31
CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong Qian Tobias Gokus, Department Chemie und Biochemie, University of München Neil Anderson, Lukas Novotny The Institute of Optics, University of Rochester, Rochester, NY Alfred J. Meixner Institute of Physical and Theoretical Chemistry, University of Tübingen

CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

Embed Size (px)

Citation preview

Page 1: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 1

High-Resolution Near-Field Optical

Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong Qian

Tobias Gokus,Department Chemie und Biochemie,

University of München

Neil Anderson, Lukas NovotnyThe Institute of Optics, University of Rochester,

Rochester, NY

Alfred J. MeixnerInstitute of Physical and Theoretical Chemistry,

University of Tübingen

Page 2: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 2

Single-walled Carbon Nanotubes

Graphene sheet + roll up single-walled carbon nanotube

1D crystal:

• Diameter ~ 0.5-3 nm

• Length up to mm

• Different structures (Diameter, chirality) (n,m)

• Structure determines properties (n-m) mod 3 = 0

metallic else semicond.

S. Maruyama, http://chishiki.t.u-okyo.ac.jp/~maruyama/index.html

Page 3: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 3

Why High Spatial Resolution Near-field Optics?

Page 4: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 4

Why Near-field Optics?

Page 5: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 5

Why Near-field Optics?

spatial resolution is limited by diffraction

Page 6: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 6

Diffraction Limit

Abbé, Arch. Mikrosk. Anat. 9, 413 (1873)

Uncertainty relation:

2ΔkΔx x

αsin2λ

2παsin2kΔk x

αsin2

λΔk

2πΔxx

Page 7: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 7

Tip-Enhanced Spectroscopy

Wessel, JOSA B 2, 1538 (1985)

Page 8: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 8

Tip-Enhanced Spectroscopy

Theory: (Giant) enhanced electric field confined to tip apex

Mechanism: Lightning rod and antenna effect, plasmon resonances

laser illuminated metal tip

Novotny et al. PRL 79, 645 (1997)

Page 9: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 9

Tip-Enhanced Spectroscopy

SEM micrograph

diameter = 22 nm

enhanced electric field confined within 20 nm ?

……………….Optical imaging with 20 nm resolution?!

……………….Signal enhancement !?

Page 10: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 10

Tip-Enhanced Spectroscopy

tip has to be very close to the sample

enhanced electric field close to the very end of the tip

raster-scanning the sample andpoint-wise detection of the sampleresponse

Page 11: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 11

Experimental Setup

Confocal microscope

Optical Images and Spectra

a sharp metal tip is held at constant height (~2nm) above the sampleusing a tuning-fork feedback mechanism. F~10 pN

Topography of the sample

2 nm

K. Karrai et al., APL 66, 1842 (1995)

Tip-sample distance control+

Page 12: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 12

Near-field Raman Imaging of SWCNTs

only SWCNT detected in optical image chemically specificoptical contrast with 25 nm resolution enhanced field confined to tip

Hartschuh et al. PRL 90, 95503 (2003)500 nm 500 nm

Raman image (G’ band)

Topography

Page 13: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 13

Near-field Raman Spectroscopy

height: 0 - 1.9 nm

Raman image(G band)

Topography image

RBM at 199 cm-1

diam = 1.2 nmstructure (n,m)(14,2) metallic SWCNT

G

RBM

Hartschuh et al. Int. J. Nanosc. 3, 371 (2004) Anderson et al. JACS 127, 2533 (2005)

Page 14: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 14

Exp. parameters:

~3 nm stepsbetween spectraexposure time per spectrum = 100 ms

100 nm

RBM GD

intensity of the RBM

Experiment

Page 15: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 15

Resolution enhancement

Farfield Near-field

no tip same area with tip

Page 16: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 16

Signal Enhancement

Page 17: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 17

Signal Enhancement

tip-enhanced signal > signal * 2500Hartschuh et al. Phil. Trans. R. Soc. Lond A, 362 (2004)

Page 18: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 18

Distance Dependence

tip-enhancement is near-field effect => tip has to be close to samplesurface / sub-surface sensitive technique

~ d-12 d

Enhanced Raman scattering signal

Anderson et al. Nano Lett. 6, 744 (2006)

Page 19: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 19

Simultaneous Raman and PL Spectroscopy

Photoluminescence

Raman

(7,5) (8,3) (9,1)

Raman Emission

Excitation at 633 nm Emission and Raman signals are spectrally isolated

(6,4)

Hartschuh et al. Science 301, 1394 (2003)

Page 20: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 20

Near-field optical imaging of SWCNTs

Farfield Photoluminescence

DNA-wrapped SWCNTs on mica

Topography Raman (G-band) Photoluminescence

length of emissive segment ~ 70 nm

•changes in chirality (n,m)?•coupling to substrate?

