Cell Biology: Mitochondria Energy

Embed Size (px)

Citation preview

  • 8/12/2019 Cell Biology: Mitochondria Energy

    1/46

    Bacteria, mitochondria and chloroplastsall use chemiosmosis to generate ATP

  • 8/12/2019 Cell Biology: Mitochondria Energy

    2/46

  • 8/12/2019 Cell Biology: Mitochondria Energy

    3/46

    Mitochondria contain two membranes and two aqueous compartmentseach of which contains a unique set of proteins.

    Fig 5.3 p181

  • 8/12/2019 Cell Biology: Mitochondria Energy

    4/46

    Fig 3.27 p113

  • 8/12/2019 Cell Biology: Mitochondria Energy

    5/46

    Fig 5.5 p183

  • 8/12/2019 Cell Biology: Mitochondria Energy

    6/46

    The mitochondrial inner membrane and matrix are the sites of

    most reactions involving the oxidation of pyruvate and the coupled synthesis of ATP

  • 8/12/2019 Cell Biology: Mitochondria Energy

    7/46

    Mitochondrial oxidation of pyruvate beginswith the formation of acetyl CoA

  • 8/12/2019 Cell Biology: Mitochondria Energy

    8/46

    The multienzyme complex pyruvate dehydrogenase convertspyruvate and coenzyme A into CO 2 and acetyl CoA

  • 8/12/2019 Cell Biology: Mitochondria Energy

    9/46

    From glycolysis,Pyruvate decarboxylase

    From oxidation of fatty acidsIn mitochondria

    Aka TCA, Krebs cycle

  • 8/12/2019 Cell Biology: Mitochondria Energy

    10/46

    Fig 5.6 p185

    Tricarboxylic Acid (TCA)CycleKrebs Cycle Citric acid cycle

  • 8/12/2019 Cell Biology: Mitochondria Energy

    11/46

  • 8/12/2019 Cell Biology: Mitochondria Energy

    12/46

    A summary of the reactions ofglycolysis and the citric acid cycle

  • 8/12/2019 Cell Biology: Mitochondria Energy

    13/46

    Electron transport and oxidativephosphorylation

    Most of the free energy released during oxidation of glucoseto CO 2 is retained in NADH and FADH 2 During respiration, electrons are released from NADH andFADH 2 and eventually are transferred to O 2 (forming H 2O)The step-by-step transfer of electrons via the electrontransport chain allows the large amount of free energyproduced by the transfer of electrons to O 2 to be released insmall increments

    Several electron transport chain components convert thesesmall increments into a proton and voltage gradient acrossthe inner membraneThe movement of protons down their electrochemical

    gradient drives the synthesis of ATP from ADP and P i

  • 8/12/2019 Cell Biology: Mitochondria Energy

    14/46

    The stepwise flow of electrons through the electrontransport chain from NADH, succinate, and FADH 2 to 0 2

    Reduction

    potentials ofelectron carriersfavor electronflow from NADHto O 2

  • 8/12/2019 Cell Biology: Mitochondria Energy

    15/46Fi 5.14 192

  • 8/12/2019 Cell Biology: Mitochondria Energy

    16/46Table 5.1 p190

  • 8/12/2019 Cell Biology: Mitochondria Energy

    17/46

    Electron transport in mitochondria iscoupled to proton translocation

  • 8/12/2019 Cell Biology: Mitochondria Energy

    18/46

    The multiprotein complexes and associated prostheticgroups of the mitochondrial electron transport chain

  • 8/12/2019 Cell Biology: Mitochondria Energy

    19/46

    The pathway of electron transport and protontransport in the inner mitochondrial membrane

    Fig 5.17 p194

  • 8/12/2019 Cell Biology: Mitochondria Energy

    20/46

  • 8/12/2019 Cell Biology: Mitochondria Energy

    21/46

    NADH FAD

    1

    2

    _ O 2 H O2

    FMN

    Fe-S

    Fe-S

    Fe-S

    Q

    Matrix

    Inner Memb

    ComplexI Complex

    II

    ComplexIII

    ComplexIV

  • 8/12/2019 Cell Biology: Mitochondria Energy

    22/46

    NADH FAD

    1

    2

    _ O 2 H O2

    FMN

    Fe-S

    Fe-S

    Fe-S

    Q

    Matrix

    Inner Memb

    ComplexI Complex

    II

    ComplexIII

    ComplexIV

    H+

    H+

    H+

  • 8/12/2019 Cell Biology: Mitochondria Energy

    23/46

    Fig 5.10 p187

  • 8/12/2019 Cell Biology: Mitochondria Energy

    24/46

  • 8/12/2019 Cell Biology: Mitochondria Energy

    25/46

    Coenzyme Q is the only electron carrier thatis not a protein-bound prosthetic group

