallyrules...thatshowsomefeaturesofoneclassandsomeofanother."[34]Wolfram'sclassificationhasbeenempiricallymatchedtoaclusteringofthecompressedlengthsoftheoutputsofcellularautomata.[35]

    Therehavebeenseveralattemptstoclassifycellularautomatainformallyrigorousclasses,inspiredbytheWolfram'sclassification.Forinstance,CulikandYuproposedthreewelldefinedclasses(andafourthonefortheautomatanotmatchinganyofthese),whicharesometimescalledCulikYuclassesmembershipintheseprovedundecidable.[36][37][38]Wolfram'sclass2canbepartitionedintotwosubgroupsofstable(fixedpoint)andoscillating(periodic)rules.[39]

    Reversible

    Acellularautomatonisreversibleif,foreverycurrentconfigurationofthecellularautomaton,thereisexactlyonepastconfiguration(preimage).[40]Ifonethinksofacellularautomatonasafunctionmappingconfigurationstoconfigurations,reversibilityimpliesthatthisfunctionisbijective.[40]Ifa

  • cellularautomatonisreversible,itstimereversedbehaviorcanalsobedescribedasacellularautomatonthisfactisaconsequenceoftheCurtisHedlundLyndontheorem,atopologicalcharacterizationofcellularautomata.[41][42]Forcellularautomatainwhichnoteveryconfigurationhasapreimage,theconfigurationswithoutpreimagesarecalledGardenofEdenpatterns.[43]

    Foronedimensionalcellularautomatathereareknownalgorithmsfordecidingwhetheraruleisreversibleorirreversible.[44][45]However,forcellularautomataoftwoormoredimensionsreversibilityisundecidablethatis,thereisnoalgorithmthattakesasinputanautomatonruleandisguaranteedtodeterminecorrectlywhethertheautomatonisreversible.TheproofbyJarkkoKariisrelatedtothetilingproblembyWangtiles.[46]

    Reversiblecellularautomataareoftenusedtosimulatesuchphysicalphenomenaasgasandfluiddynamics,sincetheyobeythelawsofthermodynamics.Suchcellularautomatahaverulesspeciallyconstructedtobereversible.SuchsystemshavebeenstudiedbyTommasoToffoli,NormanMargolusandothers.Severaltechniquescanbeusedtoexplicitlyconstructreversiblecellularautomatawithknowninverses.Twocommononesarethesecondordercellularautomatonandtheblockcellularautomaton,bothofwhichinvolvemodifyingthedefinitionofacellularautomatoninsomeway.Althoughsuchautomatadonotstrictlysatisfythedefinitiongivenabove,itcanbeshownthattheycanbeemulatedbyconventionalcellularautomatawithsufficientlylargeneighborhoodsandnumbersofstates,andcanthereforebeconsideredasubsetofconventionalcellularautomata.Conversely,ithasbeenshownthateveryreversiblecellularautomatoncanbeemulatedbyablockcellularautomaton.[47][48]

    Totalistic

    Aspecialclassofcellularautomataaretotalisticcellularautomata.Thestateofeachcellinatotalisticcellularautomatonisrepresentedbyanumber(usuallyanintegervaluedrawnfromafiniteset),andthevalueofacellattimetdependsonlyonthesumofthevaluesofthecellsinitsneighborhood(possiblyincludingthecellitself)attimet1.[49][50]Ifthestateofthecellattimetdoesnotdependonitsownstateattimet1thenthecellularautomatonisproperlycalledoutertotalistic.[50]Conway'sGameofLifeisanexampleofanoutertotalisticcellularautomatonwithcellvalues0and1outertotalisticcellularautomatawiththesameMooreneighborhoodstructureasLifearesometimescalledlifelikecellularautomata.[51][52]

    Relatedautomata

    Therearemanypossiblegeneralizationsofthecellularautomatonconcept.

    Onewayisbyusingsomethingotherthanarectangular(cubic,etc.)grid.Forexample,ifaplaneistiledwithregularhexagons,thosehexagonscouldbeusedascells.Inmanycasestheresultingcellularautomataareequivalenttothosewithrectangulargridswithspeciallydesignedneighborhoodsandrules.Anothervariationwouldbetomakethegriditselfirregular,suchaswithPenrosetiles.[53]

    Also,rulescanbeprobabilisticratherthandeterministic.Suchcellularautomataarecalledprobabilisticcellularautomata.Aprobabilisticrulegives,foreachpatternattimet,theprobabilitiesthatthecentralcellwilltransitiontoeachpossiblestateattimet+1.Sometimesasimplerruleisusedforexample:"TheruleistheGameofLife,butoneachtimestepthereisa0.001%probabilitythateachcellwilltransitiontotheoppositecolor."

