CEC-500-2009-084

Embed Size (px)

Citation preview

  • 8/3/2019 CEC-500-2009-084

    1/272

    Arnold SchwarzeneggerGovernor

    RENEWABLE ENERGYCOST OF GENERATION UPDATE

    PIER

    INTERIM

    PROJECTREP

    ORT

    Prepared For:

    California Energy CommissionPublic Interest Energy Research Program

    Prepared By:KEMA, Inc.

    August 2009CEC-500-2009-084

  • 8/3/2019 CEC-500-2009-084

    2/272

  • 8/3/2019 CEC-500-2009-084

    3/272

    Prepared By:KEMA, Inc.Charles ODonnell, Pete Baumstark, Valerie Nibler, Karin Corfee, andKevin SullivanOakland, CA 94612Commission Contract No. 500-06-014Commission Work Authorization No: KEMA-06-020-P-R

    Prepared For:

    Public Interest Energy Research (PIER)

    California Energy Commission

    Cathy TurnerContract Manager

    John Hingtgen, M.S.

    Project Manager

    Energy Generation Research Office

    Kenneth Koyama

    Office Manager

    Energy Generation Research Office

    Thom Kelly

    Deputy Director

    ENERGY RESEARCH & DEVELOPMENT DIVISION

    Deputy Director

    Melissa Jones

    Executive Director

    DISCLAIMER

    This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of theEnergy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors andsubcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party representthat the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the CaliforniaEnergy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report.

  • 8/3/2019 CEC-500-2009-084

    4/272

  • 8/3/2019 CEC-500-2009-084

    5/272

    i

    Preface

    TheCaliforniaEnergyCommissionsPublicInterestEnergyResearch(PIER)Programsupports

    publicinterestenergyresearchanddevelopmentthatwillhelpimprovethequalityoflifein

    Californiabybringingenvironmentallysafe,affordable,andreliableenergyservicesand

    productstothemarketplace.

    ThePIERProgramconductspublicinterestresearch,development,anddemonstration(RD&D)

    projectstobenefitCalifornia.

    ThePIERProgramstrivestoconductthemostpromisingpublicinterestenergyresearchby

    partneringwithRD&Dentities,includingindividuals,businesses,utilities,andpublicor

    privateresearchinstitutions.

    PIERfundingeffortsarefocusedonthefollowingRD&Dprogramareas:

    BuildingsEndUseEnergyEfficiency

    EnergyInnovationsSmallGrants

    EnergyRelatedEnvironmentalResearch

    EnergySystemsIntegration

    EnvironmentallyPreferredAdvancedGeneration

    Industrial/Agricultural/WaterEndUseEnergyEfficiency

    RenewableEnergyTechnologies

    Transportation

    RenewableEnergyCostofGenerationUpdateistheinterimreportfortheRenewableEnergyCost

    ofGenerationUpdateproject(ContractNumber50006014,workauthorizationnumber

    KEMA06020PR)conductedbyKEMA,Inc.Theinformationfromthisprojectcontributesto

    PIERsRenewableEnergyTechnologiesProgram.

    FormoreinformationaboutthePIERProgram,pleasevisittheEnergyCommissionswebsiteat

    www.energy.ca.gov/research/orcontacttheEnergyCommissionat9166544878.

    Acknowledgement

    GerryBraun,PIERtechnicalconsultant,isacknowledgedforhisinvaluabletechnicalguidanceandreviewofthisproject.

    Pleaseusethefollowingcitationforthisreport:

    ODonnell,Charles,PeteBaumstark,ValerieNibler,KarinCorfee,andKevinSullivan(KEMA).

    2009.RenewableEnergyCostofGenerationUpdate,PIERInterimProjectReport.CaliforniaEnergy

    Commission.CEC5002009084.

  • 8/3/2019 CEC-500-2009-084

    6/272

    ii

  • 8/3/2019 CEC-500-2009-084

    7/272

    iii

    Table of Contents

    ExecutiveSummary........................................................................................................................... 11.0 Introduction.......................................................................................................................... 32.0 ProjectApproach................................................................................................................. 5

    2.1. Task1: Technologies..................................................................................................... 52.2. Task2: CostDrivers...................................................................................................... 62.3. Task3: CurrentCosts.................................................................................................... 62.4. Task4: ExpectedCostTrajectories.............................................................................. 7

    2.4.1. Method....................................................................................................................... 92.5. Task5:Price/CostReconciliation................................................................................. 102.6. Task6:CommunityandBuildingScaleRenewableEnergy Costs........................ 11

    3.0 ProjectOutcomes................................................................................................................. 133.1. Technologies................................................................................................................... 13

    3.1.1. TechnicalandAnalyticalCritiqueofReferenceDocuments.............................. 133.1.2. MethodforSelectingTechnologies........................................................................ 223.1.3. UtilityScaleTechnologies....................................................................................... 233.1.4. CommunityScaleTechnologies............................................................................. 243.1.5. BuildingScaleTechnologies.................................................................................... 24

    3.2. Biomass............................................................................................................................ 243.2.1. TechnologyOverview.............................................................................................. 243.2.2. BiomassCombustionFluidizedBedBoiler........................................................ 273.2.3. BiomassCombustionStokerBoiler..................................................................... 353.2.4. BiomassCofiring....................................................................................................... 423.2.5. BiomassCoGasificationIGCC............................................................................... 47

    3.3. Geothermal...................................................................................................................... 523.3.1. TechnologyOverview.............................................................................................. 523.3.2. GeothermalBinary................................................................................................. 593.3.3.

    Geothermal

    Flash

    ...................................................................................................

    68

    3.4. Hydropower.................................................................................................................... 72

    3.4.1. TechnologyOverview.............................................................................................. 723.4.2. HydroDevelopedSitesWithoutPower............................................................. 753.4.3. HydroCapacityUpgradeforDevelopedSitesWithPower............................ 80

    3.5. Solar.................................................................................................................................. 84

  • 8/3/2019 CEC-500-2009-084

    8/272

    iv

    3.5.1. TechnologyOverview.............................................................................................. 843.5.2. SolarParabolicTrough.......................................................................................... 863.5.3. SolarPhotovoltaic(SingleAxis).......................................................................... 96

    3.6. Wind................................................................................................................................. 1023.6.1. TechnologyOverview.............................................................................................. 1023.6.2. OnshoreWindClass5........................................................................................... 1063.6.3. OnshoreWindClass3/4........................................................................................ 1173.6.4. OffshoreWindClass5........................................................................................... 117

    3.7. Wave................................................................................................................................ 1233.7.1. TechnologyOverview.............................................................................................. 1233.7.2. OceanWave............................................................................................................... 125

    3.8. IntegratedGasificationCombinedCycle................................................................... 1273.8.1. TechnologyOverview.............................................................................................. 1273.8.2. IGCCWithoutCarbonCapture(SingleorMultiple300MWTrains)...............1303.8.3. CarbonCaptureandSequestration........................................................................ 136

    3.9. AdvancedNuclear......................................................................................................... 1383.9.1. TechnologyOverview.............................................................................................. 1383.9.2. WESTINGHOUSEAP1000................................................................................... 143

    4.0 ConclusionsandRecommendations................................................................................. 1575.0 References............................................................................................................................. 1596.0 Glossary................................................................................................................................ 167AppendixA CostData

    AppendixB ResponsestoWorkshopComments

    List of Figures

    Figure1.Utilityscalefluidizedbedgasifier........................................................................................ 25

    Figure2.BiomassIGCCplantrepresentation...................................................................................... 26

    Figure3.SchematicdiagramofbiomassIGCCprocess..................................................................... 26

    Figure4.Utilityscalebiomassfluidizedbedgasifier......................................................................... 27

    Figure5.Circulatingfluidizedbedschematicdiagram..................................................................... 28

    Figure6.Bubblingfluidizedbedboiler................................................................................................ 30

  • 8/3/2019 CEC-500-2009-084

    9/272

    v

    Figure7.Stokerboilerschematicdiagram........................................................................................... 35

    Figure8.Flowschematicforastokerboilerconfiguration................................................................ 37

    Figure9.Biomasscofiringschematicforapulverizedcoalboilersystem...................................... 42

    Figure10.

    Primary

    biomass

    cofiring

    locations

    .....................................................................................

    44

    Figure11.ProcessflowdiagramforbiomassgasificationandconditioningforIGCCapplication

    ............................................................................................................................................................ 49

    Figure12.Binarypowerplant................................................................................................................ 58

    Figure13.Flashpowerplant.................................................................................................................. 58

    Figure14.Financialimpactofdelayonexplorationcosts................................................................. 62

    Figure15.Specificcostofpowerplantequipmentvs.resourcetemperature................................. 61

    Figure16.

    Economies

    of

    scale

    .................................................................................................................

    63

    Figure17.Impoundmenthydropower................................................................................................. 73

    Figure18.Diversionhydropowerfacility............................................................................................ 74

    Figure19.Runofriverhydropowerfacility........................................................................................ 75

    Figure20.Hydropowercostsfordevelopedsiteswithoutpower.................................................... 78

    Figure21.Hydropowercostsforincreasingcapacity......................................................................... 82

    Figure22.Solarparabolictroughelectricgeneratingsystem............................................................ 84

    Figure23.Simplifiedmoltensaltstorageprocessdiagram............................................................... 85

    Figure24.NellisAirForceBasePVinstallation.................................................................................. 86

    Figure25.Majorcostcategoriesforparabolictroughplant.............................................................. 91

    Figure26Capitalcostcomparison........................................................................................................ 94

    Figure27.LevelizedO&Mcostcomparison........................................................................................ 95

    Figure28.Solarmoduleretail/priceindex,125wattsandhigher..................................................... 99

    Figure29.Solarpowergenerationplantsince2006over20%cheaper.......................................... 100

    Figure30.Typicalturnkeysystemprice............................................................................................. 101

    Figure31.Amodern1.5MWwindturbineinstalledinawindpowerplant............................... 102

    Figure32.Californiawindresourcemap........................................................................................... 103

    Figure33.WindresourcemapofNorthernCalifornia..................................................................... 104

    Figure34.WindresourcemapofSouthernCalifornia..................................................................... 105

  • 8/3/2019 CEC-500-2009-084

    10/272

    vi

    Figure35.CapacityfactortrendsofCaliforniautilitywindsites................................................... 106

    Figure36.Installedwindprojectcostsovertime.............................................................................. 109

    Figure37.MetalpricesJan.2002Sept.2007(LondonMetalExchange)..................................... 111

    Figure38.

    U.S.

    dollar

    vs.

    euro,

    Jan.

    1999

    through

    April

    2009

    (European

    Central

    Bank)

    .............