Page 21: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 21

Localized PL-Emisssion on Glass

Emission spatiallyconfined to within 10 – 20 nm

Localized excited statesLocalized excited statesBound excitons?Bound excitons?

•role of defects?role of defects?•substrate?substrate?

Photoluminescence Raman scattering

Photoluminescence

SWCNTs on glass

Page 22: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 22

Near-field optical imaging of SWCNTs

200nm 200nm 200nm

Topography Raman (G-band) Photoluminescence

Simultaneous near-field Raman and PL imaging PL extended along nanotube

SWCNTs in SDS on mica

Page 23: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 23

Near-field PL-Spectroscopy

Topography Photoluminescence

PL spectra:30 nm steps between spectra

12

34

56

Hartschuh et al. Nano Lett. 5, 2310 (2005)

Emission energy can vary on the nanoscale (Local variation of dielectric screening)

Page 24: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 24

Spatial resolution < 15 nm Signal amplification

Tip as nanoscale „light source“

Tip-enhanced Microscopy

Page 25: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 25

Signal Enhancement

Enhancement of incident fieldand scattered field

Senhanced ~ (Elocal / E0)2 (Elocal / E0)2=f4

Raman scattering Photoluminescene

energy transfer to metalquenching of PL

knonrad:

PL depends on kex, kradiative, knon-radiative

kex: enhanced excitation fieldSenhanced ~ (Elocal / E0)2=f2

Q is increased (Q~10-3)cycling rate is increased

krad: Purcell-effect

krad + knonrad

kradQ =

kex krad knonrad

local fieldat tip

field without tip

PL Enhancement depends on Q!

Page 26: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 26

Signal Enhancement

Senhanced ~ f2

Raman enhancement

500 nm

Far-field Raman ~ 2000 counts/s

Near-field Raman ~ 4000 counts/s

Raman-enhancement ~ 6000 / 2000

= 3

Senhanced ~ f4

PL enhancement

500 nm

No far-field PL < 200 counts/s

Near-field PL ~17000 counts/s

PL-enhancement >17000 / 200

= 85

PL quantum yield must be increased by tip (SEF)

Page 27: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 27

Near-field Interactions

Uncertainty relation:Diffraction limit for propagating waves:

2ΔkΔx x 10.01nmλ

2πk

k-vectors of tip enhanced fields extend through BZ !

selection rules for optical transitions?

1x 1nm10nm5

2πΔx

2πΔk

High resolution provided by evanescent fields that have higher k-vectors:

Nanotubes:

1

t

r|| 1nm

d3

2dk

Page 28: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 28

Summary

High-resolution optical microscopy of carbon High-resolution optical microscopy of carbon nanotubes using a sharp laser-illuminated metal tipnanotubes using a sharp laser-illuminated metal tip

• PL and Raman spectroscoy and imaging• Spatial resolution < 15 nm• Signal enhancement

ResultsResults• Resolved RBM variations (IMJ) on the nanoscale• Non-uniform emission energies that result from local

variations of dielectric environment• Strongly confined emission signals bound excitons?• PL-Quantum yield can be enhanced by metal structures

Page 29: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 29

Outlook

Optimize TechniqueOptimize Technique• Higher spatial resolution < 5 nm?• Higher enhancement

NanotubesNanotubes• Role of structural defects: Correlation between Raman and

PL data• Role of local dielectric environment...• Enhancement of PL quantum yield• time-resolved studies

Near-field interactionsNear-field interactions• Mechanisms for signal enhancement?• Selection rules?

Page 30: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 30

Acknowledgement

PC Tuebingen:Mathias SteinerHui QianAntonio Virgilio Failla

Funding: DFG, C Siegen, NSF, FCI

PC Siegen: Gregor Schulte

Page 31: CEAC06, Zürich 11.07.2006Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong

CEAC06, Zürich 11.07.2006 Achim Hartschuh, Nano-Optics München 31

Thank you!