  • Acellularautomatonbasedonhexagonalcellsinsteadofsquares(rule34/2)

    Theneighborhoodorrulescouldchangeovertimeorspace.Forexample,initiallythenewstateofacellcouldbedeterminedbythehorizontallyadjacentcells,butforthenextgenerationtheverticalcellswouldbeused.

    Incellularautomata,thenewstateofacellisnotaffectedbythenewstateofothercells.Thiscouldbechangedsothat,forinstance,a2by2blockofcellscanbedeterminedbyitselfandthecellsadjacenttoitself.

    Therearecontinuousautomata.Theseareliketotalisticcellularautomata,butinsteadoftheruleandstatesbeingdiscrete(e.g.atable,usingstates{0,1,2}),continuousfunctionsareused,andthestatesbecomecontinuous(usuallyvaluesin[0,1]).Thestateofalocationisafinitenumberofrealnumbers.Certaincellularautomatacanyielddiffusioninliquidpatternsinthisway.

    Continuousspatialautomatahaveacontinuumoflocations.Thestateofalocationisafinitenumberofrealnumbers.Timeisalsocontinuous,andthestateevolvesaccordingtodifferentialequations.Oneimportantexampleisreactiondiffusiontextures,differentialequationsproposedbyAlanTuringtoexplainhowchemicalreactionscouldcreatethestripesonzebrasandspotsonleopards.[54]Whentheseareapproximatedbycellularautomata,theyoftenyieldsimilarpatterns.MacLennan[1](http://www.cs.utk.edu/~mclennan/contincomp.html)considerscontinuousspatialautomataasamodelofcomputation.

    Thereareknownexamplesofcontinuousspatialautomata,whichexhibitpropagatingphenomenaanalogoustoglidersintheGameofLife.[55]

    Elementarycellularautomata

    Thesimplestnontrivialcellularautomatonwouldbeonedimensional,withtwopossiblestatespercell,andacell'sneighborsdefinedastheadjacentcellsoneithersideofit.Acellanditstwoneighborsformaneighborhoodof3cells,sothereare23=8possiblepatternsforaneighborhood.Aruleconsistsofdeciding,foreachpattern,whetherthecellwillbea1ora0inthenextgeneration.Therearethen28=256possiblerules.[4]These256cellularautomataaregenerallyreferredtobytheirWolframcode,astandardnamingconventioninventedbyWolframthatgiveseachruleanumberfrom0to255.Anumberofpapershaveanalyzedandcomparedthese256cellularautomata.Therule30andrule110cellularautomataareparticularlyinteresting.Theimagesbelowshowthehistoryofeachwhenthestartingconfigurationconsistsofa1(atthetopofeachimage)surroundedby0s.Eachrowofpixelsrepresentsagenerationinthehistoryoftheautomaton,witht=0beingthetoprow.Eachpixeliscoloredwhitefor0andblackfor1.

    Rule30

    Rule30cellularautomaton

    currentpattern 111 110 101 100 011 010 001 000newstateforcentercell 0 0 0 1 1 1 1 0

  • Rule30exhibitsclass3behavior,meaningevensimpleinputpatternssuchasthatshownleadtochaotic,seeminglyrandomhistories.

    Rule110,liketheGameofLife,exhibitswhatWolframcallsclass4behavior,whichisneithercompletelyrandomnorcompletelyrepetitive.Localizedstructuresappearandinteractinvariouscomplicatedlookingways.InthecourseofthedevelopmentofANewKindofScience,asaresearchassistanttoWolframin1994,MatthewCookprovedthatsomeofthesestructureswererichenoughtosupportuniversality.Thisresultisinterestingbecauserule110isanextremelysimpleonedimensionalsystem,anddifficulttoengineertoperformspecificbehavior.ThisresultthereforeprovidessignificantsupportforWolfram'sviewthatclass4systemsareinherentlylikelytobeuniversal.CookpresentedhisproofataSantaFeInstituteconferenceonCellularAutomatain1998,butWolframblockedtheprooffrombeingincludedintheconferenceproceedings,asWolframdidnotwanttheproofannouncedbeforethepublicationofANewKindofScience.[56]In2004,Cook'sproofwasfinallypublishedinWolfram'sjournalComplexSystems(Vol.15,No.1),overtenyearsafterCookcameupwithit.Rule110hasbeenthebasisforsomeofthesmallestuniversalTuringmachines.[57]

    Rulespace

    Anelementarycellularautomatonruleisspecifiedby8bits,andallelementarycellularautomatonrulescanbeconsideredtositontheverticesofthe8dimensionalunithypercube.Thisunithypercubeisthecellularautomatonrulespace.Fornextnearestneighborcellularautomata,aruleisspecifiedby25=32bits,andthecellularautomatonrulespaceisa32dimensionalunithypercube.Adistancebetweentworulescanbedefinedbythenumberofstepsrequiredtomovefromonevertex,whichrepresentsthefirstrule,andanothervertex,representinganotherrule,alongtheedgeofthehypercube.ThisruletoruledistanceisalsocalledtheHammingdistance.

