CE2352_qb

Embed Size (px)

Citation preview

  • 8/10/2019 CE2352_qb

    1/61

  • 8/10/2019 CE2352_qb

    2/61

    CE!" DESI#N OF STEEL STRUCTURES(Limit State Design)

    OB$ECTIVE

    Th$% c&'%e c&e% *he +e%$,- & %*'c*'/0 %*ee0 1e12e% %'23ec*e+ *& c&14e%%$e *e-%$0e/-+ 2e-+$-, 0&/+% /% 4e c'e-* c&+/0 4&$%$&-% $-c0'+$-, c&--ec*$&-%. De%$,- & %*'c*'/0

    %5%*e1% %'ch /% && *'%%e% ,/-*5 ,$+e% /e $-c0'+e+.

    % INTRODUCTION

    P&4e*$e% & %*ee0 S*'c*'/0 %*ee0 %ec*$&-% L$1$* S*/*e De%$,- C&-ce4*% L&/+% &- S*'c*'e% Me*/0 3&$-$-, 1e*h&+% '%$-, $e*% 6e0+$-, 2&0*$-, De%$,- & 2&0*e+ $e*e+ /-+ 6e0+e+ 3&$-*% Ecce-*$c c&--ec*$&-% !E$c$e-c5 & 3&$-*% H$,h Te-%$&- 2&0*%

    TENSION MEMBERS

    T54e% & %ec*$&-% Ne* /e/ Ne* eec*$e %ec*$&-% & /-,0e% /-+ Tee $-*e-%$&- De%$,- & c&--ec*$&-% $- *e-%$&- 1e12e% U%e & 0', /-,0e% De%$,- & *e-%$&- %40$ce C&-ce4* & %he/ 0/,

    ! COMPRESSION MEMBERS

    T54e% & c&14e%%$&- 1e12e% The&5 & c&0'1-% B/%$% & c'e-* c&+/04&$%$&- & c&14e%%$&- 1e12e +e%$,- S0e-+e-e%% /*$& De%$,- &%$-,0e %ec*$&- /-+ c&14&'-+ %ec*$&- c&14e%%$&- 1e12e% De%$,- &0/c$-, /-+ 2/**e-$-, *54e c&0'1-% De%$,- & c&0'1- 2/%e% G'%%e*e+2/%e

    ' BEAMS

    De%$,- & 0/*e/005 %'44&*e+ /-+ '-%'44&*e+ 2e/1% B'$0* '4 2e/1% Be/1% %'23ec*e+ *& 2$/7$/0 2e-+$-, De%$,- & 40/*e ,$+e% $e*e+ /-+6e0+e+ I-*e1e+$/*e /-+ 2e/$-, %*$e-e% 8e2 %40$ce% De%$,- & 2e/1c&0'1-%

    " ROOF TRUSSES AND INDUSTRIAL STRUCTURES

    R&& *'%%e% R&& /-+ %$+e c&e$-,% De%$,- 0&/+% +e%$,- & 4'0$- /-+

    e0e1e-*% & *'%%9 e-+ 2e/$-, De%$,- & ,/-*5 ,$+e

    TE(T BOO)S

    :. D/5//*-/1 P. ;De%$,- & S*ee0 S*'c*'e%

  • 8/10/2019 CE2352_qb

    3/61

    UNIT I

    INTRODUCTION

    Properties of steel Structural steel sections Limit State DesignConcepts Loas on Structures Metal !oining met"os using ri#ets$%eling$ &olting Design of &olte$ ri#ete an %ele !oints Eccentric connections ' Efficienc of !oints ig" Tension &olts

    T*+ MA,-S ./ESTI+NS AND ANS*E,S

    0 *"at are t"e #arious tpes of connections use for connecting t"e

    structural mem&ers1

    R$e*e+ c&--ec*$&-%

    B&0*e+ c&--ec*$&-%

    P$- c&--ec*$&-%

    8e0+e+ c&--ec*$&-%

    23 Define ri#eting3

    R$e*$-, $% / 1e*h&+ & 3&$-$-, *6& & 1&e %*'c*'/0 %*ee0 c&14&-e-*% 25

    $-%e*$-, +'c*$0e 1e*/0 4$-% c/00e+ $e*.

    4. Define nominal iameter of ri#et3

    I* $% *he +$/1e*e & *he '-he/*e+ $e* 1e/%'e+ 2e&e +$$-,. I* $% *he

    %*/*e+ +$/1e*e & *he $e* //$0/20e $- *he 1/?e*.

    53 Define gross iameter of ri#et3

    I* $% *he +$/1e*e & *he $e* $- *he h&0e 1e/%'e+ /*e +$$-,. I* $% */?e-

    e'/0 *& *he +$/1e*e & *he $e* h&0e.

    63 *"at is meant & pitc" of ri#et1

    The 4$*ch & *he $e*% $% *he +$%*/-ce 2e*6ee- ce-*e% & *6& /+3/ce-*

    $e*% $- / &6.

    73 Define gauge line3

    I* $% *he 0$-e & $e*% 6h$ch $% 4//00e0 *& *he +$ec*$&- & %*e%%.

    3

  • 8/10/2019 CE2352_qb

    4/61

    83 *"at is meant & gauge istance an ege istance1

    G/',e +$%*/-ce $% *he 4e4e-+$c'0/ +$%*/-ce 2e*6ee- *6& /+3/ce-* ,/',e

    0$-e%. Th$% $% /0%& c/00e+ /% 2/c? 4$*ch.

    E+,e +$%*/-ce $% *he +$%*/-ce & *he e+,e & *he 1e12e & *he c&e

    40/*e% &1 *he ce-*e & e7*e1e $e* h&0e.

    93 Define staggere pitc"3

    I* $% /0%& c/00e+ /% /0*e-/*e 4$*ch & ee0e+ 4$*ch. The %*/,,ee+ 4$*ch $%

    +e$-e+ /% *he +$%*/-ce 1e/%'e+ /0&-, &-e $e* 0$-e &1 *he ce-*e & /

    $e* *& *he ce-*e & *he /+3&$-$-, $e* &- *he /+3/ce-* 4//00e0 $e* 0$-e.

    :3 Define lap3

    I* $% *he +$%*/-ce -&1/0 *& *he 3&$-* 2e*6ee- e+,e% & *he &e0/44$-,

    40/*e% $- / 0/4 3&$-* & 2e*6ee- *he 3&$-* /-+ *he e-+ & c&e 40/*e% $- / 2'**

    3&$-*.

    0;3 *"at is meant & tensile stress1

    8he- / %*'c*'/0 1e12e $% %'23ec*e+ *& +$ec* /7$/0 *e-%$0e 0&/+ *he

    %*e%% $% ?-&6- /% *e-%$0e %*e%% ( /*). The *e-%$0e %*e%% $% c/0c'0/*e+ &- -e*

    c&%%!%ec*$&-/0 /e/ & *he 1e12e.

    /* (P* A-)

    8hee P* $% *he +$ec* /7$/0 *e-%$0e 0&/+ /-+ A- $% *he -e* c&%%!%ec*$&-/0 /e/

    & *he 1e12e.

    003 *"at is meant & compressi#e stress1

    8he- / %*'c*'/0 1e12e $% %'23ec*e+ *& +$ec* /7$/0 c&14e%%$e 0&/+

    *he %*e%% $% ?-&6- /% c&14e%%$e %*e%% ( /c). The c&14e%%$e %*e%% $%

    c/0c'0/*e+ &- ,&%% c&%%!%ec*$&-/0 /e/ & *he 1e12e.

    /c (Pc A,)

    8hee Pc $% *he +$ec* /7$/0 c&14e%%$e 0&/+ /-+ A , $% *he ,&%%!%ec*$&-/0

    /e/ & *he 1e12e.

    4

  • 8/10/2019 CE2352_qb

    5/61

    023 Define &earing stress3

    8he- / 0&/+ $% e7e*e+ & */-%ee+ 25 *he /440$c/*$&- & 0&/+ *h&',h

    &-e %'/ce & /-&*he %'/ce $- c&-*/c* *he %*e%% $% ?-&6- /% 2e/$-,

    %*e%% ( 4). *he 2e/$-, %*e%% $% c/0c'0/*e+ &- -e* 4&3ec*e+ /e/ & c&-*/c*.

    4 (P A)

    8hee P 0&/+ 40/ce+ &- *he 2e/$-, %'/ce.

    A -e* 4&3ec*e+ /e/ & c&-*/c*.

    043 *"at is %or

  • 8/10/2019 CE2352_qb

    6/61

    A00 c&--ec*$&-% & 2e/1% ,$+e% & *'%% /e $*'/005 0e7$20e /-+ /e

    4&4&*$&-e+ & *he e/c*$&- %he/% /440$e+ /* *he /44&4$/*e

    ecce-*$c$*5

    The 1e12e% $- c&14e%%$&- /e %'23ec*e+ *& &ce% /440$e+ /* *he/44&4$/*e ecce-*$c$*$e%.

    The 1e12e% $- *e-%$&- /e %'23ec*e+ *& 0&-,$*'+$-/0 &ce% /440$e+

    &e *he -e* /e/ & *he %ec*$&-%.