    112

    Figure39.2007Projectcapacityfactorsbycommercialoperationdate......................................... 112

    Figure40.Onshorecapacityfactorbyinstalledyearandclass....................................................... 113

    Figure41.AnnualandcumulativegrowthinU.S.windpowercapacity..................................... 114

    Figure42.Averagecumulativewindandwholesalepowerpricesovertime.............................. 114

    Figure43.Installedwindprojectcostsasafunctionofprojectsize:20062007projects.............115

    Figure44.Europeanoffshorewindinstallations............................................................................... 118

    Figure45.Europeanoffshorewindgrowthandprojections........................................................... 120

    Figure46.Offshorecapacityfactorbyinstalledyear........................................................................ 122

    Figure47.Pointabsorber...................................................................................................................... 124

    Figure48.Oscillatingwatercolumn................................................................................................... 124

    Figure49.Overtopping......................................................................................................................... 124

    Figure50.Attenuator............................................................................................................................. 125

    Figure51.TypicaloxygenblownIGCCprocess............................................................................... 128

    Figure 52. Actual installation (Buggenum, The Netherlands) with typical technological

    componentsindicated................................................................................................................... 129

    Figure53.BureauofReclamationconstructioncosttrends............................................................. 134

    Figure54.Actualvs.PredictedNuclearReactorCapitalCosts...................................................... 139

    Figure55:PowerCapitalCostIndexNuclearandNonNuclearConstruction......................... 141

    Figure56.Generationsofnuclearenergy........................................................................................... 149

    List of Tables

    Table1.RecentCalifornialegislationthatmayaffectcostofgeneration.......................................... 1

    Table2.Costdriveranalysisworksheetexample................................................................................. 9

    Table3.Comparisonbetween2009KEMAanalysisand2007IEPR................................................ 16

  • 8/3/2019 CEC-500-2009-084

    11/272

    vii

    Table4.Comparisonof2009analysiswiththeCPUCGHGmodeldata........................................ 18

    Table5.Comparisonbetween2009analysiswiththeRETI1AData............................................... 20

    Table6.CentralplanttechnologylistforCOGmodelingproject..................................................... 23

    Table7.

    Installed

    CFB

    boiler

    capacity

    by

    country

    ...............................................................................

    29

    Table8.Recentcarbonsteelpricing...................................................................................................... 31

    Table9.Recentcarbonsteelpricing...................................................................................................... 38

    Table10.Biomassstokerinstalledcostranges2009dollarsperkWinstalled............................. 41

    Table11.Coalfiredgenerationplantswithbiomasscofiring........................................................... 43

    Table12.PotentialbinarygeothermalplantdevelopmentinCalifornia(mostlikelysources)....64

    Table13.CaliforniaandNevadaexistingbinaryplantswithcapacityfactor................................ 65

    Table14.FixedandvariableO&Mforbinarygeothermalpowerplants........................................ 66

    Table15.PotentialflashgeothermalplantdevelopmentinCalifornia(mostlikelysources).......69

    Table16.CaliforniaandNevadaexistingflashplantswithcapacityfactor................................... 70

    Table17.FixedandvariableO&Mforflashgeothermalpowerplants........................................... 71

    Table18.Parabolictroughcostcomparison......................................................................................... 89

    Table19.Assessmentofparabolictroughandpowertowersolartechnology.............................. 91

    Table20.Comparisonoftotalinvestmentcostestimates($/kWe):SunLabvs.S&L..................... 94

    Table21.CSPplantcapitalcostbreakdowns,2005............................................................................. 95

    Table22.AnnualCSPO&Mcostbreakdowns,2005.......................................................................... 96

    Table23.Californiautilitywindplantinstallationssince2003....................................................... 108

    Table24.Sizedistributionandnumberofturbinesovertime........................................................ 113

    Table25.Oceanwaveenergycostdata.............................................................................................. 127

    Table26.GasificationbasedpowerplantprojectsunderconsiderationintheU.S.beyond2010

    .......................................................................................................................................................... 131

    Table27.Expectednewnuclearpowerplantapplications.............................................................. 145

    Table28.OperatorsofU.S.reactors.................................................................................................... 147

    Table29.Nucleardecommissioningcosts.......................................................................................... 154

    Table30.Nuclearplantconstructionspendingprofile(%oftotalinstantcostperyear)...........156

  • 8/3/2019 CEC-500-2009-084

    12/272

    viii

  • 8/3/2019 CEC-500-2009-084

    13/272

    ix

    Abstract

    This2009reportupdatesthecostofgeneratingelectricityfortechnologiesifbuiltinCalifornia.

    CaliforniaEnergyCommissionstaffprovidesfactorsthataffectcosts,includingcost

    assumptions,for15renewabletechnologies,coalintegratedgasification,combinedcycle,and

    nuclearpowergenerationalternativesforutilityscalegenerationtechnologies.Thesecostsare

    usefulinevaluatingthefinancialfeasibilityofagenerationtechnologyandforcomparingthe

    costsofbuildingandoperatingoneparticularenergytechnologywithanother.Theseestimates

    updatethe2007costofgeneration,basedonempiricaldatacollectedfromoperatingfacilities,

    researchfromprimarysources,actualcostsandsurveysofexpectedcostsfromexpertsinthe

    field,andreferencedocuments.Thisreportdetailsarangeofinstantandinstalledcostswith

    projectedcostsbasedontwoyearsofsignificantgrowthinrenewabletechnologies,changesin

    materialcosts,andinflation.

    Keywords:Renewableenergy,costofgeneration,biomass,geothermal,hydropower,solar,

    parabolictrough,photovoltaic,PV,thermalsolar,windenergy,oceanwave,integrated

    gasificationcombinedcycle,IGCC,nuclear

  • 8/3/2019 CEC-500-2009-084

    14/272

    x

  • 8/3/2019 CEC-500-2009-084

    15/272

    1

    Executive Summary

    ThisstudyexaminesthecostsofrenewableelectricitygenerationinCaliforniatosupportthe

    costofgenerationmodelingworkoftheElectricityAnalysisOffice. Inadditiontorenewable

    electricitycostofgenerationassessment,nuclearandintegratedgasificationcombinedcycle

    generation

    are

    also

    examined.

    The

    California

    Energy

    Commission

    is

    tasked

    with

    developing

    robustcostofgenerationestimates,backedbysolidresearchleveragingthefullassessmentof

    previousresearchonthecostofgeneration,costdriversandtrends,andexpectedcost

    trajectoriesforfuturecosts. AllofthesedataarethenusedbytheEnergyCommissionto

    estimatethelevelizedcostofgenerationbytechnology.1

    Inthelastseveralyears,Californiahasexperiencedtremendousactivityintherenewable

    energymarket,largelydrivenbyseveralkeypiecesoflegislation. Thefollowingtableoutlines

    somerecentlegislationthathasbeenadoptedthatislikelytohaveasignificantimpactonthe

    costofgenerationforrenewablesaswellasconventionalgeneration.

    Table 1. Recent California Legislation That May Affect Cost of Generation

    Bill Author YearPassed

    Summary

    SB1 Murray

    (Chapter

    132)

    2006 SB 1 establishes in statute the California Solar Initiative with a

    goal of 3,000 megawatts of new solar produced electricity by

    the end of 2016. The California Solar Initiative Program has a

    $3.35 billion budget that will be administered by the California

    Public Utilities Commission, Energy Commission, and publicly

    owned utilities.

    SB 107 Simitian

    (Chapter

    464)

    2006 SB 107 accelerates Californias Renewables Portfolio

    Standard targets by requiring Californias retail sellers of

    electricity to increase renewable energy purchases by at least1 percent per year with a target of 20 percent renewable

    energy by 2010. It also requires the publicly owned utilities to

    file reports with the Energy Commission that outline their

    specific Renewables Portfolio Standard goals and progress

    towards the goals.

    SB

    1250

    Perata

    (Chapter

    512)

    2006 SB 1250, combined with SB 107, continues the authorization

    of the Energy Commissions ongoing use of public goods

    charge funds for the period of 2007-2012 for the continued

    operation of the Energy Commissions Renewable Energy

    Program.

    AB2189

    Blakeslee(Chapter

    747)

    2006 AB 2189 modifies the Renewables Portfolio Standardeligibility requirements for small hydroelectric generation

    facilities regarding efficiency improvements that result in

    increased capacity.

    1Levelizedcostistheconstantannualcostthatisequivalentonapresentvaluebasistotheactualannual

    costs,whicharethemselvesvariable.

  • 8/3/2019 CEC-500-2009-084

    16/272

    2

    Bill Author YearPassed

    Summary

    AB 32 Nez 2006 Global Warming Solutions Act sets mandatory targets for

    greenhouse gas emission reductions. Commits to reducing

    greenhouse gas emissions to 2000 levels by 2010 (11 percent

    below business as usual), to 1990 levels by 2020 (25 percentbelow business as usual), and 80 percent below 1990 levels

    by 2050. Requires the California Air Resources Board and

    the Energy Commission to determine baselines and create

    systems to track greenhouse gas emissions.

    Source: California Energy Commission

    TheambitiousgoalsaRenewablesPortfolioStandardof20percentby2010and33percentby

    2020,3,000megawatts(MW)ofphotovoltaicsinstalledwithinadecade,andan11percent

    reductioningreenhousegasemissionsby2010areambitiousbutachievable.

    TheEnergyCommissionsworkinthepreviousintegratedenergypolicyreportsconfirmthat

    thetechnicalpotentialforrenewablesinCaliforniaandtheWesternElectricityCoordinatingCouncilregiondwarfsthesegoals. Inaddition,developersofrenewableenergypowerplants

    andthesolarphotovoltaicindustryhaverespondedtoincreaseddemandforrenewableenergy

    withenthusiasm. TheEnergyCommissionintendstobridgetheestablishedpolicybackdrop

    andthesurgingrenewablemarkettoconverttechnicalpotentialintoreality.

    KEMA,Inc.(KEMA)performedadetailedassessmentofthegenerationtechnologiesthatmight

    beavailableinthenext20years. Foreachtechnology,KEMAassessedcostdriversandtrends

    todevelopinputvariablesfortheEnergyCommissionslevelizedcostmodel. Toprovidethis

    information,researchersperformedthefollowing:

    Literaturereview

    and

    identification

    of

    renewable

    energy

    and

    two

    non

    renewable

    energy

    technologieslikelytobedeployedinCaliforniaoverthenext20years,alongwith

    identificationofthescaleatwhichtheyarelikelytobedeployed.

    Costdriversandtrendanalysisforeachlikelycontributingtechnologyandanalysisof

    factorsthatdeterminetherange(high,average,andlow)ofexpectedcosts.

    Costmodelinputforutilityscaletechnologies,includingcurrentnominalcostsand

    plausibleminimumandmaximumcostsforeachutilityscaletechnology,brokendown

    intoinputvariablesthatareusedintheEnergyCommissionslevelizedcostanalysis.

    Expectedpathsforfuturecostsforutilityscalegenerationtechnologies,plusa

    discussionoffactorsthatdeterminethesecosts,asthebasisforcalculatinglevelized

    energycosts.

    Thefourtopicslistedaboveareaddressedforutilityscaletechnologiesintheinterimproject

    report. Thefinalprojectreportwillalsoaddresscommunityandbuildingscaletechnologiesas

    wellassummarizekeyfindingsandrecommendations.

  • 8/3/2019 CEC-500-2009-084

    17/272

    3

    1.0 Introduction

    RenewableenergydeploymentinCaliforniaisexpectedtoaccelerateintheneartermin

    responsetolegislationidentifyingsupplyportfoliotargetsandclimatemitigationtargets.

    Relatedpolicydevelopmentmustbebasedonthebestpossibleeconomicinformation,

    especiallythecostofbulkrenewableenergyelectricitygeneration. Inaddition,twonon

    renewableenergytechnologiesareexaminedinsupportofthecostofgenerationmodeling

    workoftheElectricityAnalysisOfficeandascomparisonstotherenewableenergy

    technologies. Thetwononrenewableenergytechnologiesincludedinthisreportarenuclear

    andintegratedgasificationcombinedcycle(IGCC). Toprovidethisinformation,four

    fundamentaltopicswereaddressed:

    Literaturereviewandidentificationofrenewableenergyandtwononrenewableenergy

    technologieslikelytobedeployedinCaliforniaoverthenext20years,alongwith

    identificationoftheinfrastructurescalesatwhichtheyarelikelytobedeployed.

