46
Einführung in die Datenanalyse Michael Feindt Maria Laach 2004 Cauchy- (=Breit-Wigner-) distribution Resonance phenomena, Cauchy is Fourier transform (in frequency- = energy space) of the exponential distribution (in time t). Uncertainty relation: Resonancd width = h / lifetime Statistical Methods BND 2011 Michael Feindt Expectation value Width at half max standard deviation

Cauchy- (=Breit-Wigner-) distribution

  • Upload
    others

  • View
    20

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Cauchy- (=Breit-Wigner-) distribution

Resonance phenomena, Cauchy is Fourier transform (in frequency- = energy space) of the exponential distribution (in time t). Uncertainty relation: Resonancd width = h / lifetime

Statistical Methods BND 2011 Michael Feindt

Expectation value

Width at half max

standard deviation

Page 2: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Finding signals…

Statistical Methods BND 2011 Michael Feindt

Search for small resonance signal in large background. Using selection cuts (also applying multivariate methods): Maximize signal efficiency Minimize background

If If discovery

evidence

If no evidence

Page 3: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Finding signals (2)

Statistical Methods BND 2011 Michael Feindt

“Good“ upper limits when no signal candidates “Good“ evidence, when as many as possible signal candidates Psychological bias? Limit area difficult and dangerous: Too low limits, too large first evidences.

  Optimisation by cuts must be reasonable! Should never be “optimised“ on data. But on simulation before one has looked to real data.

  Way out: “Blind analyses“ whereever possible.

Page 4: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Example: Signal? Cuts on additional variables 2 und 3: => Higher significance Fit: 3 σ significance. Evidence?

Statistical Methods BND 2011 Michael Feindt

Page 5: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Example for a wrong evidence Truth: completely random Monte-Carlo distribution thus just statistical fluctuations. No correlations with other variables 2 and 3. Probability of 3 σ should be quite rare (<0.3%). Yes, but without a priori- models this is a search in many bins (and many histograms). Statistical fluctuations of other variables can be exploited through cuts to increase the “significance‘‘ of the “signal‘‘.

Statistical Methods BND 2011 Michael Feindt

Page 6: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Examples for wrong evidences

Statistical Methods BND 2011 Michael Feindt

Page 7: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Examples for wrong evidences

Statistical Methods BND 2011 Michael Feindt

Already discovered: Splitting of a2 meson Top quark around 70 GeV Substructure of W and Z Substructure of quarks Supersymmetry ... Cold fusion Careful, especially when you you first read about it in the Washington Post. Also a confirmation of a second experiment is no 100% guarantee.

Page 8: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

LEPS

CLAS

CLAS

DIANA

Do Pentaquarks exist (2004)?

Statistical Methods BND 2011 Michael Feindt

Page 9: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Do Pentaquarks exist? SAPHIR

0SKnKp +→γ

M(nK+)

HERMES ZEUS

Statistical Methods BND 2011 Michael Feindt

Page 10: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Do Pentaquarks exist?

XpKpASVD

S +→

−0

20SpKpp

TOFCOSY+Σ→

PDG 2004: Status ***

Statistical Methods BND 2011 Michael Feindt

Page 11: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

But… Which mass?

0SpK

JINR

How many Pentaquarks?

(LEPS)

+nK

0SpK

0SpKnK →+

Statistical Methods BND 2011 Michael Feindt

Page 12: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

More Pentaquarks? NA49 −−Ξ π)a

+−Ξ π)b

−+Ξ π)c

++Ξ π)d

)( πΞM

ussdd

dssdu

dudss

uddss

double-strange

charm…

D** ? Statistical Methods BND 2011

Michael Feindt

Page 13: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Many negative searches… Despite intensive search nothing found in large experiments: ALEPH, DELPHI, L3, OPAL, CDF, BELLE, BABAR, BES, H1 in ZEUS-channel, ZEUS in H1-channel (but partly huge signals for established states) Attention Bayes-Theorem: Prior probability has changed! In exotic channels you should be very sure that it is not a statistical fluctuation before claiming a signal. For pentaquarks there are many new channels, masses unknown, danger of combinatorics My opinion 2004: Psubjective(Pentaquark exists) <50% Psubjective(all Pentaquarks exist) < 1% (I was almost killed for that opinion at that time, PDG **** rating) Today: P(Pentaquark exists) <0.01%