    083 Define Moulus of Elasticit

    The 1&+'0'% & e0/%*$c$*5 $% +e$-e+ /% *he /*$& & 0&-,$*'+$-/0 %*e%% *&

    *he 0&-,$*'+$-/0 %*/$- 6$*h$- *he e0/%*$c e,$&- $* $% +e-&*e+ 25 E.

    093 Define Poisson=s ,atio3

    The P&$%%&-% /*$& $% +e$-e+ /% *he /*$& & */-%e%e %*/$- *& *he

    0&-,$*'+$-/0 %*/$- '-+e /- /7$/0 0&/+. I* $% +e-&*e+ 25 & :1. *he /0'e &

    P&$%%&-% /*$& & %*ee0 6$*h$- *he e0/%*$c e,$&- /-,e% &1 #." *& #.>>.

    0:3 *"at are t"e tpes of ri#ete !oints1

    $. L/4 3&$-*

    (/) S$-,0e $e*e+ 0/4 3&$-*

    (2) D&'20e $e*e+ 0/4 3&$-*

    $$. B'** 3&$-*

    (/) S$-,0e c&e 2'** 3&$-*

    (2) D&'20e c&e 2'** 3&$-*

    2;3 Define Lap !oint an >utt ?oint3

    Lap !oint@

    8he- &-e 1e12e $% 40/ce+ /2&e *he &*he /-+ *he%e *6& /e

    c&--ec*e+ 25 1e/-% & $e*% *he- *he 3&$-* $% ?-&6- $% 0/4 3&$-*.

    6

  • 8/10/2019 CE2352_qb

    7/61

    >utt ?oint

    8he- *he 40/*e% /e 40/ce+ e-+!*&!e-+ /-+ 0'%he+ 6$*h e/ch &*he

    /-+ /e 3&$-e+ 25 1e/-% & c&e 40/*e% *he 3&$-* $% ?-&6- /% B'** 3&$-*.

    7

  • 8/10/2019 CE2352_qb

    8/61

    203 *"at are t"e tpes of failures occur in ri#ete !oint1

    She/ /$0'e & $e*%

    She/ /$0'e & 40/*e%

    Te/$-, /$0'e & $e*%

    Be/$-, /$0'e & 40/*e%

    S40$**$-, /$0'e & 40/*e% /* *he e+,e%

    Be/$-, /$0'e & $e*%.

    223 *"at are t"e assumptions mae for esigning ri#ete !oint1

    The 0&/+ $% /%%'1e+ *& 2e '-$&105 +$%*$2'*e+ /1&-, /00 *he

    $e*%.

    The %he/ %*e%% &- / $e* $% /%%'1e+ *& 2e '-$&105 +$%*$2'*e+

    &e $*% ,&%% /e/.

    The 2e/$-, %*e%% $% /%%'1e+ *& 2e '-$&1 2e*6ee- *he c&-*/c*

    %'/ce% & 40/*e /-+ $e*.

    The 2e-+$-, %*e%% $- / $e* $% -e,0ec*e+.

    The $e* h&0e $% /%%'1e+ *& 2e c&140e*e05 $00e+ 25 *he $e*

    The %*e%% $- 40/*e $% /%%'1e+ *& 2e -e,0ec*e+.

    The $c*$&- 2e*6ee- 40/*e% $% -e,0ec*e+.

    8

  • 8/10/2019 CE2352_qb

    9/61

    243 *rite a&out minimum pitc" an maimum pitc"3

    Mi*im+m pi./ The +$%*/-ce 2e*6ee- ce-*e% & /+3/ce-* $e*% %h&'0+

    -&* 2e 0e%% *h/- ". *$1e% *he ,&%% +$/1e*e & *he $e*.

    M01im+m pi./

    The 1/7$1'1 4$*ch %h&'0+ -&* e7cee+ :"* & "## 11 6h$chee $%

    0e%% $- c/%e & c&14e%%$&- 1e12e /-+ :* & >## 11 6h$chee $%

    0e%% $- c/%e & *e-%$&- 1e12e.

    The +$%*/-ce 2e*6ee- ce-*e% & /-5 *6& c&-%ec'*$e $e*% $- / 0$-e

    /+3/ce-* /-+ 4//00e0 *& /- e+,e & /- &'*%$+e 40/*e %h/00 -&* e7cee+

    (:##11 *) & "## 11 6h$chee $% 0e%% $- c&14e%%$&- & *e-%$&-

    1e12e%.

    I *he 0$-e & $e*% ($-c0'+$-, */c?$-, $e*%) +&e% 0$e $- *he +$ec*$&- &

    %*e%% *he 1/7$1'1 4$*ch %h&'0+ -&* e7cee+ >" * & >## 11

    6h$chee $% 0e%% 6hee * $% *he *h$c?-e%% & *he *h$--e &'*%$+e 40/*e.

    253*"at is ege istance1

    A 1$-$1'1 e+,e +$%*/-ce & /44&7$1/*e05 :. *$1e% *he ,&%% +$/1e*e

    & *he $e* 1e/%'e+ &1 *he ce-*e & *he $e* h&0e $% 4&$+e+ $- *he $e*

    3&$-*.

    "2.0 i3 me0* by limi 30e de3i4*5(IS9;;@2;;8'Pg@ 29)

    L$1$* %*/*e +e%$,- 1e*h&+ $% *ech-&0&,$c/005 %&'-+ 1e*h&+ 6h$ch e%'0*% $-

    %$,-$$c/-* ec&-&15 $- +e%$,- & %*'c*'e%. The +e%$,- & / %*'c*'e *&

    %/*$%5 /00 /44&4$/*e e'$e1e-*% +e$e+ &1 4&2/2$0$*5 c&-%$+e/*$&-% $%

    eee+ *& /% / 0$1$* %*/*e +e%$,-.

    273 State t"e ifferent limit states3 (IS9;;@2;;8'Pg@ 29)

    The 0$1$* %*/*e% /e 2&/+05 ,&'4e+ $- *& *6& 1/3& *54e% -/1e05

    L$1$* %*/*e & %*e-,*h

    L$1$* %*/*e & %e$ce/2$0$*5.

    283 *"at are t"e four tpes of ser#icea&ilit limit states applica&le to

    steel structures1 (IS9;;@2;;8'Pg@ 29)

    9

  • 8/10/2019 CE2352_qb

    10/61

    De0ec*$&-

    D'/2$0$*5

    V$2/*$&-

    F$e e%$%*/-ce

    293 Define ura&ilit3 (IS9;;@2;;8'Pg@ 2)

    I* $% +e$-e+ /% /2$0$*5 & *he %*'c*'e *& 1/$-*/$- $*% 0ee0 & e0$/2$0$*5 /-+

    4e&1$-, *he +e%$e+ '-c*$&- $- *he 6&?$-, e-$&-1e-* '-+e e74&%'e

    c&-+$*$&-% 6$*h&'* +e*e$&/*$&- & c&%% %ec*$&-/0 /e/ /-+ 0&%% & %*e-,*h

    +'e *& c&&%$&- +'$-, $*% 0$e %4/-.

    2:3 o% t"e loas are classifie1 (IS9;;@2;;8'Pg@ 5)

    De/+ 0&/+

    L$e 0&/+

    E/*h'/?e 0&/+

    8$-+ 0&/+

    D5-/1$c 0&/+%.

    4;3 *"at is a partial safet factor1 (IS9;;@2;;8'Pg@ 5)

    The %/e*5 & *he %*'c*'e +e4e-+% &- e/ch & *he *6& 4$-c$4/0 +e%$,-

    /c*&% -/1e05 0&/+ /-+ 1/*e$/0 %*e-,*h 6h$ch /e -&* *he '-c*$&-% &

    e/ch &*he. E/ch & *he *6& /c*&% c&-*$2'*e% 4/*$/005 *& %/e*5 /-+ *he5 /e

    *e1e+ /% 4/*$/0 %/e*5 /c*&%.

    403 Define esign loa3 The 4/*$/0 %/e*5 /c*& & 0&/+% $% / 0&/+ /c*& 6h$ch $% 1'0*$40$e+ *&

    ch//c*e$%*$c 0&/+ ,$e% *he +e%$,- 0&/+.

    Design loa B f c"aracteristic loa

    423 Define &olt3

    A 2&0* $% / 1e*/0 4$- 6$*h / he/+ &1e+ /* &-e e-+ /-+ *he %h/-?

    *he/+e+ /* *he &*he e-+ $- &+e *& ece$e / -'*.

    1

  • 8/10/2019 CE2352_qb

    11/61

    443 *"at are t"e a#antages of &olte connections1(Ma ?une 2;;8)

    Thee $% %$0e-ce $- 4e4/$-, 2&0*e+ c&--ec*$&-. I- $e*$-,h/11e$-, $% +&-e. The h/11e$-, c/'%e% -&$%e $- *he $e*$-,.

    Thee $% -& $%? & $e $- 2&0*e+ c&--ec*$&-. The $e*% /e 1/+e e+

    h&* $- $e*$-, /-+ *hee $% $%? & $e.

