13
Cavity Optimization for Compact Accelerator-based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma, J. Urakawa KEK: High Energy Accelerator Research Organization P. Karataev John Adams Institute at Royal Holloway, University of London G. Naumenko, A. Potylitsyn, L. Sukhikh Tomsk Polytechnic University K. Sakaue Waseda University

Cavity Optimization for Compact Accelerator-based Free-electron Maser

  • Upload
    ouida

  • View
    41

  • Download
    2

Embed Size (px)

DESCRIPTION

Cavity Optimization for Compact Accelerator-based Free-electron Maser. Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma, J. Urakawa KEK: High Energy Accelerator Research Organization P. Karataev John Adams Institute at Royal Holloway, University of London - PowerPoint PPT Presentation

Citation preview

Page 1: Cavity Optimization for Compact Accelerator-based Free-electron Maser

Cavity Optimization for Compact Accelerator-based

Free-electron MaserDan Verigin

TPUIn collaboration with

A. Aryshev, S. Araki, M. Fukuda, N. Terunuma, J. UrakawaKEK: High Energy Accelerator Research Organization

P. KarataevJohn Adams Institute at Royal Holloway, University of London

G. Naumenko, A. Potylitsyn, L. SukhikhTomsk Polytechnic University

K. SakaueWaseda University

Page 2: Cavity Optimization for Compact Accelerator-based Free-electron Maser

Compact Accelerator-based Free-Electron Maser

A.P. Potylitsyn, Phys. Rev. E 60 (1999) 2272.

Page 3: Cavity Optimization for Compact Accelerator-based Free-electron Maser

LUCX, compact linear accelerator

Energy 30 MeV ( = 62)

Intensity 1 nC/bunch

Num. of Bunches 100

Bunch spacing 2.8 ns

Bunch length <10 ps

Repetition rate, nominal 3.13 Hz

Emittance (round) 5 π mm•mrad

σx σy in SCDR chamber 200 μm, 200 μm

S. Liu, M. Fukuda, S. Araki, N. Terunuma, J.Urakawa, K. Hirano, N. Sasao, Nuclear Instruments and Methods A 584 (2008) 1-8.

Page 4: Cavity Optimization for Compact Accelerator-based Free-electron Maser

Diffraction Radiation

Diffraction radiation (DR) appears when a charged particle moves in the vicinity of a medium

IDR ~ Ne

-20 -10 0 10 200.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

mic

row

ave

pow

er,a

rb.u

nits

M irrror orien tatio n angle, deg

Page 5: Cavity Optimization for Compact Accelerator-based Free-electron Maser

Coherent Diffraction Radiation

CDR is generated by sequence of charged bunches

ICDR ~ Ne2

Page 6: Cavity Optimization for Compact Accelerator-based Free-electron Maser

CDR on LUCX

2 6-way crosses2 4D vacuum

manipulation systems

2 aluminum mirrors

Page 7: Cavity Optimization for Compact Accelerator-based Free-electron Maser

CDR on LUCX: Cavity length scan

405 410 415 420 425 430 4350.02

0.03

0.04

0.05

0.06

0.07

0.08

Nor

mal

ized

mic

row

ave

pow

er, a

rb. u

nits

Distance between mirrors, mm

openedclosed

Page 8: Cavity Optimization for Compact Accelerator-based Free-electron Maser

Transmission calculation

i

2

2 21 p

2

2 2

p

2 2

2 211

p

2

2 21p

2

*0

ep

N em

M.I. Markovic, A.D. Rakic. Determination of optical properties of aluminium including electron reradiation in the Lorentz-Drude model. Opt.and Laser Tech., v. 22, No. 6, 394-398, 1990.R.T. Kinasewitz, B.Senitzky. Investigation of complex permittivity of n-type silicon at millimeter wavelengths. J. Appl. Phys., v. 54, No. 6, 3394-3398, 1983.