    Cellularautomatonrulespaceallowsustoaskthequestionconcerningwhetherruleswithsimilardynamicalbehaviorare"close"toeach.Graphicallydrawingahighdimensionalhypercubeonthe2dimensionalplaneremainsadifficulttask,andonecrudelocatorofaruleinthehypercubeisthenumberofbit1inthe8bitstringforelementaryrules(or32bitstringforthenextnearestneighborrules).DrawingtherulesindifferentWolframclassesintheseslicesoftherulespaceshowthatclass1rulestendtohavelowernumberofbit1's,thuslocatedinoneregionofthespace,whereasclass3rulestendtohavehigherproportion(50%)ofbit1's.[39]

    Rule110

    Rule110cellularautomaton

    currentpattern 111 110 101 100 011 010 001 000newstateforcentercell 0 1 1 0 1 1 1 0

  • Conustextileexhibitsacellularautomatonpatternonitsshell.[59]

    Forlargercellularautomatonrulespace,itisshownthatclass4rulesarelocatedbetweentheclass1andclass3rules.[58]Thisobservationisthefoundationforthephraseedgeofchaos,andisreminiscentofthephasetransitioninthermodynamics.

    Biology

    Somebiologicalprocessesoccurorcanbesimulatedbycellularautomata.

    Patternsofsomeseashells,liketheonesinConusandCymbiolagenus,aregeneratedbynaturalcellularautomata.Thepigmentcellsresideinanarrowbandalongtheshell'slip.Eachcellsecretespigmentsaccordingtotheactivatingandinhibitingactivityofitsneighborpigmentcells,obeyinganaturalversionofamathematicalrule.[59]Thecellbandleavesthecoloredpatternontheshellasitgrowsslowly.Forexample,thewidespreadspeciesConustextilebearsapatternresemblingWolfram'srule30cellularautomaton.[59]

    Plantsregulatetheirintakeandlossofgasesviaacellularautomatonmechanism.Eachstomaontheleafactsasacell.[60]

    Movingwavepatternsontheskinofcephalopodscanbesimulatedwithatwostate,twodimensionalcellularautomata,eachstatecorrespondingtoeitheranexpandedorretractedchromatophore.[61]

    Thresholdautomatahavebeeninventedtosimulateneurons,andcomplexbehaviorssuchasrecognitionandlearningcanbesimulated.[62]

    Fibroblastsbearsimilaritiestocellularautomata,aseachfibroblastonlyinteractswithitsneighbors.[63]

    Chemicaltypes

    TheBelousovZhabotinskyreactionisaspatiotemporalchemicaloscillatorthatcanbesimulatedbymeansofacellularautomaton.Inthe1950sA.M.Zhabotinsky(extendingtheworkofB.P.Belousov)discoveredthatwhenathin,homogenouslayerofamixtureofmalonicacid,acidifiedbromate,andacericsaltweremixedtogetherandleftundisturbed,fascinatinggeometricpatternssuchasconcentriccirclesandspiralspropagateacrossthemedium.Inthe"ComputerRecreations"sectionoftheAugust1988issueofScientificAmerican,[64]A.K.Dewdneydiscussedacellularautomaton[65]developedbyMartinGerhardtandHeikeSchusteroftheUniversityofBielefeld(WestGermany).ThisautomatonproduceswavepatternsthatresemblethoseintheBelousovZhabotinskyreaction.

    Applications

    Computerprocessors

    CellularautomatonprocessorsarephysicalimplementationsofCAconcepts,whichcanprocessinformationcomputationally.Processingelementsarearrangedinaregulargridofidenticalcells.Thegridisusuallyasquaretiling,ortessellation,oftwoorthreedimensionsothertilingsarepossible,but

  • notyetused.Cellstatesaredeterminedonlybyinteractionswithadjacentneighborcells.Nomeansexiststocommunicatedirectlywithcellsfartheraway.[66]Onesuchcellularautomatonprocessorarrayconfigurationisthesystolicarray.Cellinteractioncanbeviaelectriccharge,magnetism,vibration(phononsatquantumscales),oranyotherphysicallyusefulmeans.Thiscanbedoneinseveralwayssonowiresareneededbetweenanyelements.Thisisveryunlikeprocessorsusedinmostcomputerstoday,vonNeumanndesigns,whicharedividedintosectionswithelementsthatcancommunicatewithdistantelementsoverwires.