    Costdriversandtrendanalysisforeachlikelycontributingtechnologyandquantitative

    analysisoffactorsthatdeterminetherangeofexpectedcosts.

    Costmodelinputforutilityscaletechnologies,includingcurrentnominalcostsand

    plausibleminimumandmaximumcostsforeachutilityscaletechnology,brokendown

    intocategoriesthatareusedinCaliforniaEnergyCommission(EnergyCommission)

    levelizedcostanalysis.

    Expectedpathsforfuturecostsforutilityscalegenerationtechnologies,plus

    quantitativediscussionoffactorsthatdeterminethesecosts,asthebasisforcalculating

    levelizedenergycosts.

    Thefourtopicslistedaboveareaddressedforutilityscaletechnologiesintheinterimproject

    report. Thefinalprojectreportwillalsoaddresscommunityandbuildingscaletechnologies

    andthefollowingtwotopics:

    Reconciliationofcurrentlyquotedforwardenergypricesandcurrentlyestimated

    levelizedcosts,discussingtherelativeimpactofvariousfactorsotherthanovernight

    constructioncostthatdeterminepricing. Reconciliationherereferstoexplainingthe

    differencesbetweenpricesandcosts,identifyingthefactorsthataccountforthe

    differences,andprovidingestimatesofthesizesofthesefactors.

    Costsandcosttrajectoriesforcommunityandbuildingscalerenewableenergytechnologies,alongwithminimumandmaximumcostsandtrajectoriesforthesescales.

    Theprojectwasundertakentoachievethefollowingobjectives:

    Criticallyreview,adjustandaugmentthecontentofAppendixBofEnergyCommission

    Report#CEC2002007011SF,December2007(ComparativeCostsofCaliforniaCentral

  • 8/3/2019 CEC-500-2009-084

    18/272

    4

    StationElectricityGenerationTechnologies,KleinandRednam)inordertocreate

    comparableinformationforthe2009IntegratedEnergyPolicyReport(IEPR).

    UpdaterenewableenergyandnonrenewableenergyinputsforuseintheEnergy

    CommissionsCostofGenerationModel,usedinpreparingthe2009IEPR.

    Reconcile

    price

    and

    cost

    information

    for

    representative

    utility

    scale

    power

    purchases.

    Estimatecostsandtrajectoriesforcommunityandbuildingscaletechnologies.

    Thefollowingsectiondescribestheprojectapproachfollowedbyasectiononprojectoutcomes.

    TheProjectOutcomessectionofthereportincludesanintroductiontothetechnologiesthat

    wereselectedwiththesectionsfollowingorganizedbytechnology.

  • 8/3/2019 CEC-500-2009-084

    19/272

    5

    2.0 Project Approach

    Thissectiondiscussesthetaskstheresearchteamundertookandwhattheteamdidto

    accomplishtheprojectobjectives.

    2.1. Task 1: Technologies

    Theresearchteamundertookthefollowingactivities:

    Conductedatechnicalandanalyticalcritiqueofreferencedocuments,including:

    ComparativeCostsofCaliforniaCentralStationElectricityGeneration

    Technologies2publishedbytheCaliforniaEnergyCommissioninDecember

    2007.

    CostsandsupplycurvesgeneratedinsupportofCaliforniaPublicUtilities

    Commission(CPUC)GreenhouseGas(GHG)ModelingProject.Finalresultsand

    GHGCalculatorv2bfromE3.3

    CostsestimatesfoundandusedintheRETIPhase1Aand1BreportsbyBlack&

    VeatchinRenewableEnergyTransmissionInitiativePhase1A.4

    RecommendedutilityscaleREtechnologiesforcostanalysiswithtechnicalandmarket

    justification. UtilityscaleREtechnologiesaregenerallydefinedasthoseover20MW.

    Identifiedtheprimaryexistingcommercialembodimentofeachutilityscaletechnology

    inCalifornia.Thetermcommercialembodimentisintendedtodescribethemost

    prevalentcommerciallyavailableapplicationofatechnology.Asanexample,inthecase

    ofsolarthermalpower,theprimaryexistingapplicationisconcentratingparabolic

    troughcollectors,

    augmented

    by

    natural

    gas

    fired

    boilers

    and

    supplying

    heat

    to

    steam

    Rankinepowerplantsinthe50MWto80MWsizerange.

    Identifiedtheexpectedprimarycommercialembodimentin2018.

    TheresearchteamwillrevisitTask1forthecommunityandbuildingscaletechnologiesinthe

    secondphaseoftheprojectandincludefindingsinthefinalprojectreport.

    2Klein,JoelandAnithaRednam.ComparativeCostsofCaliforniaCentralStationElectricityGeneration

    Technologies.CaliforniaEnergyCommission,ElectricitySupplyAnalysisDivision,CEC2002007011,

    December2007.http://www.energy.ca.gov/2007publications/CEC2002007011/CEC2002007011

    SF.PDF.

    3GHGCalculatorv2b,updatedon5/13/08.http://www.ethree.com/CPUC_GHG_Model.html.

    4Black&Veatch.RenewableEnergyTransmissionInitiativePhase1A(DraftReport).Black&Veatch,RETI

    StakeholderSteeringCommittee,ProjectNumber149148.0010,March2008.

    http://www.energy.ca.gov/2008publications/RETI10002008001/RETI10002008001D.PDF.

  • 8/3/2019 CEC-500-2009-084

    20/272

    6

    Pleasealsonotethatthisstudyprovidesestimatesforcostofgenerationtechnologiesbutdoes

    notprovidelevelizedlifecyclecostestimatesforthevariousenergytechnologies.5

    2.2. Task 2: Cost Drivers

    ForeachoftheutilityscaletechnologiesidentifiedinTask1,theresearchteamidentified:

    MarketandindustrychangessinceAugust2007thathavemateriallyaffectedcosts.

    Currenttrendsthatwillmateriallyaffectfuturecosts.

    PrimarygeneralandCaliforniaspecificcostdrivers(e.g.,plantscale,globalindustry

    manufacturingscale,resourcequality,plantlocation,capacityfactorincaseofstorage

    coupledplants,overnightcost).

    2.3. Task 3: Current Costs

    ForeachoftheutilityscaletechnologiesidentifiedinTask1,theresearchteamidentified:

    Nominal2009costsintheformatrequiredfortheEnergyCommissionslevelizedCost

    ofGenerationmodel.

    Plausibleminimum,average,andmaximumcostswithtechnicaljustification. Tothe

    extentpossible,plausiblemaximumisdefinedasacostmorethanonecompetitive

    playerwouldbewillingtopay,andplausibleminimumisdefinedasistheleastcost

    recordedabsenthiddensubsidies. Insomecases,uniquesitecharacteristicswerealso

    considered.

    Theprocessforcompilingdataoftheplausibleminimum,average,andmaximumcostcases

    wasdiscussedbetweentheresearchteamandEnergyCommissionstaff. Establishingranges

    betweenminimum,average,andmaximumcostscircumscribestherangeofmarketcoststhatwouldreasonablybeencounteredintheactualdevelopment,construction,andoperation

    withineachtechnology.

    Foreachtechnology,sizerangeswereidentifiedfortotalplantcapacitytodetermineminimum,

    average,andmaximumplantcapacitiesinmegawatts(MW). Plantcapacityfactorsandforced

    outagerateswerealsodefinedusingminimum,average,andmaximumvalues,reflectingthe

    rangesidentifiedthroughresearchedvalues. NorthAmericanEnergyReliabilityCorporation

    (NERC)/GeneratingAvailabilityDataSystem(GADS)fleetreliabilitydatawereusedfor

    technologieswheredatawasavailable,andinthecaseofwind,solar,andbiomasstechnologies,

    otherresearchsourceswereidentified. Plantheatratesandfuelusagedataweresimilarly

    modeledforlow/average/highcases,basedonactualoperatingplantcharacteristics;datawas

    compiledforeachfossiltechnologyfuelusagereflectinginservicevaluesforgeneratingplants.

    5Levelizedlifecyclecostestimatesincludethetotalcostofaprojectfromconstructiontoretirementand

    decommissioning.Theresearchteamscostestimatesfornuclearenergydonotincludenuclearplant

    decommissioningandwastedisposalcosts.

  • 8/3/2019 CEC-500-2009-084

    21/272

    7

    Fuelcostestimateswerederivedwithrangesforeachfueltypebasedonpublishedstudiesand

    datafromcoal,naturalgas,uranium,andbiomass.

    Overnightandinstalledcapitalcostvaluesforminimum,average,andmaximumcostswere

    definedthroughtwoapproaches. Forovernightcosts,capitalcostrangesweredeveloped

    throughdocumented

    plant

    cost

    histories

    and

    adjusted

    for

    capacity

    scaling

    effects,

    noting

    that

    theovernightcostperkilowattdependsonthetotalcapacityoftheplant. Furtheradjustments

    toovernightcostweremadetoreflectthecostdriveranalysis,showinglearningeffectsof

    cumulativegeneration. Theseexperiencecurveeffectswerereflectedontheyeartoyear

    overnightcostswithinthegenerationtechnologydataset.

    Forinstalledcapitalcostvalues,thelow/average/highcasesweredevelopedprimarilythrough

    theuseofdifferingconstructiontimedurationswheresuchdatacouldbeverifiedbythe

    researchteam. Thisdatareflectstheuncertaintyinconcepttocompletiontimeforeach

    technologyandresultsincostimpactduetoadditionalinterestcostsandallowanceforfunds

    usedduringconstructioncharges(AFUDC).

    Theuseandapplicationofrenewableenergyandothertaxincentiveswerealsoconsideredand

    modeledwiththeinputdatasettodeveloplow/average/highcostdatavalues. Thesetax

    incentiveswereappliedforeachtechnology,basedontheircurrentvalidityandspecific

    applicationforeachtechnology.

    Thedatasetcontainscellsforlow/average/highvaluesforeachinputtothecostofgeneration

    model,andeachspecificinputismodeledwithitsownlow/average/highcostrange. Onemay

    notdrawtheconclusionthatthesecostsarespecifictoaparticularsizeprojectforexample,

    thelowplantcapacityautomaticallygeneratesthehighestoperatingcost. Instead,thedatasets

    werecompiledsothateachtechnologydimension(e.g.,capacity,forcedoutagerate,heatrate,

    overnightcost)

    has

    its

    own

    low/average/high

    range

    and

    is

    not

    associated

    with

    arelative

    capacityorsizeproject.Inthatway,thedataismodeledsuchthattherangeofinputsdefining

    low/average/highcostsreflectboundariesforeachtechnology;andtheminimumcost

    representsthelowestplausiblerangeofcost,andthemaximumcostrepresentsthehighest

    plausiblerangeofcostforeachtechnology.

    2.4. Task 4: Expected Cost Trajectories

    Theresearchteamdevelopedaspreadsheetmodelusingcostdriverinformationtoestimate

    futurecosttrajectories(costsexpectedineachyearfrom20092029)oftherecommendedutility

    scaletechnologiesidentifiedinTask1.