2 2 Re( )n k 2 Im( )nk

22

2

1cos 1 sin

1cos 1 sin

i i

s

i i

nn

R

nn

1s sT R 2

0 2 2(1 2 cos )ATT

A R AR

AlSi

Page 9: Cavity Optimization for Compact Accelerator-based Free-electron Maser

Mirror test bench

Material Transmission coefficientExperiment Theory

Aluminized mirror 0 0Doped silicon 0.42 0.42Normal silicon 0.45 0.42

5mm

ope

ning

0 1 0 20 3 0 4 0 5 0 6 0 7 0 8 0 9 0

0

2 0

4 0

6 0

8 0

1 0 01 0 0 m m , f la t m ir ro r 5 0 m m , S ig m a -K o k i

P M H -5 0C 0 5 -10 -6 /1 8 m ir ro rS il ic o n p la te s

Tran

smis

sion

, %

M ir ro r p o si tio n , m m

p u re S iD o p e d S i

1 5 m m h o le in A l la y e r

Page 10: Cavity Optimization for Compact Accelerator-based Free-electron Maser

New mirror design

Aluminum, nm

Silicon, mkm

Transmission coefficient, %

2 100 6.5150 5.3300 4.0

3 100 3.4150 2.7300 2.1

4 50 2.7100 2.0150 1.6

1 2 3 4 5 6 7 8mm0.0

0 .2

0 .4

0 .6

0 .8

1 .0Tos

h 100 m kmSi

1 2 3 4 5 6 7 8, mm

0.0 2

0 .0 4

0 .0 6

0 .0 8

0 .1 0

0 .1 2

0 .1 4

Tosh 2 n m

Al

Mirrror diameter = 100 mmThickness of Si substrate should be more than 100 mkm for durability

Page 11: Cavity Optimization for Compact Accelerator-based Free-electron Maser

Stimulation

ESCDR = a ECav – addition to electric field by stimulation (depends on electric field stored in cavity)

EDR – electric field generated by single bunch d – loss in resonator Etot,2 = d EDR + EDR + ad EDR = EDR (1 + d (1+a)) = EDR (1+b) – electric field

in resonator after second bunch Etot,i = EDR (1-bi)/(1-b) – electric field in resonator after i-th bunch

0 5 10 15 20 25

0

10

20

30

40

50

60

70

SB

D s

igna

l tai

l int

egra

l, ar

b. u

nits

Number of bunches

Equation y = A1*exp(x/t1) + y0

Adj. R-Squar 0.9202Value Standard Err

C y0 0 0C A1 1.9685 0.16468C t1 6.9106 0.20078

0 5 10 15 20 25

0

200

400

600

800

Inte

nsity

, arb

.uni

ts

number of bunches

Model ExpGro1

Equationy = A1*exp(x/t1) + y0

Reduced Chi-Sqr

70,85437

Adj. R-Squa 0,99887Value Standard Er

B

y0 -108,382 9,35563A1 82,11966 5,68071t1 9,49871 0,24892

Chitrlada Settakorn, Michael Hernandez, and Helmut WiedemannStanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, SLAC-PUB-7587 August 1997

Page 12: Cavity Optimization for Compact Accelerator-based Free-electron Maser

0 5 10 15 20 2540

60

80

100

120

140

160

180

200

220

Inte

nsity

, arb

.uni

ts

number of bunches

Model ExpDec1

Equationy = A1*exp(-x/t1) + y0

Reduced Chi-Sqr

4,97298E-28

Adj. R-Square 1Value Standard Error

Intensity, arb.units

y0 -5,58956E-14 6,70031E-14A1 217,47945 5,62185E-14t1 16,4154 9,8284E-15

Cavity decay

Etot,i = EDR (1-bN)/(1-b) di-N – where N is number of bunches in train (i>N)

-20.

0n 0.0

20.0

n

40.0

n

60.0

n

80.0

n

100.

0n

120.

0n

0.00

0.02

0.04

0.06

0.08

0.10

Equation y=y0+A*exp(-x*t)

Adj. R-Square 0.9778Value Standard Error

peakY y0 -8.64E-4 1.28E-4peakY A 0.09063 0.0029peakY t 2.95327E7 1.14E6

SBD signal On resonance SBD signal Off resonance Cavity free run Peaks Exponential decay fit

SB

D s

igna

l, V

Time, s

A. Aryshev, et. al., IPAC’10, June 2008, Kyoto, Japan, MOPEA053

Page 13: Cavity Optimization for Compact Accelerator-based Free-electron Maser

Thank you for attention