    Cryptography

    Rule30wasoriginallysuggestedasapossibleBlockcipherforuseincryptography.Twodimensionalcellularautomataareusedforrandomnumbergeneration.[67]

    Cellularautomatahavebeenproposedforpublickeycryptography.TheonewayfunctionistheevolutionofafiniteCAwhoseinverseisbelievedtobehardtofind.Giventherule,anyonecaneasilycalculatefuturestates,butitappearstobeverydifficulttocalculatepreviousstates.

    Errorcorrectioncoding

    CAhavebeenappliedtodesignerrorcorrectioncodesinthepaper"DesignofCAECCCellularAutomataBasedErrorCorrectingCode",byD.RoyChowdhury,S.Basu,I.SenGupta,P.PalChaudhuri.ThepaperdefinesanewschemeofbuildingSECDEDcodesusingCA,andalsoreportsafasthardwaredecoderforthecode.

    Modelingphysicalreality

    AsAndrewIlachinskipointsoutinhisCellularAutomata,manyscholarshaveraisedthequestionofwhethertheuniverseisacellularautomaton.[68]Ilachinskiarguesthattheimportanceofthisquestionmaybebetterappreciatedwithasimpleobservation,whichcanbestatedasfollows.Considertheevolutionofrule110:ifitweresomekindof"alienphysics",whatwouldbeareasonabledescriptionoftheobservedpatterns?[69]Ifanobserverdidnotknowhowtheimagesweregenerated,thatobservermightendupconjecturingaboutthemovementofsomeparticlelikeobjects.Indeed,physicistJamesCrutchfieldhasconstructedarigorousmathematicaltheoryoutofthisidea,provingthestatisticalemergenceof"particles"fromcellularautomata.[70]Then,astheargumentgoes,onemightwonderifourworld,whichiscurrentlywelldescribedbyphysicswithparticlelikeobjects,couldbeaCAatitsmostfundamentallevel.

    Whileacompletetheoryalongthislinehasnotbeendeveloped,entertaininganddevelopingthishypothesisledscholarstointerestingspeculationandfruitfulintuitionsonhowcanwemakesenseofourworldwithinadiscreteframework.MarvinMinsky,theAIpioneer,investigatedhowtounderstandparticleinteractionwithafourdimensionalCAlattice[71]KonradZusetheinventorofthefirstworkingcomputer,theZ3developedanirregularlyorganizedlatticetoaddressthequestionoftheinformationcontentofparticles.[72]Morerecently,EdwardFredkinexposedwhathetermsthe"finitenaturehypothesis",i.e.,theideathat"ultimatelyeveryquantityofphysics,includingspaceandtime,willturnouttobediscreteandfinite."[73]FredkinandWolframarestrongproponentsofaCAbasedphysics.

  • Inrecentyears,othersuggestionsalongtheselineshaveemergedfromliteratureinnonstandardcomputation.Wolfram'sANewKindofScienceconsidersCAthekeytounderstandingavarietyofsubjects,physicsincluded.TheMathematicsoftheModelsofReferencecreatedbyiLabs[74]founderGabrieleRossianddevelopedwithFrancescoBertoandJacopoTagliabuefeaturesanoriginal2D/3Duniversebasedonanew"rhombicdodecahedronbased"latticeandauniquerule.Thismodelsatisfiesuniversality(itisequivalenttoaTuringMachine)andperfectreversibility(adesideratumifonewantstoconservevariousquantitieseasilyandneverloseinformation),anditcomesembeddedinafirstordertheory,allowingcomputable,qualitativestatementsontheuniverseevolution.[75]

    Seealso

    Specificrules

    Brian'sBrainLangton'santWireworldRule90Rule184vonNeumanncellularautomataNobilicellularautomataCodd'scellularautomatonLangton'sloopsCoDi

    Problemssolved

    FiringsquadsynchronizationproblemMajorityproblem

    Seealso

    AutomatatheoryBidirectionaltrafficCellularautomatainpopularcultureCycliccellularautomatonExcitablemediumMirek'sCellebrationMovablecellularautomatonQuantumcellularautomataSpatialdecisionsupportsystemTurmites

    Referencenotes1. DanielDennett(1995),Darwin'sDangerousIdea,PenguinBooks,London,ISBN9780140167344,ISBN

    014016734X2. Wolfram,Stephen(1983)."StatisticalMechanicsofCellularAutomata"

    (http://www.stephenwolfram.com/publications/articles/ca/83statistical/).ReviewsofModernPhysics55(3):601644.Bibcode:1983RvMP...55..601W(http://adsabs.harvard.edu/abs/1983RvMP...55..601W).doi:10.1103/RevModPhys.55.601(https://dx.doi.org/10.1103%2FRevModPhys.55.601).