    Thespreadsheetmodeltodevelopexpectedcosttrajectoriesforeachtechnologywasdeveloped

    usingtheconceptoflearningeffectsandtheexperiencecurve. Experiencecurvesareusedin

    developingtechnologypolicybecausetheyshowthemarketeffectsofincreasedcumulative

    production. Asthemarketadoptsanewenergytechnology,manufacturersgaineconomiesof

    scaleduetoincreasedproduction,andtheylearnhowtoimprovethetechnology. Bothofthese

    factorsovertimecanlowerunitcostsofproduction.

  • 8/3/2019 CEC-500-2009-084

    22/272

    8

    Theprimarydefinitionofexperiencecurveeffectsiscapturedinwhatistermedtheprogress

    ratioforatechnology. Simplyput,theprogressratioistheexpectedpercentagedecreasein

    unitcost,basedonadoublingofcumulativeoutputofthattechnology. Asanexample,a

    technologythathasaprogressratioof0.90wouldindicatethatadoublingofinstalledunitsfor

    thattechnologychoicewouldresultina10%unitcostreduction.6

    Energytechnologiesgenerallyhavetechnologyprogressratiosintherangefrom0.70to1.00,

    withthelowernumberindicatingarapidlearningrateandloweringofunitcostsovertime

    (newtechnologydeployment)andprogressratiosclosetounityreflectingextremelymature

    technologieswithonlysmall,incrementallearningeffects.

    Theresearchteamnotedthatitispossiblefortechnologiestoexhibitchangesinprogressratios

    overtime,duetoseveralfactors:

    DisruptiveTechnologyAdvancesbreakthroughdevelopmentsinatechnologythat

    significantlyaffectunitcostand/orpaceoflearningforamanufacturer.

    Price

    Subsidies

    Artificial

    price

    subsidies

    can

    alter

    the

    balance

    between

    experience

    and

    learning,andmitigatelearningeffects,sincethepricesignalisnotatruecompetitive

    marketsignal.

    ChangesinMacroeconomicFundamentalsTheycanaffectsupply/demandbalance

    andadoptionratesoftechnologies,enhancingorinhibitinglearningeffectsofadditional

    production.

    Thesechangesovertimedemonstratethatonevalueforprogressratioandexperienceeffectsis

    generallynotsuitableformodelingtheexperiencecurveovertime,especiallyforthose

    technologieswithhighlearningeffects. Theresearchteamthusmodeledarangeoflearning

    effects,withdocumentedprogressratiosforeachtechnologymodifiedthroughtheuseofkey

    costdriversthatwereidentifiedforeachtechnologychoice.

    Inthemodelingoftheselearningeffects,thetechnologyprogressratioandexperienceeffects,

    whichtypicallyrangefrom0.70to1.00,weremodifiedthroughtheuseofcostdriverratesof

    changeratios. Thesecostdriverratiosbeginatunity(1.00)asabasecase,whichreflectsthe

    normal,expectedexperiencecurve,andtheratioscanbeweightedasgreaterthanunity,which

    implyalesserlearningeffect,orlessthanunity,whichimplyagreater,acceleratedlearning

    effectthanthenormalexperiencecurve.

    Costdriversweresubjectivelyevaluatedbasedontwofactors: importanceweighting(how

    importantthedriveristothetechnologycostimprovement)andlow/highrangestoreflectthe

    subjectivevariationinlearningeffect. Foreachtechnologyandtheresearchedtechnology

    6InternationalEnergyAgency.ExperienceCurvesforEnergyTechnologyPolicy.OrganizationofEconomic

    CooperationandDevelopment(OECD),2000.

  • 8/3/2019 CEC-500-2009-084

    23/272

    9

    progressratio,eachcostdriverwasmodeledatunityfortheaveragecaseandthenmodifiedfor

    thelow/highcasesbasedontheresearchteamtechnicalfindingsandjudgment.

    Amodifiedprogressratio,calculatedastheproductoftheexpectedtechnologyexperience

    curve(shownasTechnologyProgressRatiointheexamplebelow)andtheweightedaverage

    costdriver

    effect,

    combines

    the

    effects

    of

    the

    baseline

    technology

    experience

    curve

    and

    identifiedcostdriversthatmighteitheraccelerateordeceleratethecostimprovements

    associatedwithanincreaseinthecumulativeinstalledbaseforeachtechnology. Thismodified

    progressratioisusedforfinalcostmodelingforeachtechnology.

    Theweightedaveragecasesforlow/average/highcostdrivereffectsusingthemodified

    progressratiowerethenmodeledusingthestandardexperiencecurveequationandyearover

    yearpricechangesidentified. Thesepricechangeswereusedtodeveloptheforecasted

    overnightcostsforeachtechnology.

    2.4.1. Method

    Theexperiencecurveeffectsandcostdriversweredevelopedforeachtechnologybycombining

    theexpectedvariabilityinidentifiedcostdriverswiththepublisheddatareflectingtheexpected

    learningcurveeffectsforeachrenewableenergytechnology,aspublishedbytheU.S.

    DepartmentofEnergy(DOE)andotherindustrysources. Theresearchteammodifiedthe

    experiencecurveeffectsbytheweightedimpacteachcostdrivercouldhaveonthetechnology

    anditscosttrajectory.

    AmodelwasdevelopedtocalculatetheseimpactsandisshownbelowinTable2:

    Table 2. Cost Driver Analysis Worksheet Example

    Cost Driver Analysis

    Technology: Onshore Wind 7

    Technology Progress Ratio: 0.900

    Rate of Change

    Cost Driver Percentage Low Average High

    1 Turbine Costs 75.0% 0.95 1.00 1.10

    2 Reliability 10.0% 0.97 1.00 1.04

    3 Permitting/Site Selection 5.0% 0.98 1.00 1.02

    4 Land Acquisition 5.0% 0.99 1.00 1.01

    5 Transmission Costs 5.0% 0.97 1.00 1.10

    Total and Averages: 100.0% 0.96 1.00 1.09

    Modified Progress Ratio: 0.86 0.90 0.98

    Source: KEMA

    Forexample,theabovesheetshowsthecalculationsmadefortheonshorewindrenewable

    technology. Thetechnologyprogressratioforonshorewindisidentifiedas0.90asabaseline

  • 8/3/2019 CEC-500-2009-084

    24/272

    10

    fromindustrypublisheddata.7 Thisbaselinevalueforexperiencecurveeffectsisthen

    subjectivelyadjustedbyeachcostdriverratio,andthenaweightedaverageistakenthattakes

    thesubjectiveeffectsofthesecostdriversintoaccount.

    Thecalculatedweightedaverageisthenshownasthemodifiedprogressratio,ortheexpected

    rangein

    learning

    curve

    effects

    with

    additional

    cumulative

    capacity

    over

    time.

    In

    the

    case

    above,theexpectedrangeinmodifiedprogressratioisfromalowvalueof0.86toahighvalue

    of0.98,whichimpliesthatwithadoublingofoverallinstalledcapacity,theexpecteddecrease

    incostswouldbebetween2%and14%,withanaverageexpecteddecreaseof10%.

    Thenextstepincomputingexperiencecurveeffectsandoverallcosttrajectoriesisdeveloping

    reliableestimatesforcumulativeinstalledcapacityforeachtechnology. Thiswasdonethrough

    twoprimaryresearchsources:theEnergyInformationAdministrations(EIA)AnnualEnergy

    Outlookfor20098andEuropeanWindEnergyAssociations(EWEA)PurePowerreport,9

    whichprovidesglobaldataforoffshorewindtechnologyadoption. Cumulativeinstalled

    capacityforecastswerecompiledforeachtechnologyusingthisreferencesourcedata.

    Theoverallcosttrajectorydevelopedinayearoveryearfashionwascomputedusingthe

    standardexperiencecurveformula:

    1_

    __

    Y

    Y

    GenerationCumulative

    GenerationCumulativeRatioCost ^ln

    2

    _Pr_ RatioogressModified

    Thiscostratiowasdevelopedinthecostdriverdataworksheetsforeachtechnologyandthen

    usedtoadjusttheforecastedyearlycostsforeachtechnology.

    2.5. Task 5: Price/Cost Reconciliation

    Inalaterphaseoftheproject,theresearchteamwill:

    AnalyzepubliclyavailablepricinginformationforrepresentativeutilityscaleREpower

    purchasesinCalifornia.

    Reconcilerepresentativepricesandestimatedlevelizedlifecyclecosts,includingthe

    relativeimpactoffactorsotherthancostthatdeterminepricing,e.g.,stateandfederal

    incentivesandtaxpolicies,financingassumptions,andthecostofcredit.

    TheprojectoutcomesfromtheresearchteamsanalysisforTask5willbepresentedinthefinal

    projectreport.

    7U.S.DOE.EnergyInformationAdministration.LearningCurveEffectsforNewTechnologies.

    8U.S.DepartmentofEnergy.EnergyInformationAdministration. AnnualEnergyOutlook2009

    (AEO2009).DOE/EIA0383(2009),March2009.

    9Zervos,Arthourous,ChristianKjaer,.PurePower:WindEnergyScenariosupto2030.EuropeanWind

    EnergyAssociation,March2008.

  • 8/3/2019 CEC-500-2009-084

    25/272

    11

    2.6. Task 6: Community and Building Scale Renewable EnergyCosts

    Inalaterphaseoftheproject,theresearchteamwill:

    IdentifysourcesofrelevantU.S.costinformationforrenewableenergyheatingand

    coolingtechnologies.

    Estimatenominalcostsandexpectedcosttrajectoriesforrecommendedcommunity and

    buildingscaleREtechnologies.

    Presentplausibleminimumandmaximumcostsandcosttrajectoriesforsame,with

    explanationoffactorsthatvaryandcausecoststovary.

    TheprojectoutcomesfromtheresearchteamsanalysisforTask6willbepresentedinthefinal

    projectreport.

  • 8/3/2019 CEC-500-2009-084

    26/272

    12

  • 8/3/2019 CEC-500-2009-084

    27/272

    13

    3.0 Project Outcomes

    Thissectionpresentstheresearchresults. ThetechnologiesselectedinTask1arepresentedin

    Section3.1alongwithadescriptionofthemethodforselectingthetechnologies. Notethatthe

    communityandbuildingscaletechnologieswillbeincludedinthefinalprojectreport. The

    sectionsfollowing3.1areorganizedbytechnologyandincludeoutcomesfromTasks2,3,and4.

    3.1. Technologies

    Theresearchteamconductedatechnicalandanalyticalcritiqueofreferencedocumentsinorder

    torecommendtechnologiesforcostanalysis. Theinterimprojectreportincludestheresearch

    teamsrecommendationsforutilityscaletechnologies(i.e.,>20MW). Thefinalprojectreport

    willincluderecommendedcommunityscaleREtechnologies(i.e.,120MW)andbuilding

    scaleREtechnologies(i.e.,

  • 8/3/2019 CEC-500-2009-084

    28/272

    14

    Transmissioncosts

    Integrationcosts

    Environmentalbenefitsandotherexternalities

    Generationcostsarealwaysconsideredsincetheygenerallyformthebasisofcostestimation.

    Treatmentoftransmissioncosts,integrationcosts,andenvironmentalbenefitsisnotconsistent

    andtreatmentofexternalitiesisevenlesscommon.