    The 2&0*e+ c&--ec*$&-% 1/5 2e +&-e '$c?05 $- c&14/$%&- *& *he

    $e*$-,.

    Th&',h *he c&%* & 2&0*% $% 1&e *h/- *he c&%* & $e*% *he 2&0*e+

    c&--ec*$&-% /e ec&-&1$c/0 *& '%e 2ec/'%e 0e%% 4e%&-% /e

    e'$e+ & $-%*/00/*$&- /-+ *he 6&? 4&cee+% '$c?05.

    N&$%e0e%%

    E/%5 *& +$%1/-*0e /-+ e'%e *he 1/*e$/0%.

    453 *"at are t"e #arious tpes of &olts use for structural purposes1

    (Ma ?une 2;;8)

    U-$-$%he+ 2&0*%

    T'-e+ 2&0*%

    B0/c? 2&0*%

    H$,h %*e-,*h 2&0*%

    463 *"at are t"e a#antages of SG &olts1

    D& -&* /00&6 %0$4 2e*6ee- *he c&--ec*e+ 1e12e%.

    L&/+% /e */-%ee+ 25 $c*$&- &-05.

    D'e *& h$,h %*e-,*h 0e%% -'12e & 2&0*% /e e'$e+.

    N& -&$%e 4&00'*$&-

    De&1/*$&- $% 1$-$1$e+.

    473 Define nominal iameter an gross iameter of &olt3

    Nomi*0l di0mee6 o7 bol/The -&1$-/0 +$/1e*e & / 2&0* $% *he +$/1e*e

    & '-*he/+e+ %h/-? & 2&0*.

    1

  • 8/10/2019 CE2352_qb

    12/61

    #6o33 di0mee6 o7 bol/ The ,&%% +$/1e*e & / 2&0* $% *he -&1$-/0

    +$/1e*e & *he 2&0*.

    483 Define slip factor3

    The %0$4 /c*& $% +e$-e+ /% /*$& & *he 0&/+ 4e eec*$e $-*e/ce

    e'$e+ *& 4&+'ce %0$4 $- / 4'e %he/ 3&$-* *& *he *&*/0 %h/-? *e-%$&-

    $-+'ce+ $- *he 2&0*%.

    493 Define %el3

    The 6e0+$-, $% &-e & *he 1e*h&+% & c&--ec*$-, *he %*'c*'/0 1e12e%.

    I- *he 6e0+$-, / 1e*/00$c 0$-? $% 1/+e 2e*6ee- *he %*'c*'/0 1e12e%. The

    6e0+ $% +e$-e+ /% / '-$&- 2e*6ee- *6& 4$ece% & 1e*/0 /* /ce% e-+ee+

    40/%*$c & 0$'$+ 25 he/* & 25 4e%%'e & 2&*h.

    4:3 *rite a&out t"e a#antages of %eling3

    Thee $% %$0e-ce $- *he 4&ce%% & 6e0+$-,.

    Thee $% %/e*5 & 6e0+$-, &4e/*& $- *he 6e0+$-,.

    The 6e0+$-, 1/5 2e +&-e '$c?05 $- c&14/$%&- *& *he $e*$-,.

    The 6e0+e+ 3&$-*% h/e 2e**e /44e//-ce *h/- $e*e+ 3&$-*%.

    The 6e0+e+ 3&$-*% /e 1&e $,$+ *h/- *he $e*e+ 3&$-*%

    5;3 List t"e #arious tpes of %ele !oints3

    B'** 6e0+

    F$00e* 6e0+

    S0&* 6e0+ /-+ 40', 6e0+

    S4&* 6e0+

    Se/1 6e0+

    P$4e 6e0+

    503 *rite a&out t"e isa#antages of %eling3

    The 1e12e% /e 0$?e05 *& +$%*&* $- *he 4&ce%% & 6e0+$-,.

    1

  • 8/10/2019 CE2352_qb

    13/61

  • 8/10/2019 CE2352_qb

    14/61

    573 *"at are t"e tpes of %eling process1

    E0ec*$c /c 6e0+$-,

    G/% 6e0+$-,

    The1$*e 6e0+$-,

    F&,e+ 6e0+$-,

    Re%$%*/-ce 6e0+$-,.

    583 *rite t"e euation for calculating t"e effecti#e t"roat t"ic 11

    /-+ ,e-e/005 -&* *& e7cee+ #.* & :.#* 6hee * $% *he *h$c?-e%% & *h$--e

    40/*e & e0e1e-*% 2e$-, 6e0+e+.

    593 Dra% a neat s

  • 8/10/2019 CE2352_qb

    15/61

    8e$,h* :." ?,1Ae/ .# c1"

    De4*h & %ec*$&- ## 118$+*h & 0/-,e :# 11Th$c?-e%% & 0/-,e : 11Th$c?-e%% & 6e2 .@ 11

    M&1e-* & $-e*$/ I77 "#. c1

    I55 "".: c1

    R/+$$ & ,5/*$&- 77 :."# c1 55 "." c1

    M&+'0$ & %ec*$&- 77:#"#.# c1>

    55 .@ c1>

    5:3 Define t"e terms gauge$ pitc"$ ege an en istance of &olt!oint3(IS9;;@2;;8'Pg@ 2$4 F5)

    1

  • 8/10/2019 CE2352_qb

    16/61

    6;3 o% to calculate t"e efficienc of a !oint1

    The e$c$e-c5 & *he 3&$-* $% *he /*$& & /c*'/0 %*e-,*h & c&--ec*$&-*& *he ,&%% %*e-,*h & c&--ec*e+ 1e12e e74e%%e+ $- /%

    E77iie*y o7 8oi* 9 le03 0+0l 36e*4. o7 .e 8oi* (%::

    #6o33 36e*4. o7 3olid pl0e membe6

    PART - B

    % MAR) ;UESTIONS

    :. De*e1$-e *he %*e-,*h & / +&'20e c&e 2'** c&e 2'** 3&$-* '%e+ *&

    c&--ec* *6& 0/*% "## F :". The *h$c?-e%% & e/ch c&e 40/*e $% 11. 0/*%

    h/e 2ee- 3&$-e+ 25 @ $e*% $- ch/$- $e*$-, /* / ,/',e & # 11. 8h/* $%

    *he e$c$e-c5 & *he 3&$-*

    ". A 0&/+ & :# ?N $% /440$e+ *& / 2/c?e* 40/*e /* /- ecce-*$c$*5 & >## 11.

    %$7*ee- $e*% & "# 11 -&1$-/0 +$/1e*e /e //-,e+ $- *6& &6% 6$*h

    $e*% 4e &6. The *6& &6% /e "## 11 /4/* /-+ *he 4$*ch $% # 11. $ *he

    2/c?e* 40/*e $% :". 11 *h$c? $-e%*$,/*e *he %/e*5 & *he c&--ec*$&-. G$e-

    % :## N 11"

    2 >## N 11"/-+ * :# N 11

    ".

    >. 8h/* /e *he *54e% & 0&/+ *& 2e /cc&'-* & %*ee0 +e%$,-

    . A 2$+,e *'%% c/$e% /- /7$/0 4'00 & ## KN. I* $% *& 2e / ,'%%e* 40/*e

    ""11 *h$c? 25 / +&'20e c&e 2'** 3&$-* 6$*h "" 11 +$/1e*e 4&6e +$e-

    $e*%. De%$,- /- ec&-&1$c/0 3&$-*. De*e1$-e *he e$c$e-c5 & *he 3&$-*.

    1

  • 8/10/2019 CE2352_qb

    17/61

    . T6& 40/*e% :" 11 /-+ :# 11 *h$c? /e 3&$-e+ 25 / *$40e $e*e+ 0/4 3&$-* $-

    6h$ch *he 4$*ch & *he ce-*/0 &6 & $e*% $% #. *$1e% *he 4$*ch & $e*% $- *he

    &'*e &6%. De%$,- *he 3&$-* /-+ $-+ $*% e$c$e-c5. T/?e /* :# N11"= 4

    "# N11". (M/5 J'-e "##)

    . A +&'20e $e*e+ +&'20e c&e 2'** 3&$-* $% '%e+ *& c&--ec* 40/*e% :" 11

    *h$c?. U%$-, U-6$-% &1'0/ +e*e1$-e *he +$/1e*e & $e*9 $e* /0'e

    ,/',e /-+ e$c$e-c5 & 3&$-*. A+&4* *he &00&6$-, %*e%%e%

    8&?$-, %*e%% $- %he/ $- 4&6e +$e- $e*% :## N 11"(M4/)

    8&?$-, %*e%% $- 2e/$-, $- 4&6e +$e- $e*% >## N 11"(M4/)

    8&?$-, %*e%% $- /7$/0 *e-%$&- $- 40/*e% #. 5

    . A 2/c?e* c/5$-, / 0&/+ & :## ?N $% c&--ec*e+ *& c&0'1- 25 1e/-% &

    *6& h&$&-*/0 $00e* 6e0+% & :># 11 eec*$e 0e-,*h /-+ :# 11 *h$c?. The

    0&/+ /c*% /* # 11 &1 *he /ce & *he c&0'1- /% %h&6-. F$-+ *he *h&/*

    %*e%%. (M/5 J'-e "##)

    . A *$e 1e12e 11 11 $% *& */-%1$* / 0&/+ & @# ?N. De%$,- *he $00e*

    6e0+ /-+ c/0c'0/*e *he -ece%%/5 &e0/4. (N& Dec "##)

    @. A %$-,0e 2&0*e+ +&'20e c&e 2'** 3&$-* $% '%e+ *& c&--ec* *6& 40/*e% 11

    *h$c?. A%%'1$-, "#11 2&0*% /* #11 4$*ch c/0c'0/*e *he e$c$e-c5 & *he 3&$-*.