    3. Kier,Seybold,Cheng2005,p.15

  • 4. BialynickiBirula,BialynickaBirula2004,p.95. Schiff2011,p.416. Pickover,CliffordA.(2009).TheMathBook:FromPythagorastothe57thDimension,250Milestonesinthe

    HistoryofMathematics.SterlingPublishingCompany,Inc.p.406.ISBN9781402757969.7. Schiff2011,p.18. JohnvonNeumann,Thegeneralandlogicaltheoryofautomata,inL.A.Jeffress,ed.,CerebralMechanisms

    inBehaviorTheHixonSymposium,JohnWiley&Sons,NewYork,1951,pp.131.9. JohnG.Kemeny,Manviewedasamachine,Sci.Amer.192(April1955):5867Sci.Amer.192(June

    1955):6(errata).10. Schiff2011,p.311. Ilachinski2001,p.xxix12. BialynickiBirula,BialynickaBirula2004,p.813. Wolfram2002,p.87614. vonNeumann,JohnBurks,ArthurW.(1966).TheoryofSelfReproducingAutomata.UniversityofIllinois

    Press.15. Wiener,N.Rosenblueth,A.(1946)."Themathematicalformulationoftheproblemofconductionof

    impulsesinanetworkofconnectedexcitableelements,specificallyincardiacmuscle".Arch.Inst.Cardiol.Mxico16:205.

    16. Letichevskii,A.A.Reshodko,L.V.(1974)."N.Wiener'stheoryoftheactivityofexcitablemedia".Cybernetics8:856864.doi:10.1007/bf01068458(https://dx.doi.org/10.1007%2Fbf01068458).

    17. Davidenko,J.M.Pertsov,A.V.Salomonsz,R.Baxter,W.Jalife,J.(1992)."Stationaryanddriftingspiralwavesofexcitationinisolatedcardiacmuscle".Nature355(6358):349351.Bibcode:1992Natur.355..349D(http://adsabs.harvard.edu/abs/1992Natur.355..349D).doi:10.1038/355349a0(https://dx.doi.org/10.1038%2F355349a0).PMID1731248(https://www.ncbi.nlm.nih.gov/pubmed/1731248).

    18. Hedlund,G.A.(1969)."Endomorphismsandautomorphismsoftheshiftdynamicalsystem"(http://www.springerlink.com/content/k62915l862l30377/).Math.SystemsTheory3(4):3203751.doi:10.1007/BF01691062(https://dx.doi.org/10.1007%2FBF01691062).

    19. Schiff2011,p.18220. Gardner,Martin(1970)."MathematicalGames:ThefantasticcombinationsofJohnConway'snewsolitaire

    game"life" "(http://www.ibiblio.org/lifepatterns/october1970.html).ScientificAmerican(223):120123.21. PaulChapman.Lifeuniversalcomputer.http://www.igblan.freeonline.co.uk/igblan/ca/November200222. Wainwright2010,p.1623. Wolfram2002,p.88024. Wolfram2002,p.88125. Mitchell,Melanie(4October2002)."IstheUniverseaUniversalComputer?".Science298(5591):6568.

    doi:10.1126/science.1075073(https://dx.doi.org/10.1126%2Fscience.1075073).26. Wolfram2002,pp.1727. Johnson,George(9June2002)." 'ANewKindofScience':YouKnowThatSpaceTimeThing?NeverMind"

    (http://www.nytimes.com/2002/06/09/books/review/09JOHNSOT.html).TheNewYorkTimes(TheNewYorkTimesCompany).Retrieved22January2013.

    28. "TheScienceofEverything"(http://www.economist.com/printedition/displayStory.cfm?Story_ID=1154164).TheEconomist.30May2002.Retrieved22January2013.

    29. Wolfram2002,pp.43354630. Wolfram2002,pp.5111431. Wolfram2002,pp.11516832. Ilachinsky2001,p.1233. Ilachinsky2001,p.1334. Wolfram2002,p.23135. Zenil,Hector(2010)."Compressionbasedinvestigationofthedynamicalpropertiesofcellularautomataand

    othersystems"(http://www.complexsystems.com/pdf/1911.pdf)(PDF).ComplexSystems19(1).36. G.Cattaneo,E.Formenti,L.Margara(1998)."TopologicalchaosandCA".InM.Delorme,J.Mazoyer.

    Cellularautomata:aparallelmodel(http://books.google.com/books?id=dGs87s5Pft0C&pg=PA239).Springer.p.239.ISBN9780792354932.