    Th di i l f i

  • 8/12/2019 Cell Biology: Mitochondria Energy

    26/46

    Three-dimensional structures of some iron-sulfur clusters in electron-transporting proteins

    Fig 5.13 p192

    O id i f d d h b h

  • 8/12/2019 Cell Biology: Mitochondria Energy

    27/46

    Oxidation of reduced cytochrome c by cytochrome coxidase is coupled to proton transport

    C li f H + i d O d i

  • 8/12/2019 Cell Biology: Mitochondria Energy

    28/46

    Coupling of H + pumping and O 2 reductionby cytochrome c oxidase

    Fig 5.18 p195

  • 8/12/2019 Cell Biology: Mitochondria Energy

    29/46

  • 8/12/2019 Cell Biology: Mitochondria Energy

    30/46

    Uncoupler

    2,4-dinitrophenol (DNP)

    Thermogenin

    Natural uncouplerBrown adipose tissue

    h

  • 8/12/2019 Cell Biology: Mitochondria Energy

    31/46

    ATP Synthase

    Fig 5.22 p199

  • 8/12/2019 Cell Biology: Mitochondria Energy

    32/46

    Fig 5.3 p181

    ATP th i t h l

  • 8/12/2019 Cell Biology: Mitochondria Energy

    33/46

    ATP synthase comprises a proton channel(F 0) and ATPase (F 1)

    Fig 5.24 p200

  • 8/12/2019 Cell Biology: Mitochondria Energy

    34/46

    Fig 5.24 p200

    Fi 5.29 204

    Proton Diffusion

  • 8/12/2019 Cell Biology: Mitochondria Energy

    35/46

    ATP Synthase F1 Head

    Fig 5.26 p202

    The F F comple harnesses the proton

  • 8/12/2019 Cell Biology: Mitochondria Energy

    36/46

    The F 0F1 complex harnesses the proton-motive force to power ATP synthesis

    Binding Change Mechanism

    Fig 5.27 p203

  • 8/12/2019 Cell Biology: Mitochondria Energy

    37/46

    Demonstration that the subunit of F 0 rotates relative to the( )3 hexamer in an energy-requiring step

    Fig 5.28 p203

  • 8/12/2019 Cell Biology: Mitochondria Energy

    38/46

    Fig 5.30 p205

    Summary

  • 8/12/2019 Cell Biology: Mitochondria Energy

    39/46

    Specific uptake-targeting sequences in newly madeproteins are recognized by different organelles

    Overview of sorting of nuclear

  • 8/12/2019 Cell Biology: Mitochondria Energy

    40/46

    Overview of sorting of nuclear-encoded proteins in eukaryotic cells

  • 8/12/2019 Cell Biology: Mitochondria Energy

    41/46

    Most mitochondrial proteins are synthesized asprecursors containing uptake-targeting sequences

    Uptake targeting sequences of imported

  • 8/12/2019 Cell Biology: Mitochondria Energy

    42/46

    Uptake-targeting sequences of importedmitochondrial proteins

    Fig 8.47 p317

  • 8/12/2019 Cell Biology: Mitochondria Energy

    43/46

    Fig 8.47 p317

  • 8/12/2019 Cell Biology: Mitochondria Energy

    44/46

    Mitochondria and chloroplasts Contain their own

    prokaryote-like genomes andribosomes

    Likely evolved from

    bacteria that wereendocytosed(ingested)

    EndosymbiontHypothesis

    Fig 1 p27

  • 8/12/2019 Cell Biology: Mitochondria Energy

    45/46

    Fig 1 p27

    Mit h d i d B t i

  • 8/12/2019 Cell Biology: Mitochondria Energy

    46/46

    Similarities to Bacteriaa) DNA is circularb) Size of ribosome 70sc) antibiotic sensitivity (inhibit protein synthesis)

    Chloramphenicol inhibits Mito + Bacteria but notcytosolic ribosmes

    Cycloheximide inhibits cytosolic ribosmes but not

    Mito + Bacterail ribosomesd) Replication

    Mitochondria and Bacteria