    The *h$c?-e%% & c&e 40/*e $% 11.

    1

  • 8/10/2019 CE2352_qb

    18/61

    :#. The $,'e %h&6% *he 3&$-* $- *he 2&**&1 ch&+ c&-*$-'&'% 1e12e & *he

    *'%%. De%$,- *he c&--ec*$&- '%$-, M: 20/c? 2&0* & 4&4e*5 c0/%% . /-+

    ,/+e Fe:# %*ee0. A%%'1e e+,e +$%*/-ce & > 11 /-+ 1$-$1'1 4$*ch.

    ::. De%$,- *he %e/* /-,0e c&--ec*$&- 2e*6ee- *he 2e/1 ISMB "# /-+c&0'1- ISHB "# & / e/c*$&- &1 2e/1 e'/0 *& KN. U%e M: 20/c?

    2&0* & 4&4e*5 c0/%% . /-+ ,/+e Fe:# %*ee0 6$*h 5"# MP/.

    :". A 2e/1 IS8B # h/$-, e'/0 0/-,e 6$+*h *& *h/* & c&0'1- */-%e% /

    /c*&e+ e-+ e/c*$&- & " KN *& *he 0/-,e & *he c&0'1- ISSC "#. De%$,-

    *he %*$e-e+ %e/* /-,0e c&--ec*$&- '%$-, "# 11 2&0*% & ,/+e . 5"#

    MP/.

    1

  • 8/10/2019 CE2352_qb

    19/61

    UNIT - II

    TENSION MEMBERS

    T54e% & %ec*$&-% Ne* /e/ Ne* eec*$e %ec*$&-% & /-,0e% /-+

    Tee $- *e-%$&- De%$,- & c&--ec*$&-% $- *e-%$&- 1e12e% U%e & 0',/-,0e% De%$,- & *e-%$&- %40$ce C&-ce4* & %he/ 0/,

    PART A

    T2O MAR) ;UESTIONS AND ANS2ERS

    % De7i*e e*3io* membe6.

    A *e-%$&- 1e12e $% +e$-e+ /% / %*'c*'/0 1e12e %'23ec*e+ *&

    *e-%$0e &ce $- *he +$ec*$&- 4//00e0 *& $*% 0&-,$*'+$-/0 /7$%. A *e-%$&- 1e12e

    $% /0%& c/00e+ /% / *$e 1e12e & %$1405 / *$e.

    2.0 06e .e

  • 8/10/2019 CE2352_qb

    20/61

    The %0e-+e-e%% /*$& & / *e-%$&- 1e12e $% *he /*$& & $*%

    '-%'44&*e+ 0e-,*h (0) *& $*% 0e/%* /+$'% & ,5/*$&- ().

    " 2.0 i3 *e 3eio*0l 06e05=No< > De ::?@

    The -e* %ec*$&-/0 /e/ & / *e-%$&- 1e12e $% *he ,&%%!%ec*$&-/0 /e/

    & *he 1e12e 0e%% *he 1/7$1'1 +e+'c*$&- & h&0e%.

    A-e* A,&%% %ec*$&-/0 /e/% & h&0e%

    73 o% to calculate net area in (a) c"ain &olting (&) HigHag &olting3

    (IS9;;@2;;8'Pg@ 44)

    a) C"ain &olting

    Ne* /e/ A- (2 - +h) *

    &) igHag &olting

    2

  • 8/10/2019 CE2352_qb

    21/61

    ? 2.0 i3 0 L+4 0*4le5

    I- &+e *& $-ce/%e *he e$c$e-c5 & *he &'*%*/-+$-, 0e, $- %$-,0e

    /-,0e% /-+ *& +ece/%e *he 0e-,*h & *he e-+ c&--ec*$&-% %&1e *$1e% / %h&*

    0e-,*h /-,0e /* *he e-+% /e c&--ec*e+ *& *he ,'%%e* /-+ *he &'*%*/-+$-, 0e,

    & *he 1/$- /-,0e +$ec*05 /% %h&6- $- F$,.. S'ch /-,0e% /e eee+ *& /% 0',

    /-,0e%. I* /0%& e+'ce% %he/ 0/,.

    2

  • 8/10/2019 CE2352_qb

    22/61

    Te-%$&- 1e12e 6$*h 0', /-,0e

    93 *rite an t%o specifications for esigning of lug angle3

    (IS9;;@2;;8'Pg@ 94)

    2

  • 8/10/2019 CE2352_qb

    23/61

    26ie *oe o* e*3io* membe6 3plie =M0y > $+*e ::?@

    A *e-%$&- 1e12e $% %40$ce+ 6he- *he //$0/20e 0e-,*h $% 0e%% *h/- *he

    e'$e+ 0e-,*h & *he *e-%$&- 1e12e. A *e-%$&- 1e12e $% /0%& %40$ce+

    6he- *he 1e12e% & +$ee-* *h$c?-e%% /e e'$e+ *& 2e c&--ec*e+. I-

    %'ch / c/%e 4/c?$-, $% e'$e+ *& $00 '4 *he ,/4.

    2

  • 8/10/2019 CE2352_qb

    24/61

    %: 2.0 do yo+ +*de630*d by #6o33 06e05 =No< > De ::?@

    T&*/0 /e/ & c&%% %ec*$&- 6h$ch c/- 2e */?e- /% e'/0 6e$,h* & *he

    1e12e 4e '-$* 0e-,*h +$$+e+ 25 +e-%$*5 & *he 1/*e$/0 $% c/00e+ G&%% /e/.

    The %ec*$&-/0 /e/ ,$e- 25 *he 1/-'/c*'e $% */?e- /% *he ,&%% /e/.

    023 Eplain s"ear lag effect3 (IS9;;@2;;8'Pg@ 5)

    The *e-%$0e &ce $% */-%ee+ &1 ,'%%e* *& *he *e-%$&- 1e12e

    (%'ch /% /-,0e% ch/--e0% & T! %ec*$&-%) *h&',h &-e 0e, 25 2&0*% & 6e0+%. I-

    *h$% 4&ce%% $-$*$/005 *he c&--ec*e+ 0e, 1/5 2e %'23ec*e+ *& 1&e %*e%% *h/-

    *he &'*%*/-+$-, 0e, /-+ $-/005 *he %*e%% +$%*$2'*$&- 2ec&1e% '-$&1 &e

    *he %ec*$&- /6/5 &1 *he c&--ec*$&-. Th'% &-e 4/* 0/,% 2eh$-+ *he &*he9

    *h$% $% eee+ *& /% %he/ 0/,.

    2

  • 8/10/2019 CE2352_qb

    25/61

    043 Gi#e t"e s

  • 8/10/2019 CE2352_qb

    26/61

    >. De%$,- / h&$&-*/0 *e-%$&- 1e12e c/5$-, / 0&/+ ## KN The 0e-,*h &

    *he 1e12e $% > 11. The 1e12e $% c&--ec*e+ *& . c1 *h$c? ,'%%e* 40/*e

    "# 11 $e*%.

    . De%$,- *he *e-%$&- %*e-,*h & / && *'%% +$/,&-/0 :## :# 11

    c&--ec*e+ *& *he ,'%%e* 40/*e 25 "# 11 +$/1e*e 4&6e +$e- $e*% $- &-e

    &6 /0&-, *he 0e-,*h & *he 1e12e. The %h&* 0e, & *he /-,0e $% ?e4*

    &'*%*/-+$-,. (NOVDEC "##)

    . A 2$+,e *'%% +$/,&-/0 c/$e% /- /7$/0 4'00 & >## KN .*6& 1$0+ %*ee0 0/*%

    "# ISF :# /-+ ISF : & *he +$/,&-/0 /e *& 2e 3&$-*e+ *&,e*he. De%$,- /

    %'$*/20e %40$ce

    . De%$,- / +&'20e /-,0e *e-%$&- 1e12e c/5$-, /7$/0 *e-%$0e &ce & >##

    ?N $- /++$*$&- *& *h$% $* $% /0%& %'23ec*e+ *& / '-$&105 +$%*$2'*e+ 0&/+ & #.