    37. BurtonH.Voorhees(1996).Computationalanalysisofonedimensionalcellularautomata(http://books.google.com/books?id=WcZTQHPrG68C&pg=PA8).WorldScientific.p.8.ISBN9789810222215.

  • 38. MaxGarzon(1995).Modelsofmassiveparallelism:analysisofcellularautomataandneuralnetworks.Springer.p.149.ISBN9783540561491.

    39. Li,WentianPackard,Norman(1990)."Thestructureoftheelementarycellularautomatarulespace"(http://www.complexsystems.com/pdf/0433.pdf)(PDF).ComplexSystems4:281297.RetrievedJanuary25,2013.

    40. Kari,Jarrko1991,p.37941. Richardson,D.(1972)."Tessellationswithlocaltransformations".J.ComputerSystemSci.6(5):373388.

    doi:10.1016/S00220000(72)800096(https://dx.doi.org/10.1016%2FS00220000%2872%29800096).42. Margenstern,Maurice(2007).CellularAutomatainHyperbolicSpacesTomeI,Volume1

    (http://books.google.com/books?id=wGjX1PpFqjAC&pg=PA134).Archivescontemporaines.p.134.ISBN9782847030334.

    43. Schiff2011,p.10344. SerafinoAmoroso,YaleN.Patt,DecisionProceduresforSurjectivityandInjectivityofParallelMapsfor

    TessellationStructures.J.Comput.Syst.Sci.6(5):448464(1972)45. Sutner,Klaus(1991)."DeBruijnGraphsandLinearCellularAutomata"(http://www.complex

    systems.com/pdf/0513.pdf)(PDF).ComplexSystems5:1930.46. Kari,Jarkko(1990)."Reversibilityof2Dcellularautomataisundecidable".PhysicaD45:379385.

    Bibcode:1990PhyD...45..379K(http://adsabs.harvard.edu/abs/1990PhyD...45..379K).doi:10.1016/01672789(90)90195U(https://dx.doi.org/10.1016%2F01672789%2890%2990195U).

    47. Kari,Jarkko(1999)."Onthecircuitdepthofstructurallyreversiblecellularautomata".FundamentaInformaticae38:93107.

    48. DurandLose,Jrme(2001)."Representingreversiblecellularautomatawithreversibleblockcellularautomata"(http://www.dmtcs.org/dmtcsojs/index.php/proceedings/article/download/264/855).DiscreteMathematicsandTheoreticalComputerScienceAA:145154.

    49. Wolfram2002,p.6050. Ilachinski,Andrew(2001).Cellularautomata:adiscreteuniverse(http://books.google.com/books?

    id=3Hx2lx_pEF8C&pg=PA4).WorldScientific.pp.4445.ISBN9789812381835.51. Thephrase"lifelikecellularautomaton"datesbackatleasttoBarral,Chat&Manneville(1992),whoused

    itinabroadersensetorefertooutertotalisticautomata,notnecessarilyoftwodimensions.Themorespecificmeaninggivenherewasusede.g.inseveralchaptersofAdamatzky(2010).See:Barral,BernardChat,HuguesManneville,Paul(1992)."Collectivebehaviorsinafamilyofhighdimensionalcellularautomata".PhysicsLettersA163(4):279285.Bibcode:1992PhLA..163..279B(http://adsabs.harvard.edu/abs/1992PhLA..163..279B).doi:10.1016/03759601(92)91013H(https://dx.doi.org/10.1016%2F03759601%2892%2991013H).

    52. Eppstein2010,pp.727353. http://www.newscientist.com/article/dn22134firstglidersnavigateeverchangingpenroseuniverse.html54. Murray,J."MathematicalBiologyII".Springer.55. Pivato,M:"RealLife:ThecontinuumlimitofLargerthanLifecellularautomata",TheoreticalComputer

    Science,372(1),March2007,pp.466856. Giles,Jim(2002)."WhatKindofScienceisThis?".Nature(417):216218.57. Weinberg,Steven(October24,2002)."IstheUniverseaComputer?"

    (http://www.nybooks.com/articles/archives/2002/oct/24/istheuniverseacomputer/?pagination=false).TheNewYorkReviewofBooks(ReaS.Hederman).RetrievedOctober12,2012.

    58. WentianLi,NormanPackard,ChrisGLangton(1990)."Transitionphenomenaincellularautomatarulespace".PhysicaD45(13):7794.Bibcode:1990PhyD...45...77L(http://adsabs.harvard.edu/abs/1990PhyD...45...77L).doi:10.1016/01672789(90)90175O(https://dx.doi.org/10.1016%2F01672789%2890%2990175O).