    Thethreestudiesarebrieflydescribedbelowfollowedbycomparisontablesofkeyinput

    assumptions.

    2007 Cost of Generation Report

    TheEnergyCommissionsCostofGenerationReport(COG)provideslevelizedcostestimates

    forvariouscentralstationgenerationtechnologiesinCalifornia. Thelevelizedcostestimates

    weredevelopedusingtheEnergyCommissionsCostofGenerationModelwhichwasinitially

    developedtosupportthe2003Integrated

    Energy

    Policy

    Report(IEPR). The2007Costof

    GenerationReportusedanewlyrefinedCostofGenerationModeltoestimatethelevelized

    costsofenergyforthreeclassesofdevelopers:investorownedutilities,publiclyownedutilities,

    andmerchantplants. Thereportsummarizesthelevelizedcostestimatesinaclearandconcise

    mannerforeightconventionaltechnologiesandtwentyrenewabletechnologiesforthethree

    classesofdevelopers. Italsodocumentskeyinputassumptionsandcomparesthe2007input

    assumptionstothoseusedinthe2003IEPRforecastandEIAestimates. Ageneraldescription

    oftheEnergyCommissionsModelandmethodisprovidedaswellasuserinstructionsand

    explanationofthescreeningandsensitivityanalysiscomponentsoftheModel.

    CPUC 2008 GHG Modeling Project

    ThecostandsupplycurvesgeneratedbytheCaliforniaPublicUtilitiesCommission(CPUC)

    GHGModelingProjectin2008provideabenchmarkforwhichtocomparethekeyassumptions

    andlevelizedcostestimatesprovidedinthisstudy. TheanalysisusedaGHGcalculator

    developedbyE3andreviewedthroughthestakeholderprocessundertheCPUCGHGdocket

    R.0604009.

    TheCPUCisscheduledtocompletethefirstphaseoftheimplementationanalysisinearly2009.

    Theintentistoconductarenewablepenetrationbarrieranalysisandtodevelopplausible

    resourceportfoliosforCaliforniaIndependentSystemOperator(CaliforniaISO)toanalyze

    further.13 Inaddition,theanalysiswillestimatenetcostandrateimpacts,lookingatcostand

    rateimpacts

    of

    the

    33%

    Renewables

    Portfolio

    Standard

    (RPS)

    portfolio

    relative

    to

    a20%

    RPS

    referencecasebaseline. ThoughtheresultsoftheCPUC2009analysisarenotyetavailable,

    KEMAassessedthestudybasedonpubliclyavailablepresentations.14 AccordingtoaCPUC

    13Thestudydoesnotrecommendoptimalrenewableresourceportfolios.

    14CPUC,Aspen,E3,andPlexos. 33%ImplementationAnalysisWorkingGroupMeeting.CPUC,2008.

  • 8/3/2019 CEC-500-2009-084

    29/272

    15

    presentation,RETIprovidedusefulinputsforthe2008CPUCGHGModelingProjectandthe

    pendingCPUC33%ImplementationAnalysis.

    TheE3calculatorconsidersfactorssuchasintegrationcostsandrenewableimpactonwholesale

    prices. Thestudyperformedasensitivityanalysisthatdeterminedfourkeydriversofresultsin

    theelectricity

    sector:

    Loadgrowthassumptions.

    Fuelprices.

    EEachievements.

    Carbondioxide(CO2)marketcosts.

    InclusionofCO2marketcostshasbecomeincreasinglyimportantforplanningpurposesin

    California. AccordingtoE3,CO2costsaretreatedasanexogenousinputtothemodel. The

    analystusingtheGHGcalculatorinputsaCO2price,aswellasanyassumptionsaboutoffset

    prices,andwhetherCO2permitsareauctionedorallocated,amongotherCO2marketdesign

    questions.CO2costsarethencalculatedandallocatedtoloadservingentitiesdifferentlybased

    ontheselectedscenario. CO2costsaretrackedonlyforretailprovidersandCO2coststo

    existinggeneratorsarenottracked.

    RETI 1A 2008 and IB 2009 Studies

    AccordingtotheRETIReport,RETIsgoalistoidentifytransmissionfacilitieslikelytobe

    requiredtomeeta33%RPSrequirementbytheyear2020. TheRETIIB2009studydeveloped

    informationforrankingpotentialrenewableresourcesgroupedbygeographicproximity,

    developmenttimeframe,sharedtransmissionconstraints,andeconomicbenefits. Italso

    estimatedthe

    value

    of

    energy

    by

    considering

    time

    of

    day

    and

    capacity

    value

    of

    resource

    (contributiontosystemreliability). Itthenconductedahighlevelscreeninganalysisranking

    therenewablezonesbycosteffectiveness,environmentalconcerns,developmentandschedule

    uncertainty,andotherfactors. Therenewablesresourcesrankingbygroupingisintendedto

    assistintransmissionplanning.

    TheRETIanalysishasnotyetincludedintegratedcostsinitsmethod. However,itappearsthat

    thereisaplantoincludethesecostsmaybeincludedinfutureRETIanalysesshouldthe

    informationbedevelopedinanappropriatemannerthatitwarrantsinclusioninthecost

    estimates. Forinstance,furtherinformationonintegrationcostsareneededtosupport

    estimatesonthecosttointegrateintermittentwindandsolarresources.

    TransmissioncostscalculatedbyBlack&VeatchandusedinthePhase1economicranking

    assumesimultaneousdeliveryofthefullnameplategeneratingcapacityofeverycompetitive

    renewableenergyzone(CREZ).Thisconservativeapproachisappropriateforahighlevel

    screeninganalysisyetwithoutdoubtoverstatestheamountandcostofthetransmission

    facilitiesnecessarytomeetcurrentstateGHGandrenewableenergygoals.

  • 8/3/2019 CEC-500-2009-084

    30/272

    16

    ThemethodemployedbytheRETIteamincludesscenarioanalysistoanalyzetheeffectsof

    differentpolicyscenarios,resourceportfoliosandtechnologyoptionsandcosts. Thismethod

    allowedtheRETIanalysistoassesstheimpactsofuncertaintyontherankingprocess. TheRETI

    analysisalsoappearstoincludecarboncostsbasedonaGHGadder.

    Comparison of 2009 Analysis With the 2007 IEPR Data

    Thefollowingtableprovidesacomparisonofthekeyassumptionspresentedinthe2007IEPR

    andKEMAs2009analysis.

    Table 3. Comparison between 2009 KEMA analysis and 2007 IEPR

    Technology Gross

    Capacity

    (MW)

    Capacity

    Factor (%)

    Instant Cost

    ($/KW)

    Fixed O&M

    ($/kW-Yr)

    Variable O&M

    ($/MWh)

    2009

    KEMA

    2007

    IEPR

    2009

    KEMA

    2007

    IEPR

    2009

    KEMA

    2007

    IEPR

    2009

    KEMA

    2007

    IEPR

    2009

    KEMA

    2007

    IEPR

    Biomass Combustion -

    Fluidized Bed Boiler28 25 85% 85% $3,200 $3,156 $99.50 $150.26 $4.47 $3.11

    Biomass Combustion -

    Stoker Boiler38 25 85% 85% $2,600 $2,899 $160.00 $134.72 $6.98 $3.11

    Biomass Cofiring 20 N/A 90% N/A $500 N/A $15.00 N/A $1.27 N/A

    Biomass - IGCC 30 21.25 75% 85% $2,950 $3,121 $150.00 155.44 $4.00 3.11

    Geothermal - Binary 15 50 90% 95% $4,046 $3,093 $47.44 $72.54 $4.55 $4.66

    Geothermal - Flash 30 50 94% 93% $3,676 $2,866 $58.38 $82.90 $5.06 $4.58

    Hydro Small Scale or

    Developed Sites15 10 30% 52% $1,730 $4,125 $17.57 $13.47 $3.48 $3.11

    Hydro Capacity

    Upgrade80 N/A 30% N/A $771 N/A $12.59 N/A $2.39 N/A

    Solar - Parabolic Trough 250 63.5 27% 27% $3,687 $4,021 $68.00 $62.18 $0.00 $0.00

    Solar - Parabolic Trough

    with Storage250 N/A 65% N/A $5,406 N/A $68.00 N/A $10.30 N/A

    Solar - Photovoltaic

    (Single Axis)25 1 27% 22% $4,550 $9,611 $68.00 $24.87 $0.00 $0.00

    Onshore Wind - Class 5 100 N/A 42% N/A $1,990 N/A $13.70 N/A $5.50 N/A

    Onshore Wind

    Class 3/450 50 37% 34% $1,990 $1,959 $13.70 $31.09 $5.50 $0.00

    Offshore Wind - Class 5

    (2018 start date)100 N/A 45% N/A $5,588 N/A $27.40 N/A $11.00 N/A

    Ocean Wave (2018 start

    date)40 0.75 26% 15% $2,587 $7,203 $36.00 $31.09 $12.00 $25.91

    Coal - IGCC 300 575 80% 60% $2,250 $2,198 $41.70 $36.27 $6.67 $3.11

    Nuclear: Westinghouse-

    AP1000960 1000 86% 85% $4,000 $2,950 $147.70 $140.00 $5.27 $5.00

    Source: KEMA and 2007 Integrated Energy Policy Report

  • 8/3/2019 CEC-500-2009-084

    31/272

    17

    NotestoTable:IfN/Aislisted,nodatawasavailable. Thehydrodevelopedsitescategoryisanalogoustothe

    hydrosmallscalecategoryusedinthe2007IEPR. Grosscapacityreferstothegrosselectricalgenerationoutput,

    Capacityfactorreferstothefullloadequivalentoperationalpercentageforaunit,andinstantcostreferstothe

    costtobuildaunitimmediately(withoutconstructioninterestorescalationeffects). Theinstantcostfornuclear

    energydoesnotincludedecommissioningornuclearwastedisposalcosts.

    Keyobservationsinclude:

    Thehydroelectricfordevelopedsiteswithoutpowerdiscrepancyininstantcostsis

    primarilyduetoestimatedlicensingandmitigationcosts. KEMAexaminedtheIdaho

    NationalLaboratory(INL)databaseofpotentialsitesandfoundthattheaverage

    mitigationcostsweresubstantiallylessthanwhatwasestimatedin2007.

    Thecapacityfactorforthehydrowasdeterminedthroughananalysisofexisting

    hydroelectricplantsinCalifornia. Throughthisanalysis,theaveragecapacityfactorwas

    foundtobemuchlowerthanthe2007IEPRestimate.

    Solarphotovoltaic(PV)singleaxisinstantcostshavedecreasedsubstantiallysincethe

    2007IEPR. Thesedecreasingcosttrendsareconsistentwithseveralresearchand

    financialsourcesaswellassignificanteconomiesofscaleassociatedwiththechange

    froma1megawatt(MW)unittoa25MWinstallation. Section3.5.3providesfurther

    documentationofKEMAsassumptionsandsourcedocuments.

    Oceanwaveisanewtechnologyresourcecategoryatthecentralscaleprojectlevelthat

    isscheduledtobecomeaviableresourceinthe2018timeframe. Theinstantcostsarenot

    directlycomparablebetweena40MWsystemandthe0.75MWpilotprojectthatwas

    includedinthe2007IEPRanalysis.