    ?N1 *h&',h&'* $*% 0e-,*h $-c0'+$-, %e0 6e$,h*. The ce-*e *& ce-*e

    +$%*/-ce 2e*6ee- *he e-+ c&--ec*$&- $% ". 1. (MAYJUNE"##)

    . De%$,- / *e-%$&- %40$ce *& c&--ec* *6& 40/*e% & %$e ""# 11 "# 11 /-+

    "## 11 :# 11 & / +e%$,- 0&/+ & ""# ?N. A0%& %?e*ch *he +e*/$0% & *he

    $e*e+ 3&$-*. (MAYJUNE"##)

    . The 1/$- *$e & / && *'%% c&-%$%*% & ISA :# :: 11 /-+ $%

    c&--ec*e+ *& / ,'%%e* 40/*e 25 : 11 +$/1e*e $e*%. F$-+ &'* *he 1/7$1'1

    0&/+ $* c/- c/5.

    2

  • 8/10/2019 CE2352_qb

    27/61

    UNIT - III

    COMPRESSION MEMBERS

    T54e% & c&14e%%$&- 1e12e% The&5 & c&0'1-% B/%$% &

    c'e-* c&+/0 4&$%$&- & c&14e%%$&- 1e12e +e%$,- S0e-+e-e%% /*$&

    De%$,- & %$-,0e %ec*$&- /-+ c&14&'-+ %ec*$&- c&14e%%$&- 1e12e%

    De%$,- & 0/c$-, /-+ 2/**e-$-, *54e c&0'1-% De%$,- & c&0'1- 2/%e%

    G'%%e*e+ 2/%e

    PART A

    T2O MAR) ;UESTIONS AND ANS2ERS

    % 2.0 i3 me0* by 36+5 (IS9;;@2;;8'Pg@ 6)

    A %*'* $% +e$-e+ /% / %*'c*'/0 1e12e %'23ec*e+ *& c&14e%%$&- $- /

    +$ec*$&- 4//00e0 *& $*% 0&-,$*'+$-/0 /7$%. The *e1 %*'* $% c&11&-05 '%e+

    & c&14e%%$&- 1e12e% $- && *'%%e%.

    2

  • 8/10/2019 CE2352_qb

    28/61

    D60 .e di0460m o7 b+li*4 o7 ol+m*

    ! 2.0 06e .e 033+mpio*3 m0de i* E+le63 0*0ly3i35

    :. The 1/*e$/0 $% h&1&,e-e&'% /-+ 0$-e/05 e0/%*$c ($.e. $* &2e5%

    H&&?e% L/6).

    " The %*'* $% 4eec*05 %*/$,h* /-+ *hee /e -& $14eec*$&-%.

    2

  • 8/10/2019 CE2352_qb

    29/61

    >.The 0&/+$-, $% /440$e+ /* *he ce-*&$+ & *he c&%% %ec*$&- /* *he

    e-+%.

    ' 2.0 i3 me0* by e77ei

  • 8/10/2019 CE2352_qb

    30/61

    2'c?0$-, $% +e$-e+ /% *he %'++e- 2e-+$-, 6/4$-, c'0$-, & c'140$-, &

    *he e0e1e-*% & 1e12e% '-+e c&14e%%$e %*e%%e%.

    2.0 i3 me0* by b+il-+p omp6e33io* membe635

    The 2'$0*!'4 c&14e%%$&- 1e12e% /e -ee+e+ 6he- *he %$-,0e &00e+

    %*ee0 %ec*$&-% /e -&* %'$c$e-* *& '-$%h *he e'$e+ c&%%!%ec*$&-/0 /e/.

    A 2'$0*!'4 c&14e%%$&- 1e12e 1/5 c&-%$%* & *6& & 1&e &00e+

    %*'c*'/0 %*ee0 %ec*$&-% c&--ec*e+ *&,e*he eec*$e05 /-+ /c*% /% &-e

    c&14e%%$&- 1e12e.

    De7i*e po3iio* 6e360i*

    I- 4&%$*$&- e%*/$-* e-+ & *he c&0'1- $% -&* ee *& ch/-,e $*% 4&%$*$&-

    2'* &*/*$&- /2&'* *he e-+ & e*h c&0'1- c/- */?e 40/ce e.,. h$-,e+ e-+ &

    c&0'1-.

    %: 2.0 06e .e di77e6e* e77ei

  • 8/10/2019 CE2352_qb

    31/61

    003 Define effecti#e lengt"3The eec*$e 0e-,*h & / c&14e%%$&- 1e12e $% *he +$%*/-ce 2e*6ee-

    *he 4&$-*% & c&-*/ 0e7'e% & / 2'c?0e+ c&0'1-. I* +e4e-+% &- *he /c*'/0

    0e-,*h /-+ *he e-+ c&-+$*$&-% $- e,/+% *& e%*/$-* /,/$-%* &*/*$&- /-+

    */-%e%e +$%40/ce1e-*.

    3

  • 8/10/2019 CE2352_qb

    32/61

    023 *"at is meant & actual lengt"1

    The /c*'/0 0e-,*h $% */?e- /% *he 0e-,*h &1 ce-*e!ce-*e &

    $-*e%ec*$&-% 6$*h *he %'44&*$-, 1e12e%.

    043 o% t"e effecti#e lengt" of column is etermine1

    The eec*$e 0e-,*h & c&0'1-% $- /1e+ %*'c*'e% 1/5 2e &2*/$-e+25 1'0*$405$-, *he /c*'/0 0e-,*h & *he c&0'1- 2e*6ee- *he ce-*e% & 0/*e/005%'44&*$-, 1e12e% (2e/1%) ,$e- 6$*h *he eec*$e 0e-,*h /c*& K.

    E77ei De ::"@

    3

  • 8/10/2019 CE2352_qb

    33/61

    083 *"ic" column formula is recommene in IS 9;;@2;;81 (Pg@ 45)

    3

  • 8/10/2019 CE2352_qb

    34/61

    3

  • 8/10/2019 CE2352_qb

    35/61

    093 *"ere s"oul t"e splice plate &e locate in a column1

    (IS9;;@2;;8'Pg@57)

    % 2.0 i3 .e p+6po3e 7o6 p6o

  • 8/10/2019 CE2352_qb

    36/61

    3

  • 8/10/2019 CE2352_qb

    37/61

    223 *rite a&out &atten plates in compression mem&er3

    8he- c&14e%%$&- 1e12e% /e e'$e+ & 0/,e %*'c*'e% 0$?e

    2$+,e% $* 6$00 2e -ece%%/5 *& '%e 2'$0*!'4 %ec*$&-%. The5 /e 4/*$c'0/05

    '%e'0 6he- 0&/+% /e he/5 /-+ 1e12e% /e 0&-, (e.,. *&4 ch&+% & B$+,e

    T'%%e%). The c&%% %ec*$&- c&-%$%*% & *6& ch/--e0 %ec*$&-% c&--ec*e+ &-

    *he$&4e- %$+e% 6$*h %&1e *54e & 0/c$-, & 0/**$c$-, (+&**e+ 0$-e%) *& h&0+ *he

    4/*% *&,e*he /-+ e-%'e *h/* *he5 /c* *&,e*he /% &-e '-$*. The e-+% &

    *he%e 1e12e% /e c&--ec*e+ 6$*h ;2/**e- 40/*e%< 6h$ch *$e *he e-+%

    *&,e*he.

    243 *"at are t"e t"ree classifications for etermination of siHe of plate1

    C0/%% I! 6$00 4e*/$- *& /00 2/%e 40/*e% *he 1&1e-* &- 6h$ch $% %& %1/00

    $- 4&4&*$&- *& *he +$ec* 0&/+ *h/* *hee $% c&14e%%$&- &e *he e-*$e /e/

    2e*6ee- *he 2&**&1 & *he 2/%e /-+ $*% &'-+/*$&-

    C0/%% II! 6$00 4e*/$- / c&14//*$e05 %1/00 /-,e & 2/%e 40/*e% 6h$ch

    h/e *e-%$&- &e / %1/00 4&*$&- ! &-e ! *h$+ & 0&%% & *he /e/

    C0/%% III! 6$00 $-c0'+e *h&%e 6h$ch /e e74&%e+ *& / c&14//*$e05 0/,e

    1&1e-* /-+ 6h$ch *hee&e h/e *e-%$&- &e / 0/,e 4&*$&- ! 1&e *h/-

    &-e !*h$+ & *he /e/ 2e*6ee- *he 2&**&1 & *he 2/%e 40/*e /-+ $*% c&-ce*e

    &&*$-,.

    253 *"at are t"e functions of pro#iing column &ases1

    The 2/%$c '-c*$&- & 2/%e% $% *& +$%*$2'*e *he c&-ce-*/*e+ 0&/+ &1

    *he c&0'1- &e / 0/,e /e/. The c&0'1- 0&/+ $% +$%*$2'*e+ &e *he 2/%e

    40/*e /-+ *he- *& %'44&*$-, c&-ce*e /-+ $-/005 *& *he %&$0.