    59. Coombs,Stephen(February15,2009),TheGeometryandPigmentationofSeashells(http://www.maths.nott.ac.uk/personal/sc/pdfs/Seashells09.pdf)(PDF),pp.34,retrievedSeptember2,2012

    60. Peak,WestMessinger,Mott(2004)."Evidenceforcomplex,collectivedynamicsandemergent,distributedcomputationinplants"(http://www.pnas.org/cgi/content/abstract/101/4/918).ProceedingsoftheNationalInstituteofScienceoftheUSA101(4):918922.Bibcode:2004PNAS..101..918P(http://adsabs.harvard.edu/abs/2004PNAS..101..918P).doi:10.1073/pnas.0307811100(https://dx.doi.org/10.1073%2Fpnas.0307811100).PMC327117(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327117).PMID14732685(https://www.ncbi.nlm.nih.gov/pubmed/14732685).

    61. http://gilly.stanford.edu/past_research_files/APackardneuralnet.pdf

  • References

    62. Ilachinsky2001,p.27563. YvesBouligand(1986).DisorderedSystemsandBiologicalOrganization.pp.374375.64. A.K.Dewdney,Thehodgepodgemachinemakeswaves,ScientificAmerican,p.104,August1988.65. M.GerhardtandH.Schuster,Acellularautomatondescribingtheformationofspatiallyorderedstructuresin

    chemicalsystems,PhysicaD36,209221,1989.66. Muhtaroglu,Ali(August1996)."4.1CellularAutomatonProcessor(CAP)".CellularAutomatonProcessor

    BasedSystemsforGeneticSequenceComparison/DatabaseSearching.CornellUniversity.pp.6274.67. Tomassini,M.Sipper,M.Perrenoud,M.(2000)."Onthegenerationofhighqualityrandomnumbersby

    twodimensionalcellularautomata".IEEETransactionsonComputers49(10):11461151.68. Ilachinsky2001,p.66069. Ilachinsky2001,pp.66166270. J.P.Crutchfield,"TheCalculiofEmergence:Computation,Dynamics,andInduction"

    (http://csc.ucdavis.edu/~cmg/papers/CalcEmerg.pdf),PhysicaD75,1154,1994.71. M.Minsky,"CellularVacuum",InternationalJournalofTheoreticalPhysics21,537551,1982.72. K.Zuse,"TheComputingUniverse",Int.Jour.ofTheo.Phy.21,589600,1982.73. E.Fredkin,"Digitalmechanics:aninformationalprocessbasedonreversibleuniversalcellularautomata",

    PhysicaD45,254270,199074. iLabs(http://www.ilabs.it/)75. F.Berto,G.Rossi,J.Tagliabue,TheMathematicsoftheModelsofReference

    (http://www.mmdr.it/defaultEN.asp),CollegePublications,2010

    Adamatzky,Andrew,ed.(2010).GameofLifeCellularAutomata.Springer.ISBN9781849962162.BialynickiBirula,IwoBialynickaBirula,Iwona(2004).ModelingReality:HowComputersMirrorLife.OxfordUniversityPress.ISBN0198531001.Chopard,BastienDroz,Michel(2005).CellularAutomataModelingofPhysicalSystems.CambridgeUniversityPress.ISBN0521461685.Gutowitz,Howard,ed.(1991).CellularAutomata:TheoryandExperiment.MITPress.ISBN9780262570862.Ilachinski,Andrew(2001).CellularAutomata:ADiscreteUniverse.WorldScientific.ISBN9789812381835.Kier,LemontB.Seybold,PaulG.Cheng,ChaoKun(2005).ModelingChemicalSystemsusingCellularAutomata.Springer.ISBN9781402036576.Schiff,JoelL.(2011).CellularAutomata:ADiscreteViewoftheWorld.Wiley&Sons,Inc.ISBN9781118030639.Wolfram,Stephen(2002).ANewKindofScience.WolframMedia.ISBN9781579550080.CellularautomatonFAQ(http://cafaq.com/)fromthenewsgroupcomp.theory.cellautomata"NeighbourhoodSurvey"(http://cellauto.com/neighbourhood/index.html)(includesdiscussionontriangulargrids,andlargerneighborhoodCAs)vonNeumann,John,1966,TheTheoryofSelfreproducingAutomata,A.Burks,ed.,Univ.ofIllinoisPress,Urbana,IL.CosmaShalizi'sCellularAutomataNotebook(http://cscs.umich.edu/~crshalizi/notebooks/cellularautomata.html)containsanextensivelistofacademicandprofessionalreferencematerial.Wolfram'spapersonCAs(http://www.stephenwolfram.com/publications/articles/ca/)A.M.Turing.1952.TheChemicalBasisofMorphogenesis.Phil.Trans.RoyalSociety,vol.B237,pp.3772.(proposesreactiondiffusion,atypeofcontinuousautomaton).EvolvingCellularAutomatawithGeneticAlgorithms:AReviewofRecentWork,MelanieMitchell,JamesP.Crutchfeld,RajarshiDas(InProceedingsoftheFirstInternationalConferenceonEvolutionaryComputationandItsApplications(EvCA'96).Moscow,Russia:RussianAcademyofSciences,1996.)TheEvolutionaryDesignofCollectiveComputationinCellularAutomata,JamesP.Crutchfeld,MelanieMitchell,RajarshiDas(InJ.P.CrutcheldandP.K.Schuster(editors),EvolutionaryDynamics|ExploringtheInterplayofSelection,Neutrality,Accident,andFunction.NewYork:OxfordUniversityPress,2002.)TheEvolutionofEmergentComputation,JamesP.CrutchfieldandMelanieMitchell(SFITechnicalReport9403012)