    The2007IEPRanalysisdidnotcoverClass5windspecifically. Rather,theyincluded

    onebroadwindcategorythatalignscloselywithClass3and4. Thedataalignsquite

    nicelybetweenthetwostudies. Costsperunitofcapacityandenergyareexpectedto

    declineasmachinesizeandoutputperunitincreases.

    Offshorewindisanewcategoryinthe2009analysisandisscheduledtocomeonlineinthe

    2018timeframe. Offshorewindinstantcostsareestimatedtobeapproximatelytwicethatof

    onshorewind.

    ThecoalIGCCcapacityfactorissubstantiallyhigherintheKEMA2009analysis. Thischangeis

    basedonactualplantdataandwarrantedbecauseastechnologiesmaturecapacityfactorstend

    toincrease.

    Theinstantcostofnuclearishigherinthe2009analysisversusthe2007IEPRestimate. The

    KEMAdataisbasedontheWestinghouseAP1000system,and,asdiscussedinSection3.8of

    thisreport,thenucleardataiswellsubstantiatedbyseveralresearchandfinancialsources. In

    addition,theinformationisconsistentwithdataavailablefrommajoroperatorssuchasFlorida

    PowerandLight,GeorgiaPower,andSouthCarolinaElectricandGasCompany.

    The2009IEPRcostofgenerationreportwilladdtothepreviousanalysesofrenewable

    resourcesinthefollowingmanner:

  • 8/3/2019 CEC-500-2009-084

    32/272

    18

    Thecostestimateswillbepresentedasarange(high,mid,low)ofestimatestoreflectthe

    uncertaintyandotherfactorsthataffectprojectcosts.

    Installedcostshavebeenaddedthatincludethecarryingcostofcapitalduringthe

    averageconstructionperiods.

    Include

    explicitly

    cost

    trajectories

    affected

    by

    specific

    influences

    into

    the

    future.

    Clearlyincludingfinancingandotherconstructionrelatedcostsbeyondengineering

    estimates.

    Providingexplicitreferencedocumentationforrenewabletechnologies.

    Assessingofcostsforcommunityorbuildingscaletechnologies.

    Comparison of 2009 Analysis With the CPUC GHG Modeling Project

    KEMAs2009analysisiscomparedtothedatathatwaspresentedintheCPUCGHGmodeling

    projectinthefollowingtable.

    Table 4. Comparison of 2009 analysis with the CPUC GHG model data

    TechnologyGross Capacity

    (MW)*

    CapacityFactor (%)

    Instant Cost($/KW)

    Fixed O&M($/kW-Yr)

    Variable O&M($/MWh)

    2009KEMA

    CPUCE3 Data2008$

    2009KEMA

    CPUCE3

    Data2008$

    2009KEMA

    CPUCE3

    Data2008$

    2009KEMA

    CPUCE3 Data2008$

    2009KEMA

    CPUCE3

    Data2008$

    Biomass1

    1 85% $3,737 $107.50 $0.01

    BiomassCombustion -Fluidized Bed Boiler

    28 85% $3,200 $ 99.50 $ 4.47

    BiomassCombustion - StokerBoiler

    38 85% $2,600 $160.00 $ 6.98

    Biomass Cofiring 20 90% $500 $ 15.00 $ 1.27

    Biomass - IGCC 30 75% $2,950 $150.00 $ 4.00

    Geothermal2

    1 90% $3,011 $154.92 $ -

    Geothermal - Binary 15 90% $4,046 $47.44 $ 4.55

    Geothermal - Flash 30 94% $3,676 $58.38 $ 5.06

    Hydro - Small Scaleor Developed Sites

    15 1 30% 50% $1,730 $2,402 $17.57 $13.40 $ 3.48 $3.30

    Hydro CapacityUpgrade

    80 N/A 30% N/A $771 N/A $12.59 N/A $2.39 N/A

    Solar - ParabolicTrough

    250 1 27% 40% $3,687 $2,696 $68.00 $49.63 $ - $ -

    Solar - ParabolicTrough with Storage

    250 N/A 65% N/A $5,406 N/A $68.00 N/A $10.30 N/A

  • 8/3/2019 CEC-500-2009-084

    33/272

    19

    TechnologyGross Capacity

    (MW)*

    CapacityFactor (%)

    Instant Cost($/KW)

    Fixed O&M($/kW-Yr)

    Variable O&M($/MWh)

    Solar - Photovoltaic(Single Axis)

    25 27% $4,550 $68.00 $ -

    Wind3 1 37% $1,931 $ 28.51

    Onshore Wind -Class 5

    100 42% $1,990 $13.70 $ 5.50

    Onshore Wind -Class 3/4

    50 37% $1,990 $13.70 $ 5.50

    Offshore Wind -Class 5 (2018 startdate)

    100 N/A 45% N/A $5,588 N/A $27.40 N/A $11.00 N/A

    Ocean Wave (2018start date)

    40 N/A 26% N/A $2,587 N/A $36.00 N/A $12.00 N/A

    Coal - IGCC 300 1 80% 85% $2,250 $2,388 $41.70 $ 36.36 $ 6.67 $2.75

    Nuclear:Westinghouse -AP1000

    960 1 86% 85% $4,000 $3,333 $147.70 $ 63.88 $ 5.27 $0.47

    Notes: Source for CPUC E3 data is GHG Calculator v2b (May 2008).15

    1) Biomass is listed as generic category in the CPUC GHG Model

    2) Geothermal is listed as generic category in the CPUC GHG Model

    3) Wind is listed as a generic category (no Class is listed)

    * Capacity MW was listed as 1 MW in all cases

    Source: KEMA and CPUC

    Keyobservationsinclude:

    CostcharacterizationsandheatratesintheGHGmodelcomeprimarilyfromtheEIA

    2007AnnualEnergyOutlookReport.16

    Directcomparisonofdataisdifficultduetolackofdataonunitsizeassumptions.

    TheCPUCdatadoesnotincludesolarsingleaxisPVsystems,despiterecent

    announcementsinCaliforniaforlargerscalecentralizedPVsystemapplications.

    TheCPUCsolarthermalinstantcostestimatesaresubstantiallylowerthanthe2007

    IEPR,a2006NationalRenewableEnergyLaboratory(NREL)studyandKEMAs2009

    estimate

    for

    reasons

    that

    are

    not

    easy

    to

    identify.

    KEMAs

    cost

    data

    is

    based

    on

    a

    2006

    NREL/Black&Veatchstudyandindependentresearchoncapitalcostsofprojectsin

    SpainandtheUnitedStates. Costestimatesanddiscussionofmajormarketdriversare

    includedinSection3.5.2.

    15http://www.ethree.com/CPUC_GHG_Model.html. E3GHGCalculatorv2b,May2008.

    16U.S.DOE.EnergyInformationAdministration.AssumptionstotheAnnualEnergyOutlook.2007.

  • 8/3/2019 CEC-500-2009-084

    34/272

    20

    KEMAsClass3and4winddataalignscloselywiththeCPUCdata. E3benchmarked

    windcoststoarecentAmericanWindEnergyAssociation(AWEA)study.

    AllcostsintheGHGmodelwereinflatedby25%peryearfortwoyearstoreflectthe

    recentrapidinflationinconstructioncosts. Giventherecentdownturnintheeconomy,

    thisassumptionmaynolongerbeappropriate.

    TheCPUCGHGmodelincludessitespecifictransmissioninterconnectiondistancesfor

    geothermal,solarthermal,windandhydro. Conversely,KEMAs2009assessment

    includestransmissioncostsandvoltageconversionfromthegenerationplanttothe

    localfirstpointofinterconnectiontothetransmissionordistributionnetwork.

    TheCPUCdataincludeswindandsmallhydroincludefirmingresourcecostsbasedon

    costofCTsneededtoreach90%availabilityonpeak. KEMAsassessmentdoesnot

    includefirmingresourcecosts.

    Comparison of 2009 Analysis With the RETI Project (Phase 1A and 1B)

    The2009analysisiscomparedtothedatathatwaspresentedinRETI1Areportinthefollowing

    table.

    Table 5. Comparison between 2009 Analysis with the RETI 1A Data

    Technology Gross

    Capacity

    (MW)

    Capacity

    Factor (%)

    Instant Cost

    ($/KW)

    Fixed O&M

    ($/kW-Yr)

    Variable O&M

    ($/MWh)

    2009 RETI

    1A

    2009 RETI

    1A

    2009 RETI

    1A

    2009 RETI

    1A

    2009 RET

    1A

    Solid Biomass1

    35 80% $4,000 $83 $11.0

    Biomass Combustion -

    Fluidized Bed Boiler*28 85% $3,200 $99.50 $4.47

    Biomass Combustion -

    Stoker Boiler*38 85% $2,600 $160.00 $6.98

    Biomass Cofiring 20 35 90% 85% $500 $400 $15.00 $10 $1.27 $0.00

    Biomass - IGCC 30 N/A 75% N/A $2,950 N/A $150.00 N/A $4.00 N/A

    Geothermal2

    30 80% $4,000 $0 $27.5

    Geothermal Binary 15 90% $4,046 $47.44 $4.55

    Geothermal - Flash 30 94% $3,676 $58.38 $5.06

    Hydro - Developed Sites

    or New as listed in RETI15

  • 8/3/2019 CEC-500-2009-084

    35/272

    21

    Technology Gross

    Capacity

    (MW)

    Capacity

    Factor (%)

    Instant Cost

    ($/KW)

    Fixed O&M

    ($/kW-Yr)

    Variable O&M

    ($/MWh)

    Solar - Parabolic Trough

    with Storage250 N/A 65% N/A $5,406 N/A $68.00 N/A $10.30 N/A

    Solar - Photovoltaic

    (Single Axis)25 20 27% 28% $4,550 $7,000 $68.00 $35 $0.00 $0.00

    Wind3

    100 32% $2,150 $50 $0.00

    Onshore Wind - Class 5** 100 42% $1,990 $13.70 $5.50

    Onshore Wind - Class 3/4 50 37% $1,990 $13.70 $5.50

    Offshore Wind - Class 5 100 200 45% 40% $5,588 $5,500 $27.40 $88.00 $11.00 $0

    Ocean Wave 40 100 26% 35% $2,587 $4,000 $36.00 $210 $12.00 $11.0

    Coal IGCC 300 N/A 80% N/A $2,250 N/A $41.70 N/A $6.67 N/A

    Nuclear: Westinghouse -

    AP1000960 N/A 86% N/A $4,000 N/A $147.70 N/A $5.27 N/A

    Notes:

    1) RETI 1A Solid Biomass.

    2) Only one category of geothermal is listed in the RETI 1A Report.

    3) Only one category of onshore wind is listed in the RETI 1A Report.

    If ranges were presented in RETI 1A data, midpoints are listed in the table

    Source: KEMA, Black & Veatch RETI 1A Report, 2008

    Keyobservationsincludethefollowing:

    Forthemostpart,theKEMAanalysisisfairlyconsistentwiththeRETIdata.

    InformationonunderlyingassumptionsinRETIreportonthetwohydrocategoriesis

    limited. Therefore,itisdifficulttoassesswhycostestimatesvarybetweenKEMA2009

    dataandtheRETIIAdata.

    TheRETIIAinstantcostdataforsolarparabolictroughappearstoalignnicelywith

    KEMAsdata.

    TheinstantcostforsolarPVsingleaxissystemsissignificantlylowerintheKEMA

    studythantheRETIanalysis. TheKEMAdataisstronglysupportedbyrecentdeclining

    pricetrendsasdiscussedinSection3.5.3.