    3

  • 8/10/2019 CE2352_qb

    38/61

    263 *"at is meant & sla& &ase1

    The %0/2 2/%e /% %h&6- $- F$,'e c&-%$%*% & c0e/* /-,0e% /-+ 2/%e

    40/*e. The c&0'1- e-+ $% /ce+ & 2e/$-, &e *he 6h&0e /e/. The ,'%%e*%

    (,'%%e* 40/*e% /-+ ,'%%e* /-,0e%) /e -&* 4&$+e+ 6$*h *he c&0'1- 6$*h *he

    %0/2 2/%e%. The %'$c$e-* /%*e-$-,% /e '%e+ *& e*/$- *he 4/*% %ec'e05 $-

    40/*e /-+ *& e%$%* /00 1&1e-*% /-+ &ce% &*he *h/- *he +$ec* c&14e%%$&-.

    The &ce% /-+ 1&1e-*% /$%$-, +'$-, */-%$* '-0&/+$-, /-+ eec*$&- /e

    /0%& c&-%$+ee+

    273 *"at is meant & column splice1

    A 3&$-* $- *he 0e-,*h & / c&0'1- 4&$+e+ 6he- -ece%%/5 $% ?-&6-

    /% c&0'1- %40$ce. I* $% /0%& +e%c$2e+ /% c&0'1- 3&$-*.

    283 List t"e limiting slenerness ratio of compression mem&er carringea loa F li#e loa3 (April Ma 2;;9)(IS9;;@2;;8'Pg@ 2;)

    3

  • 8/10/2019 CE2352_qb

    39/61

    PART - B

    % MAR) ;UESTIONS

    :. De%$,- / &00e+ %*ee0 2e/1 %ec*$&- c&0'1- *& c/5 /- /7$/0 0&/+ ::## KN.

    The c&0'1- $% 1 0&-, /-+ /+e'/*e05 $- 4&%$*$&- 2'* -&* $- +$ec*$&- /* 2&*h

    e-+%.

    ". A &00e+ %*ee0 2e/1 %ec*$&- HB ># W #. ?N1 $% '%e+ /% / %*/-ch$&-.

    I *he '-%'44&*e+ 0e-,*h & *he %*/-ch$&- $% 1 +e*e1$-e %/e 0&/+ c/5$-,

    c/4/c$*5 & *he %ec*$&-.

    >. A +&'20e /-,0e +$%c&-*$-'&'% %*'* ISA :" 11 @ 11 :# 11 0&-,

    0e,% 2/c? *& 2/c? $% c&--ec*e+ *& 2&*h %$+e% & / ,'%%e* 40/*e :# 11 *h$c?

    6$*h " $e*%. The 0e-,*h & %*'* 2e*6ee- ce-*e *& ce-*e & $-*e%ec*$&-% $%

    1. +e*e1$-e *he %/e 0&/+ c/5$-, c/4/c$*5 & *he %ec*$&-.

    . A %*ee0 c&0'1- :" 1 0&-, c/$e% /- /7$/0 0&/+ & :### ?N. The c&0'1- $%

    h$-,e+ /* 2&*h e-+%. De%$,- /- ec&-&1$c/0 2'$0*!'4 %ec*$&- 6$*h +&'20e

    0/c$-,. De%$,- *he 0/c$-, /0%&.

    3

  • 8/10/2019 CE2352_qb

    40/61

    . De%$,- / 2'$0*!'4 c&0'1- c&-%$%*$-, & *6& ch/--e0% c&--ec*e+ 25 2/**e- *&

    c/5 /- /7$/0 0&/+ & ## KN9 *he eec*$e 0e-,*h & *he c&0'1- $% 1.

    . De%$,- / 2'$0* '4 c&0'1- 1 0&-, *& c/5 / 0&/+ & ##?N. The c&0'1- $%

    e%*/$-e+ $- 4&%$*$&- 2'* -&* $- +$ec*$&- /* 2&*h *he e-+%. P&$+e %$-,0e

    /-,0e 0/c$-, %5%*e1 6$*h $e*e+ c&--ec*$&-%. (N&Dec "##)

    . De%$,- / 2'$0* '4 c&0'1- 1 0&-, *& c/5 / 0&/+ & ##?N. The c&0'1- $%

    4&$+e+ 6$*h B/**e- %5%*e1. The e-+% & *he c&0'1-% /e 4$--e+. De%$,- *he

    2/**e-%. (N&Dec "##)

    . A +$%c&-*$-'e% %*'* c&-%$%*% & *6& ISA @#:#11 40/ce+ *& *he %/1e

    %$+e & / ,'%%e* 40/*e :#11 *h$c? 6$*h $*% 0&-,e 0e, 2/c? *& 2/c? 6$*h &-e

    $e* &- e/ch /-,0e /* *he e-+%. The eec*$e 0e-,*h & *he %*'* $% ".1.

    De*e1$-e *he /00&6/20e 0&/+. 8h/* $% *he %/e 0&/+ $ *he %*'* $% c&-*$-'&'%

    T/?e 5 "#N11". The /-,0e% /e c&--ec*e+ 6$*h */c? $e*% /0&-, *he

    0e-,*h. (M/5J'-e "##)

    @. A 2'$0* '4 c&0'1- c&-%$%*% ISHB ##W .# ?,1 6$*h &-e >##11:"11

    0/-,e 40/*e &- e/ch %$+e. The c&0'1- c/$e% /- /7$/0 0&/+ & "##?N. De%$,-

    / ,'%%e*e+ 2/%e $ *he c&0'1- $% %'44&*e+ &- c&-ce*e 4e+e%*/0 6$*h /

    2e/$-, 4e%%'e & N11". (M/5J'-e "##)

    UNIT IV

    BEAMS

    4

  • 8/10/2019 CE2352_qb

    41/61

    Design of laterally supported and unsupported beams Built up beams

    Beams subjeted to bia!ial bending Design of plate girders ri"eted and #elded

    $ntermediate and bearing stiffeners %eb splies Design of beam olumns

    PART - A

    TWO MARK QUESTIONS AND ANSWERS

    11.111Indian1. What is meant by limit state design?

    Designs s&ould ensure t&at t&e struture does not beome unfit for t&e use for

    #&i& it is re'uired( )&e state at #&i& t&e unfitness ours is alled a limit state(

    2. What are special features of limit state design method?

    * $t is possible to ta+e into aount a number of limit states depending upon

    t&e

    ,artiular instane

    * )&is met&od is more general in omparison to t&e #or+ing stress met&od( $n

    )&is met&od- different safety fators an be applied to different limit states-

    #&i& is more rational t&an applying one ommon fator .load fator/ as in t&e

    plasti design met&od(

    * )&is onept of design is appropriate for t&e design of strutures sine any

    ne# +no#ledge of t&e strutural be&a"ior- loading and materials an be readily

    inorporated(

    3. Explain the behavior of steel beams?

    0aterally stable steel beams an fail only by .a/ le!ure .b/ &ear or ./

    Bearing-ssuming t&e loal bu+ling of slender omponents does not our( )&ese

    t&ree onditions are t&e riteria for limit state design of steel beams(

    teel beams #ould also beome unser"ieable due to e!essi"e defletion and

    t&is is lassified as a limit state of ser"ieability(

    )&e fatored design moment- at any setion- in a beam due to e!ternal

    ations

    &all satisfy

    d

    4

  • 8/10/2019 CE2352_qb

    42/61

    %&ere d design bending strengt&

    4. Write Short notes on compact sections

    %&en t&e lateral support to t&e ompression flange is ade'uate- t&e lateral

    bu+ling of t&e beam is pre"ented and t&e setion fle!ural strengt& of t&e beam an be

    de"eloped( )&e strengt& of $setions depends upon t&e #idt& to t&i+ness ratio of t&e

    ompression flange( %&en t&e #idt& to t&i+ness ratio is suffiiently small- t&e beaman be fully plastified and rea& t&e plasti moment- su& setion are lassified as

    ompat setions(

    . What is meant by slenderness sections?

    %&en t&e #idt& to t&i+ness ratio of t&e ompression flange is suffiiently large-

    loal bu+ling of ompression flange may our e"en before e!treme fibre yields(

    u& setions are referred to as slender setions(

    !."ra# the curvature for flexural member performance and the classification of

    cross sections.

    4

  • 8/10/2019 CE2352_qb

    43/61

    $. %ist the various factors affecting the lateral&torsional buc'ling strength.