  • WikimediaCommonshasmediarelatedtoCellularautomata.

    Wikibookshasabookonthetopicof:CellularAutomata

    Externallinks

    CellularAutomata(http://plato.stanford.edu/entries/cellularautomata)entrybyFrancescoBerto&JacopoTagliabueintheStanfordEncyclopediaofPhilosophyMirek'sCellebration(http://www.mirekw.com/ca/index.html)HometofreeMCellandMJCellcellularautomataexplorersoftwareandrulelibraries.Thesoftwaresupportsalargenumberof1Dand2Drules.Thesiteprovidesbothanextensiveruleslexiconandmanyimagegalleriesloadedwithexamplesofrules.MCellisaWindowsapplication,whileMJCellisaJavaapplet.Sourcecodeisavailable.ModernCellularAutomata(http://www.collidoscope.com/modernca/)Easytouseinteractiveexhibitsoflivecolor2Dcellularautomata,poweredbyJavaapplet.Includedareexhibitsoftraditional,reversible,hexagonal,multiplestep,fractalgenerating,andpatterngeneratingrules.Thousandsofrulesareprovidedforviewing.Freesoftwareisavailable.SelfreplicationloopsinCellularSpace(http://necsi.edu/postdocs/sayama/sdsr/java/)Javaappletpoweredexhibitsofselfreplicationloops.Acollectionofover10differentcellularautomataapplets(http://vlab.infotech.monash.edu.au/simulations/cellularautomata/)(inMonashUniversity'sVirtualLab)Golly(http://www.sourceforge.net/projects/golly)supportsvonNeumann,Nobili,GOL,andagreatmanyothersystemsofcellularautomata.DevelopedbyTomasRokickiandAndrewTrevorrow.ThisistheonlysimulatorcurrentlyavailablethatcandemonstratevonNeumanntypeselfreplication.WolframAtlas(http://atlas.wolfram.com/TOC/TOC_200.html)Anatlasofvarioustypesofonedimensionalcellularautomata.ConwayLife(http://www.conwaylife.com/)Firstreplicatingcreaturespawnedinlifesimulator(http://www.newscientist.com/article/mg20627653.800firstreplicatingcreaturespawnedinlifesimulator.html)TheMathematicsoftheModelsofReference(http://www.mmdr.it/provaEN.asp),featuringageneraltutorialonCA,interactiveapplet,freecodeandresourcesonCAasmodeloffundamentalphysicsFourmilabCellularAutomataLaboratory(http://www.fourmilab.ch/cellab)BusyBoxes(http://busyboxes.org),a3D,reversible,SALT(http://64.78.31.152/wpcontent/uploads/2012/08/2stateRevCAin3D.pdf)architectureCACellularAutomataRepository(http://uncomp.uwe.ac.uk/genaro/CA_repository.html)(CAresearchers,historiclinks,freesoftware,booksandbeyond)

    Retrievedfrom"http://en.wikipedia.org/w/index.php?title=Cellular_automaton&oldid=663567533"

    Categories: Cellularautomata Systemstheory Automatatheory Dynamicalsystems

    Thispagewaslastmodifiedon22May2015,at17:28.TextisavailableundertheCreativeCommonsAttributionShareAlikeLicenseadditionaltermsmayapply.Byusingthissite,youagreetotheTermsofUseandPrivacyPolicy.Wikipediaisa

    Ganguly,Sikdar,DeutschandChaudhuri"ASurveyonCellularAutomata"(http://www.wepapers.com/Papers/16352/files/swf/15001To20000/16352.swf)

  • registeredtrademarkoftheWikimediaFoundation,Inc.,anonprofitorganization.