  • 8/3/2019 CEC-500-2009-084

    36/272

    22

    Summary

    MoreandmorestudiesthatassesscostofachievingRPSgoalsaretakingmacroeconomicand

    externalitybenefitsintoaccount. Forinstance,somestudiesarenowassessingmacroeconomic

    benefitsofrenewablegenerationincludingbenefitsassociatedwithgrowthintheclean

    technologyindustryandemployment. Externalitiesshouldalsopotentiallybeexaminedeither

    onaqualitativeorquantitativebasis. Forinstance,thebenefitassociatedwithrenewablesinhelpingtoserveasahedgeagainstthepriceoffossilfuelcouldpotentiallybequantified.

    Futurestudiesshouldconsiderincluding:

    CO2abatementcosts.

    Qualitativeorquantitativeassessmentofotherkeyissuesthatmayinfluencecostsof

    generationincluding:

    Environmentalsensitivity.

    Landuseconstraints.

    Permittingrisk.

    Transmissionconstraintsandequityissuesrelatedtowhobearsthecostofnew

    transmission.

    Systemintegrationcosts.

    Systemdiversity.

    Taxcreditavailabilityandstructure.

    Financingavailability.

    Macroeconomicbenefits(jobscreation,security,fueldiversity,etc.).

    Natural

    gas

    price

    and

    wholesale

    price

    effects

    associated

    with

    increased

    penetrationofrenewables.

    Otherriskfactors.

    3.1.2. Method for Selecting Technologies

    Theresearchteamusedthefollowingscreeningcriteriatoselectthemajorityoftechnologiesfor

    costanalysis:

    Isthetechnologycommerciallyavailableandinuseonanylevelotherthana

    demonstrationphase?

    ArethereanumberofprojectsinuseintheUnitedStatesorabroadthatusethis

    technology?

    IsthisaviabletechnologyforuseinCaliforniaorinneighboringstates? Ifso,whatis

    theproductionpotential?

    ArethereanyregulatoryissuesorotherrestrictionsforuseinCalifornia?

  • 8/3/2019 CEC-500-2009-084

    37/272

    23

    Isthereanyactualcostdataavailablefortheexistinginstallationsthatcanbeusedinthe

    study?

    Costanalysisforthetechnologiesthatpassedthesescreeningtechnologieswasconductedto

    providedatastartingin2009(i.e.,currentstartdata). Inseveralcases,technologiesthatarenot

    currentlycommerciallyavailablewereselectedforcostanalysis. Thesetechnologieswere

    includedbecausethereissubstantialdemonstrationprojectactivityorsufficientinterestinthese

    technologiestoexpectthatthesetechnologiescouldbecommerciallyavailableanddominantin

    10yearstime. Sincenocostdatafromcommercialinstallationsisreadilyavailableforthese

    technologies,theauthorsexpectgreateruncertaintyaroundthecosts. Theauthorshave

    identifiedthesetechnologiesinthetablebelowwithadatastartdateof2018. Theutilityscale

    technologiesfallingintothiscategoryareBiomassCoGasificationIGCC,OffshoreWind(Class

    5),andOceanWave.

    3.1.3. Utility-Scale Technologies

    Theutility

    scale

    technologies

    recommended

    for

    cost

    analysis

    are

    shown

    in

    Table

    6below.

    Table 6. Central plant technology list for COG modeling project

    Technology List Gross Capacity

    (MW)

    Data Start Date

    Biomass

    Biomass Combustion - Fluidized Bed Boiler 28 Current

    Biomass Combustion - Stoker Boiler 38 Current

    Biomass Cofiring 20 Current

    Biomass Co-Gasification IGCC 30 2018

    Geothermal

    Geothermal - Binary 15 CurrentGeothermal - Flash 30 Current

    Hydropower

    Hydro - Small Scale (developed sites without power) 15 Current

    Hydro - Capacity upgrade for developed sites with

    power

    80 Current

    Solar

    Solar - Parabolic Trough 250 Current

    Solar - Photovoltaic (Single Axis) 25 Current

    Wind

    Onshore Wind - Class 5 100 Current

    Onshore Wind - Class 3/4 50 Current

    Offshore Wind - Class 5 100 2018

    Wave

    Ocean Wave 40 2018

    Integrated Gasification Combined-Cycle

    IGCC without carbon capture 300 Current

    Nuclear

  • 8/3/2019 CEC-500-2009-084

    38/272

    24

    Technology List Gross Capacity

    (MW)

    Data Start Date

    Westinghouse - AP1000 960 Current

    Source: KEMA

    3.1.4. Community-Scale Technologies

    Communityscaletechnologieswillbediscussedinthefinalprojectreport.

    3.1.5. Building-Scale Technologies

    Buildingscaletechnologieswillbediscussedinthefinalprojectreport.

    3.2. Biomass

    3.2.1. Technology Overview

    Theuseofbiomasstechnologyhasbeenapartoftheenergylandscapeforcenturiesandhas

    becomeatechnologyofincreasingimportanceinthecurrentenergymix,bothinCalifornia,the

    UnitedStates,andtherestoftheworld.

    Biomass,ortheuseofplantbasedhemicellulosematerial,agriculturalvegetation,or

    agriculturalwastesasfuel,hasthreeprimarytechnologypathways:

    Pyrolysistransformationofbiomassfeedstockmaterialsintofuel(oftenliquidbiofuel)

    byapplyingheatinthepresenceofacatalyst.

    Combustiontransformationofbiomassfeedstockmaterialsintoenergythroughthe

    directburningofthosefeedstocksusingavarietyofburner/boilertechnologiesalsoused

    toburnmaterialssuchascoal,oilandnaturalgas.

    Gasificationtransformationofbiomassfeedstockmaterialsintosyntheticgasthrough

    thepartialoxidationanddecompositionofthosefeedstocksinareactorvesseland

    oxidationprocess.

    Ofthesetechnologypathways,thetwoprimaryembodimentsofelectricityproduction

    technologyarefoundinthedirectcombustionandgasificationapproachestobiomass

    combustionintoelectricityandenergy. Activeresearchintopyrolysisforbiofuelproductionis

    activeandongoingbutisnotyetatcommercialscale.

    Combustiontechnologiesarewidespread,andincludethefollowinggeneralapproaches:

    StokerBoilerCombustionusessimilartechnologyforcoalfiredstokerboilersto

    combustbiomassmaterials,eitherusingatravelinggrateoravibratingbed. Whilea

    verymature,centuryoldtechnology,stokerboilerdesignshaveseentechnology

    improvementsrecentlytoimprovebiomasscombustion,particularlyemissions

    reductionsandincreasedcombustionefficiencies.

  • 8/3/2019 CEC-500-2009-084

    39/272

    25

    BiomassCofiringusesbiomassfuelburnedwithcoalproductsincurrenttechnology

    pulverizedcoalboilersusedinutilityscaleelectricityproduction. Biomasscofiringisa

    maturetechnologyinEuropeandisincreasinglybeingadoptedintheUnitedStates,

    sinceitcansignificantlyenhancetheuseofbiomass,reducenetcarbonemissionsin

    powergeneration,andhasshowngoodreliabilityinservice.

    FluidizedBed(FB)Combustionusesaspecialformofcombustionwherethebiomass

    fuelissuspendedinamixofsilicaandlimestonethroughtheapplicationofairthrough

    thesilica/limestonebed. Fluidizedbedcombustionboilersareclassifiedeitheras

    bubblingbed(FB)orcirculatingfluidizedbed(CFB)units.

    Figure 1. Utility-scale fluidized bed gasifier

    Source: Energy Products of Idaho

    Gasificationtechnologies,whilerelativelyrecentintheirevolution,aregrowinginscopeand

    scaleastheyareincreasinglybeingdevelopedandusedthroughouttheworld. Several

    differentformsofgasificationtechnologiesexisttoday:

    BiomassIntegratedGasificationCombinedCycle(IGCC)similartothecoalbased

    IGCCprocess,exceptthebiomassfuelisgasifiedinareactorvesselpriortoits

  • 8/3/2019 CEC-500-2009-084

    40/272

    26

    introductionandcombustioninagasturbinegeneratorset. Gasturbinesdevelopedfor

    coalbasedIGCCarewellsuitedforbiomassIGCCbecausebothgasifiedfuelsareof

    sufficientBTUheatingvaluecontent. BiomassIGCCplantsarenowbeingintroducedas

    technologydemonstrationunits.

    Figure 2. Biomass IGCC plant representation

    Source: KEMA

    Figure 3. Schematic diagram of biomass IGCC process

    Source: U.S. Department of Energy

    (www.fossil.energy.gov/programs/powersystems/gasification/howgasificationworks.html)

  • 8/3/2019 CEC-500-2009-084

    41/272

    27

    BiomassfluidizedbedgasificationusingaFBorCFBgasificationreactortoconvert

    biomassfeedstocksintosyntheticfuelgas,whichisthenburnedinaconventionalcoal

    ornaturalgasfiredutilityboiler. Thistechnologyisnotbeingadoptedforthecostof

    generationstudybecausethecurrentcommercialembodimentisdirectfluidizedbed

    combustionofbiomassforelectricalpowergeneration.

    Figure 4. Utility-scale biomass fluidized bed gasifier

    Source : Foster Wheeler

    3.2.2. Biomass Combustion Fluidized Bed Boiler

    Technical and Market Justification

    Forbiomassfuels,fluidizedbedcombustionisrapidlyemergingasasystemofchoiceformany

    powergenerationapplications. Theinherentfuelversatilityoffluidizedbedsystemsprovidesa

    plantoperatortheabilitytoburnmanydifferentbiomassresourcetypes,includingthose

    feedstockswithsignificantmoisturevariations. Themajorreasonforthisisthatthefluidized

    bedcarryingmedium(typicallyamixofsilicasandand/oralumina)providesathermalflywheel

  • 8/3/2019 CEC-500-2009-084

    42/272

    28

    effectthatmaintainsconstantheatoutputandfluegasqualityevenwhenburningfuelsof

    varyingmoisturecontent.17

    Fluidizedbedboilersarecharacterizedaseitherbubblingbed(FB)orcirculatingfluidizedbed

    (CFB),andthisisbasedonhowthebedmaterialisusedwithintheboiler. Inabubblingbed

    (FB)unit,

    the

    bed

    material

    stays

    within

    afixed

    zone

    in

    the

    boiler,

    while

    in

    acirculating

    fluidized

    bed(CFB)unit,thematerialissuspendedaboveanairzoneandiscirculatedthroughareturn

    loopbacktothecombustionzonebymeansofamassorcyclonicseparator.

    Figure 5. Circulating fluidized bed schematic diagram

    Source: Babcock & Wilcox Image (www.babcock.com/products/boilers/images/cfb.gif)

    Forboth

    FB

    and

    CFB

    units,

    due

    to

    the

    high

    quality

    combustion

    and

    near

    complete

    carbon

    burnout(99100%)ofbiomassfuelsources,ashiscarriedoverintothefluegasstream,requiring

    theadditionofpostcombustionashremovalequipmentsuchascyclonesandbaghouses. The

    17Overend,R.P.BiomassConversionTechnologies.Golden,CO:NationalRenewableEnergyLaboratory,

    2002.