    * Distane bet#een lateral supports to t&e ompression flange(

    *estraints at t&e ends and at intermediate support loations .boundary

    onditions/(

    * )ype and position of t&e loads(

    * oment gradient along t&e lengt&(

    * )ype of rosssetion(

    (. )o# do you improve the shear resistance in plate girder?

    i( $nreasing in bu+ling resistane due to redued c/d ratio:

    ii( )&e #eb de"elops tension field ation and t&is resists onsiderably larger

    tress t&an t&e elasti ritial strengt& of #eb in s&ear

    1*. What are the classifications in Stiffeners?

    a/ $ntermediate trans"erse #eb stiffeners

    b/ 0oad arrying stiffeners

    / Bearing stiffeners

    d/ )orsion stiffeners

    e/ Diagonal stiffeners and

    f/ )ension stiffeners

    11. Write about the +ox girders.

    4

  • 8/10/2019 CE2352_qb

    44/61

    )&e design and detailing of bo! girders s&all be su& as to gi"e full ad"antage of

    its &ig&er load arrying apaity( Diap&ragm s&all be used #&ere e!ternal "ertial

    as #ell as trans"erse fores are to be transmitted from one member to anot&er( )&e

    diap&ragms and t&eir fastenings s&all be proportioned to distribute ot&er fore

    applied to t&em and in addition- to resist t&e design trans"erse fore and t&e

    resulting s&ear fores( )&e design trans"erse fore s&all be ta+en as s&ared e'ually

    bet#een t&e diap&ragms(

    12. Write Short notes on ,urlin.

    ,urlins atta&ed to t&e ompression flange of a main member #ould normally be

    aeptable as pro"iding full torsional restraint: #&ere purlins are atta&ed to

    tension flange- t&ey s&ould be apable of pro"iding positional restraint to t&at

    flange but are unli+ely .due to t&e rat&er lig&t purlin;rafter onnetions normally

    employed/ to be apable of pre"enting t#ist and bending moment based on t&e

    lateral instability of t&e ompression flange(

    13. Write the Special features of limit state design method?

    * er"ieability and t&e ultimate limit state design of steel strutural systems and t&eir

    omponents(

    * Due importane &as been pro"ided to all probable and possible design onditions

    t&at ould ause failure or ma+e t&e struture unfit for its intended

    * )&e basis for design is entirely dependent on atual be&a"iour of materials in

    strutures and t&e performane of real strutures- establis&ed by tests and longterm

    obser"ations

    * )&e main intention is to adopt probability t&eory and related statistial met&ods in

    t&e design(

    * $t is possible to ta+e into aount a number of limit states depending upon t&e

    partiular instane

    4

  • 8/10/2019 CE2352_qb

    45/61

    14. What is meant by laterally supported beam?

    )&e laterally supported beams are also alled laterally restrained beams( %&en lateral

    defletion of t&e ompression flange of a beam is pre"ented by pro"iding effeti"e

    lateral support- .restraint/ t&e beam is said to be laterally supported( )&e effeti"e

    lateral restraint is t&e restraint #&i& produes suffiient resistane in a plane

    perpendiular to t&e plane of bending to restrian t&e ompression flange of a beam

    from lateral bu+ling to eit&er side at t&e point of appliation of t&e restraint(

    1. Write a note on built up beams.

    )&e builtup beams are also termed as ompound beams or ompound girders(

    )&e builtup beams are used #&en t&e span- load and orresponding bending moment are

    of su& magnitudes t&at rolled steel beam setion beome inade'uate to pro"ide re'uired

    setion modulus( )&e builtup beams are also used #&en rolled steel beams are

    inade'uate for limited dept&(

    1-. What are the elements of plate girder?

    4

  • 8/10/2019 CE2352_qb

    46/61

    )&e "ertial plate of t&e plate girder is termed as web plae( )&e angles onneted

    at t&e top and bottom of t&e #eb plate are +no#n as !lan"e an"le#( )&e &ori

  • 8/10/2019 CE2352_qb

    47/61

    teel being a dutile material it an absorb large deformations beyond elasti

    frature( teel proesses reser"ed strengt& beyond yield strengt&( )&e met&od using

    t&is reser"ed strengt& is alled plasti met&od of design(

    1(. "efine shape factor.

    )&e ratio of plasti moment to elasti moment p; yis t&e property of ross

    setional area and is not dependent on material properties( )&is ratio is alled as s&ape

    fator(

    2*. What is meant by plastic hinge?

    ,lasti &inge is t&e yield setion of t&e beam- #&i& ats as if it #ere &inged-

    e!ept #it& a onstant restraining plasti moment(

    21. "efine yield length.

    )&e yield lengt& is t&e lengt& of t&e beam o"er #&i& t&e moment is greater

    t&an or e'ual to t&e yield moment( $t depends upon t&e type of loading and t&e ross

    setion of t&e strutural member(

    22. What are the methods of plastic analysis?

    tati met&od

    =inemati met&od or me&anism met&od(

    23. What is meant by static and /inematic method?

    Sai* &e'(d+ )&e lo#er bound t&eorem states a load omputed- on t&e basis

    of assumed e'uilibrium moment diagram- in #&i& moments are not greater t&an

    plasti moment p- is less t&an or at t&e best e'ual to t&e true ollapse load( i(e(- % >

    %.ollapse load/

    Kine&ai* &e'(d+ )&e upper bound t&eorem states a load omputed- on t&e

    basis of assumed me&anism- #ill al#ays be greater t&an or at t&e best e'ual to t&e

    true ollapse load( i(e(- % ? %

    4

  • 8/10/2019 CE2352_qb

    48/61

    24. What are the guide lines to locate the plastic hinges?

    )&e plasti &inges our-

    t t&e points of ma!imum moment

    t t&e onnetions in"ol"ing &ange in geometry(

    @nder t&e onentrated load

    t t&e points of

  • 8/10/2019 CE2352_qb

    49/61

    2$. What is meant by lateral buc'ling of beam?

    long beam #it& laterally unrestrained ompression flange #&en inrementally

    loaded- first deflets do#n#ards and #&en load e!eeds a partiular "alue: it tilts

    side#ays due to instability of ompression flange- and rotates about longitudinal a!is(

    )&is p&enomenon is +no#n as laterally bu+ling or torsional bu+ling of beam(

    2(. )o# the laterally supported beam fails?

    )&e laterally supported beam an fail by-

    le!ure

    &ear

    Bearing(

    3*. What is #eb buc'ling and #eb crippling?

    &ea"y onentrated load produes a region of &ig& ompressi"e stresses in t&e

    #eb eit&er at support or under t&e load( )&is auses t&e #eb eit&er to bu+le or to

    ripple(

    %eb bu+ling ours #&en t&e intensity of ompressi"e stress near t&e entre of t&e

    setion e!eeds t&e ritial bu+ling stress of #eb ating as a strut( )&is type of

    failure is more in t&e ase of built up setions &a"ing greater ratio of dept& to

    t&i+ness of t&e #eb(

    4

  • 8/10/2019 CE2352_qb

    50/61

    31. What is the purpose of providing stiffener in plate girder?

    $n t&e plate girder t&e dept& of t&e #eb is +ept large for eonomy and &ene it

    is made t&in to redue t&e self #eig&t of t&e girder( "ery t&in #eb may bu+le

    laterally or may ripple under t&e &ea"y onentrated load( $n su& a ase t&e #eb is

    strengt&ened by pro"iding stiffeners(

    32. nder #hat circumstances load bearing stiffereners are used in plate girder?

    )&e load arrying stiffeners are atta&ed #it& t&e #eb plate of t&e plate girder

    to a"oid loal bending failure of flanges- rus&ing of #eb and bu+ling of #eb plate(

    )&ey are pro"ided under t&e &ea"y onentrated loads and t&e reations at supports(

    33. nder #hat circumstances bearing stiffereners are used in plate girder?

    Bearing stiffeners s&ould be pro"ided for #ebs #&ere fores are applied

    t&roug& t&e flange by loads or reations e!eeding t&e loal apaity of t&e #eb at its

    onnetion to t&e flange(

    34. What is the purpose of providing intermediate stiffeners?

    )&e intermediate trans"erse stiffeners are pro"ided to strengt& t&e bu+ling

    strengt& of #eb( )&ey remain effeti"e after t&e bu+ling of #eb and pro"ide

    an&orage for tension field(

    3. What is the main function of providing hori5ontal stiffener in plate girder?

    )&e main funtion of &ori

  • 8/10/2019 CE2352_qb

    51/61

    )&e rolled steel plates are manufatured up to a limited lengt&( %&en t&e

    ma!imum manufatured lengt& is insuffiient for full lengt&- spliing

    beomes neessary(

    or on"eniene of &andling during transportation and eretion it isessential t&at t&e plate is too long(

    Due to unsymmetrial loading t&e t&i+ness of plate may &ange(

    3!. What are the types of splices?

    lange splie

    %eb splie(

    3$. )o# the flange area of a plate girder is designed?

    2lan"e a$ea% A! M 3 4D !5!3 6&(0

    fatored moment

    D total dept& of girder

    fyf Gield stress of steel

    Gmo ,artial safety fator of material(

    PART - B

    % MAR) ;UESTIONS

    1. Design a simply supported beam to arry uniformly distributed load of 44 +H;m(t&e

    effeti"e pan of beam is 8 m( )&e effeti"e lengt& of ompression flange of t&e beam

    is also 8 m( )&e ends of beam are not to free to rotate at t&e bearings(

    2( )&e effeti"e lengt& of ompression flange of simply supported beam B 5II J

    I(869 +n;m( Determine t&e safe uniformly distributed load per metre lengt& #&i& an

    be plaed o"er t&e beam &a"ing an effeti"e span of 8 m( )&e ends of beam are

    restrained against rotation at t&e bearings(

    5

  • 8/10/2019 CE2352_qb

    52/61

    3( $B 55I J1(I37 +H; m &as been used as simply supported o"er a span of 4 m

    (t&e ends of beam are restrained against torsion but not against lateral bending(

    Determine t&e safe @D0 per metre- #&i& t&e beam an arry(

    4(Design rolled steel $ setions for a simply supported beam #it& a lear span of

    6m (it arries a @D0 of 5I =H per metre e!lusi"e of self#eig&t of t&e girder (t&e

    beam is laterally unsupported(

    5( &e+ t&e beam setion %B 5II J1(45 +H;m against #eb rippling and #eb

    bu+ling if reation at t&e end of beam is 179(6 =H- )&e lengt& of bearing plate at t&e

    support is 12I mm( Design bearing plate( )&e bearing plate is set in masonry(

    6( beam simply supported o"er an effeti"e span of 7m- arries an uniformly

    distributed load of 5I+H;m inlusi"e of its o#n #eig&t( )&e dept& of t&e beam is

    restrited to 45Imm( design t&e beam- assuming t&at t&e ompression flange of t&e

    beam is laterally supported by a floor onstrution( )a+e fy 25IH;mm2and K

    2L1I5H;mm2( ssuming #idt& of t&e support is 23Imm( .ay;Mune 2II7/(

    7( Design a bearing stiffener for a #elded plate girder #it& t&e follo#ing

    speifiations(

    %eb 1IIImm L 6mm t&i+(

    langes 2 Hos( of 35IL2Imm plate on ea& side(

    upport reation 35I+H(

    %idt& of t&e support 3IImm(( .ay;Mune 2II7/(

    8 simply supported steel joist #it& a 4(Im effeti"e span arries a udl of 4I+H;mo"er its span inlusi"e of self #eig&t( )&e beam is laterally unsupported( Design a

    suitable setion( )a+e fy 25IH;mm2( .Ho";De 2II7/

    9( Design t&e step by step proedure for design of "ertial and &ori

  • 8/10/2019 CE2352_qb

    53/61

    UNIT V

    ROO2 TRUSSES AND INDUSTRIA7 STRU8TURES

    6oof trusses 7 6oof and side coverings 7 "esign loads0 design of purlin and

    elements of truss8 end bearing 7 "esign of gantry girder

    PART - A

    9W :;6/

  • 8/10/2019 CE2352_qb

    54/61

    22. "ra# a neat s'etch of roof truss #ith its component parts.

    3. What are the types of load that may act on roof trusses?

    Dead load

    0oad from o"erings- purlins- self #eig&t of trusses and braing(

    0i"e load

    %ind load

    4. )o# economical spacing of roof trusses obtained?

    )&e eonomial spaing of trusses is bet#een 1/3 to 1/5 of span(

    . %ist the various forces acting on a gantry girder.

    %eig&t of t&e trolley or rab

    %eig&t of t&e rane girder

    5

  • 8/10/2019 CE2352_qb

    55/61

    $mpat loads it is due to sudden appliation of bra+es(

    0ateral load .surge load/ trans"erse to t&e rail

    0ongitudinal load .drag load/

    -. What are the loads to be considered #hile designing the purlins?

    Dead load

    %eig&t of roof s&eets

    elf #eig&t of purlin

    0i"e load

    %ind load ating on roof area(

    !. %ist the various types of roof sheetings commonly used.

    sbestos ement s&eets

    )iles

    Nal"ani

  • 8/10/2019 CE2352_qb

    56/61

    Builtup $setions- &annels- angles and plates are used in t&e ase of long

    span bridge trusses(

    1*. )o# to fix the spacing of trusses?)&e eonomial spaing of trusses is bet#een 1/3 to 1/5 of span(

    or lig&ter load- arrying no sno# or superimposed load e!ept #ind- t&e

    larger spaing may be more eonomial(

    paing of 3 4(5 m for spans up to 15m and 4(5 6 m for spans of 15 3I m

    may be eonomial(

    )&e spaing of long span trusses may be 12 15 m(

    11.What are economical considerations for industrial truss?

    et&od of fabriation and eretion to be follo#ed- faility for s&op fabriation

    a"ailable- transportation restritions- field assembly failities(

    ,referred praties and past e!periene(

    "ailability of materials and setions to be used in fabriation(

    Kretion te&ni'ue to be follo#ed and eretion stresses(

    et&od of onnetion preferred by t&e ontrator and lient .bolting- #elding

    or ri"eting/(

    &oie of as rolled or fabriated setions(

    imple design #it& ma!imum repetition and minimum in"entory of material(

    12. Write about basics of plastic analysis?

    $n plasti analysis and design of a struture- t&e ultimate load of t&e struture

    as a #&ole is regarded as t&e design riterion( )&e termplastic &as ourred due to t&e

    fat t&at t&e ultimate load is found from t&e strengt& of steel in t&e plasti range(

    )&is met&od is rapid and pro"ides a rational approa& for t&e analysis of t&e

    struture( $t also pro"ides stri+ing eonomy as regards t&e #eig&t of steel sine t&e

    setions re'uired by t&is met&od are smaller in si

  • 8/10/2019 CE2352_qb

    57/61

    s W is inreased gradually- t&e bending moment at e"ery setion inreases

    and t&e stresses also inrease( t a setion lose to t&e support #&ere t&e bending

    moment is ma!imum- t&e stresses in t&e e!treme fibers rea& t&e yield stress( )&e

    moment orresponding to t&is state is alled t&e first yield moment :y- of t&e ross

    setion(

    14. Write about ,rinciples of plastic analysis.

    .i/ e&anism onditionF )&e ultimate or ollapse load is rea&ed #&en a me&anism

    is formed( )&e number of plasti &inges de"eloped s&ould be just suffiient to form a

    me&anism(

    .ii/ K'uilibrium onditionF O! I- Oy I- O!y I

    .iii/ ,lasti moment onditionF )&e bending moment at any setion of t&e struture

    s&ould not be more t&an t&e fully plasti moment of t&e setion(

    1. Explain about rane gantry girders.

    )&e funtion of t&e rane girders is to support t&e rails on #&i& t&e tra"eling

    ranes mo"e( )&ese are subjeted to "ertial loads from rane- &ori

  • 8/10/2019 CE2352_qb

    58/61

    Drift in building frames is a result of fle!ural and s&ear mode ontributions-

    due to t&e olumn a!ial deformations and to t&e diagonal and girder deformations-

    respeti"ely( $n lo#rise braed strutures- t&e s&ear mode displaements are t&e most

    signifiant and- #ill largely determine t&e lateral stiffness of t&e struture(

    $n medium to &ig&rise strutures- t&e &ig&er a!ial fores and deformations in

    t&e olumns- and t&e aumulation of t&eir effets o"er a greater &eig&t- ause t&e

    fle!ural omponent of displaement to beome dominant(

    1$. "ra# a neat s'etch of overhead crane #ith all its components.

    5

  • 8/10/2019 CE2352_qb

    59/61

    19( alculate the permissible deflection for a truss of 1* m span.

    (IS9;;@2;;8'Pg@ 40 ta&le 7)

    Defletion limit span ; 15I

    1I ! 1III ; 15I

    66(67 mm

    PART - B

    1? -MARK QUESTIONS

    1( roof truss s&ed is to be built Mod&pur ity area for an industrial use( Determinet&e basi #ind pressure ()&e use of s&ed 18 mP 3I m

    2( n industrial roof s&ed of si

  • 8/10/2019 CE2352_qb

    60/61

    $nlinaion of roof 3Io

    paing of ,urlin 2m ;

    %ind pressure 1(5 +H;m2

    oof o"erage ( &eeting #eig&ing 2II H;m2

    ,ro"ide a &annel setion ,urlin( .De 2II7/(

    5( Design a gantry girder to be used in an industrial building arrying an KQ) rane

    for t&e follo#ing dataF

    rane apaity 2II +H(

    )otal self #eig&t of all omponents 24I +H(

    inimum approa& at t& arne &oo+ of gantry girder 1(2m

    %&eel base 3(5m

    ; distane bet#een gantry rails 16m

    ; distane bet#een olumns 8m

    elf #eig&t of rail setion 3II H;m

    Gield stress 25I H;mm2

    Design t&e main gantry setion( onnetion design not re'uired( ( .De 2II7/(

    6( Design t&e angle purlin for t&e follo#ing speifiationsF

    pan of truss 9m ;(

    ,it& 1;5 of span

    paing of purlin 1(4 ;(

    0oad from roofing material 2II H;m2(

    %ind load 12II H;m2(

    7( Determine t&e dead load- li"e load and #ind load on a $H= type truss for t&e

    follo#ing data and mar+ t&e loads on t&e nodes of t&e truss(

    pan 12m

    ,it& R of span

    Ceig&t at e"es le"el 1Im from t&e ground

    paing of truss 5m ;(

    6

  • 8/10/2019 CE2352_qb

    61/61

    8( s&ed is proposed to be onstruted at &ennai( )&e slope of t&e roof truss is

    orresponding to a pit& of R( )&e a"erage &eig&t of t&e roof abo"e t&e ground is 12

    m( t&e life of t&e struture is e!peted to be about 5I years( )&e terrain &as less

    obstrution( )&e ladding lengt& is in bet#een 3Im to 4I m( t&e permeability of t&e

    truss is assumed to be medium( alulate t&e "arious load on t&e truss( )&e roof

    o"ering is N$ s&eeting(

    1I m