  • 8/3/2019 CEC-500-2009-084

    43/272

    29

    postcombustioncontrolsallowparticulateremovaltoNewSourcePerformanceStandards

    (NSPS)forPM10.

    Fluidizedbedboilertechnologyhaslongbeenincommercialuse,withmuchmorewidespread

    adoptioninEuropethanintheUnitedStates,duetoseveralreasons.18 First,fuelresourcesin

    Europecan

    vary

    widely

    in

    quality

    and

    processing,

    and

    the

    ability

    of

    fluidized

    bed

    boilers

    to

    handlewidelyvaryingfuelsisofadvantage. Second,fluidizedbedboilersexhibitsuperior

    emissionsperformance,especiallynitrogenoxide(NOx)emissions,duetotheinherentlylow

    firingtemperatureoftheboiler. Third,forcoalbasedfuels,theabilitytodirectlyinject

    limestoneasasorbentprovidesexcellentsulfurandsulfurdioxide(SOx)reductionswithoutthe

    needforexpensivepostcombustionscrubbingequipmentandsystems.

    Marketadoptionoffluidizedbedboilertechnologyforbiomasshaslongbeenacommercial

    reality,withbothbubblingbedandCFBunitsbeingusedforbiomasscogenerationthroughout

    theUnitedStates,particularlyintheforestproductsandpaperindustry. AdoptionofCFB

    technologyforutilityscalecoalandbiomasspowergenerationhasreachedworldwidegeneral

    industryadoption,

    as

    shown

    below:

    Table 7. Installed CFB boiler capacity by country19

    Country Installed Capacity (MW)

    China 10,000

    Czech Republic 1,400

    Germany 1,800

    Poland 3,310

    India 1,200

    United States 8,800

    Source: Tavoulareas, Stratos. Advanced Power Generation Technologies An Overview

    TechnologySelectionCriteria

    Fluidizedbedcombustiontechnologyforgeneratingelectricpowerusingbiomassfuelwas

    selectedforthecostofgenerationstudybytheresearchteambecauseofthefollowingfactors:

    CommercialscaleBothbubblingbedandcirculatingfluidizedbedtechnologieshave

    beendevelopedtoutilityscale,andcurrentcommercializedunitsfitwellwithinthe

    overallsupplycurveconstraintsforbiomassthatcanlimitoverallgeneratingunitsize

    potential.

    18U.S.EnvironmentalProtectionAgency.CombinedHeatandPowerPartnership. BiomassCombined

    HeatandPowerCatalogofTechnologies,September2007.

    19Tavoulareas,Stratos.AdvancedPowerGenerationTechnologiesAnOverview.U.S.Agencyfor

    InternationalDevelopment.ECOAsiaCleanDevelopmentProgram,August2008.

  • 8/3/2019 CEC-500-2009-084

    44/272

    30

    FuelflexibilityBiomasscombustioninfluidizedbedboilershasbeenwelldocumented

    foravarietyofbiomassfuelfeedstocks. Theinherentstabilityinfluidizedbedboilers

    whileburningfuelsofvaryingqualityisakeyadvantagewhenevaluatingchanging

    biomassfuelsourcesoverthelifeofthegeneratingplant.

    ReliabilityFluidizedbedcombustionisreliableandprovenoverdecadesofservice.

    Whilerelativelynewintechnologywhencomparedtostoker ortraditionalfired

    boilers,thereisrapidandgrowingadoptionoffluidizedbedboilertechnologyformid

    sizedunits.

    EmissionsperformanceFluidizedbedcombustionperformswellinreducingNOx

    emissionsbecauseofthelowcombustiontemperaturesusedintheprocess. Inaddition,

    thenearcompleteconversionofavailablecarbonresultsinlowercarbonmonoxide(CO)

    emissions. Particulateemissionsaremanagedthroughpostcombustioncontrols,as

    withtraditionalfiredunitsburningsolidfuels.

    Figure 6. Bubbling fluidized bed boiler

    Source: Energy Products of Idaho

  • 8/3/2019 CEC-500-2009-084

    45/272

    31

    Primary Commercial Embodiment

    Today,theprimarycommercialembodimentofcirculatingfluidizedbedboilertechnologyisin

    EuropeandChinaandgainingmomentumintheUnitedStates Forover20years,the

    developmentofcirculatingandbubblingfluidizedbedtechnologyhasprogressedinEuropeto

    thepointwherecirculatingfluidizedbedboilersareastandard,utilityscaletechnologytoday.

    IntheUnitedStates,severalcompanieshaveprogressedwithstandardizeddesignsofcirculatingfluidizedbedboilerscombustingavarietyoffuels,frombiomasstocoaland

    petroleumcoke.

    InCalifornia,currentcommercialembodimentislimited,mainlybecauseofthelimitedability

    topermitsolidfuelcombustionfacilities. However,thereiscurrentinterestinthecogeneration

    andforestproductsindustrialbasetoexaminefluidizedbedcombustiontechnologyfor

    repoweringexistingsolidfuelcombustionfacilitiestobiomassfuelconversion.20

    Theresearchteambelievesthatfluidizedbedtechnologywillbecomecommerciallyembodied

    inCaliforniatoenablethestatetoachieveitsbiomassenergygoalsby2018. Theinherentlyfuel

    flexiblenatureoffluidizedbedcombustion,theintegrationofprimarypollutioncontrolsintothecombustionprocess,andthesmallfootprintareenablersofthistechnologyinCalifornia,as

    beingdemonstratednowinEuropeandChina.

    Cost Drivers

    MarketandIndustryChanges

    MarketandindustrychangessinceAugust2007havenotsignificantlyaffectedcostsfor

    circulatingfluidizedbedboilertechnology. Materialcostincreaseshaveabatedduetothe

    currenteconomicrecession,especiallyincarbonsteelandstainlesssteelcosts,whicharethe

    primarycostcomponentsofcirculatingfluidizedbedboilermanufacturing.

    CarbonsteelcostshavechangedsignificantlysinceAugust2007,butthenetchangeisnot

    significant. Theattachedtablehighlightstherapidriseandthenfallofcarbonsteelpricing:21

    Table 8. Recent carbon steel pricing

    Year Average Carbon Steel Price ($/Ton)

    2007 $717

    2008 $1,004

    2009 (April 2009 average annual price) $736

    Source: Purchasing Magazine

    20KEMASources:PersonalCommunicationwithEPI,FosterWheeler,March2009.

    21PurchasingStaff.Steelplatepriceshaveplunged50%frommid2008peak.PurchasingMagazine.

    April2009.www.purchasing.com/article/CA6654110.html?industryid=48389.

  • 8/3/2019 CEC-500-2009-084

    46/272

    32

    CurrentTrends

    Currenttrendsthatwillmateriallyaffectfuturecostsare:

    GlobaleconomicdownturnThebreadthanddepthofthecurrentrecessionhascaused

    asignificantreductioninthenumberofnewboilerordersforbothpowergeneration

    andindustrialmanufacturingcapacity. Thelengthofthecurrentrecessionandthepaceofrecoverywilldeterminetheescalationrateinrawmaterials,theuseofboiler

    manufacturingcapacity,andthusfuturecosts.

    SteelpriceabatementCurrentameliorationofworldwidesteelprices,bothforcarbon

    andstainlesssteel,willhaveapricemoderatingeffectonstokerboilerpricesbothnow

    andinthenearfuture. Longtermsteelcommoditypricesarecurrentlydifficultto

    predict.

    IndustrialproductionandeconomicgrowthinChinaByNovember2008,Chinalost

    over30millionmanufacturingjobsinGuangzhouProvinceduetotheglobalrecession,

    significantlycurtailingChineseeconomicgrossdomesticproduct(GDP)growth.

    Enoughoftheglobaloutputforsteelandotherrawmaterials,usedincirculating

    fluidizedbedboilerproduction,werebeingusedinChinathatsignificantescalationof

    pricesresulted. ThepaceoftheeconomicrecoveryandstimulusinChinawill

    determinerawmaterialpriceescalationandthuswillimpactcirculatingfluidizedbed

    boilercosts.

    EconomicstimulusBecausestimuluspackagesaredesignedtosupportenergy

    technologies,suchascombinedheatandpower,cogeneration,andbiomass,stimulus

    supportintheUnitedStatescouldhaveanescalatingeffectonbothmaterialsand

    demandforcirculatingfluidizedbedboilers.

    CostDrivers

    Costdriversforbiomasscirculatingfluidizedbedboilertechnologiesareasfollows:

    BiomassfueltypeanduniformityThetypeanduniformityofdeliveredbiomassfuel

    supplyisaprimarycostdriverforanybiomasstechnology. Becauseofthevaried

    natureofbiomassfuelfeedstocks,theirdeliveredmoisturecontentandheatingvalue

    variations,andfuelprocessingissues,thehandlingandprocessingcostsofbiomass

    fuelscanvarygreatly. Asaresult,thetypeandnatureofbiomassfuelscombustedcan

    haveamaterialimpactonthecapitalcostoftheboilerislanddesign,aswellasthe

    overallfuelhandlingandoperationscost.

    Supplycurveforbiomassfuel,fueltransportandhandlingcostsTheavailabilityof

    adequateandsufficientbiomassfuelresourceswithina100mileradiusoftheplant

    locationisacriticaldriverforoperatingcost. Mostbiomassfuelistransportedbytruck

    transporttoaplantsite,whichlimitstheeffectiveeconomicradiusfromtheplant

    locationtoaggregatefuelsupplyatcommerciallyreasonableprices. Thevariednature

    ofbiomassfuelfeedstocksalsonecessitatesspecialhandlingequipmentandlarger

  • 8/3/2019 CEC-500-2009-084

    47/272

    33

    numbersofdedicatedstaffthanforcoalfiredcombustionpowerplantsofequivalent

    size.

    BoilerislandcostCapitalcostoftheboilerislandisacriticalcostdriverthatcanentail

    approximately4060%oftheoverallplantcost,dependingonthetypeofbiomass

    combustedandtheneedforpostcombustionpollutioncontrols.22 Thedesignbasisfor

    thetypeoffuelstobecombustedisanimportantcostdriver. Inaddition,theescalation

    trendsforrawmaterialsusedinmanufactureoftheboilerisland,primarilysteelcost,

    arefactorsthatcaninfluencedeliveredboilerislandcost.

    LongtermfuelsupplycontractavailabilityMostcurrentbiomassfuelsupplycontracts

    areofshorttermdurationandforfuelofsometimesvaryingquality. Akeycostdriver

    topromotingbiomasscirculatingbedcombustioninCaliforniaistheabilitytodevelop

    andachieveperformanceonlongterm(e.g.,fiveyearsdurationandlonger)fuelsupply

    contractsforavailablefuelsources.

    PlantscaleCurrentCFBtechnologyhasbeenproventoutilityscaleapplicationsofup

    to

    300

    MW,

    with

    the

    primary

    commercial

    embodiment

    in

    sizes

    from

    30

    100

    MW.

    Developmentof800MWclasssupercriticalCFBcyclesisnowbeingstudiedfor

    applicationsinChina,andtheoutcomeofthatresearcheffortwouldmateriallyaffectthe

    capitalcostprofileandscaleofCFBtechnologyapplicationsforbiomass.23

    EmissionscontrolcostsCostsespeciallyofpostcombustionemissionscontrol

    technologies,suchasSCR/SNCRtechnologiesforNOxcontrol,andadditiona