Statistical Methods BND 2011 Michael Feindt

Page 14: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Historical developments I (PDG)

Statistical Methods BND 2011 Michael Feindt

Page 15: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Historical developments II (PDG)

Statistical Methods BND 2011 Michael Feindt

Page 16: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

A recent example

Statistical Methods BND 2011 Michael Feindt

]2) [MeV/c+cΛ)-Mass(+(2595)cΛMass(

306 308 310

CLEO

E687

ARGUS

CDF

300 350 400

2C

andid

ate

s per

0.5

MeV

/c

0

200

400

600

800

1000DataFit Function

-π +

π +cΛ →

+(2595)cΛ

-π +

π +cΛ →

+(2625)cΛ

Combinatorial-

π+π + random +cΛ

-,+π + random

++,0(2455)cΣ

Sum of Backgrounds

3500≈) +

(2595)cΛN( 6200≈)

+(2625)cΛN(

]2) [MeV/c+π-

)-Mass(pK-π+π +π

-Mass(pK

fit

(data

- fit)

-2

0

2

Dissertation Felix Wick (KIT, 2011) CDF Collaboration: Mass of orbitally excited Λc

Much more statistics than previous experiments. More precise. But: Many sigma away from PDG value. Inconsistent!

Page 17: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

A recent example

Statistical Methods BND 2011 Michael Feindt

300 350 4002

Candid

ate

s per

0.5

MeV

/c0

200

400

600

800

1000DataFit Function

-π +

π +cΛ →

+(2595)cΛ

-π +

π +cΛ →

+(2625)cΛ

Combinatorial-

π+π + random +cΛ

-,+π + random

++,0(2455)cΣ

Sum of Backgrounds

3500≈) +

(2595)cΛN( 6200≈)

+(2625)cΛN(

]2) [MeV/c+π-

)-Mass(pK-π+π +π

-Mass(pK

fit

(data

- fit)

-2

0

2

Dissertation Felix Wick (KIT, 2011), CDF Collaboration: Mass of orbitally excited Λc

300 350 400

2C

andid

ate

s per

0.5

MeV

/c

0

200

400

600

800

1000DataFit Function

-π +

π +cΛ →

+(2595)cΛ

-π +

π +cΛ →

+(2625)cΛ

Combinatorial-

π+π + random +cΛ

-,+π + random

++,0(2455)cΣ

Sum of Backgrounds

]2) [MeV/c+π-

)-Mass(pK-π+π +π

-Mass(pK

fit

(data

- fit)

-2

0

2

Simple Breit Wigner fit does not describe data well

Complicated lineshape due to narrow subresonance thresholds on Dalitz plot necessary. Changes results!

Page 18: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

M. Feindt Datenanalyse Maria Laach 2004

Prof. Dr. Michael Feindt Vorstandsmitglied CETA Institut für Experimentelle Kernphysik Universität Karlsruhe Herbstschule für Hochenergiephysik Kloster Maria Laach 2004

Einführung in die Datenanalyse: Parameterschätzung

Statistical Methods BND 2011 Michael Feindt

Page 19: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Parameter estimation (Fitting) Maximum Likelihood Least Squares

Measurement Statistical Methods BND 2011

Michael Feindt

Page 20: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Parameter estimation with least squares Quadraten

Statistical Methods BND 2011 Michael Feindt

Several measurements yi with known variances σi

2 Linear model with parameter vector a E(y) = A a Find best estimator for a and ist uncertainty. Least squares priciple: Minimize sum S of quadratic deviations between model and measurements.

Solution: Derivatives

Page 21: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Linear least squares

Linear equation system One unique solution

Overconstrained equation system Try to find best compromise n-p degrees of freedom

Statistical Methods BND 2011 Michael Feindt

Page 22: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Parameter estimation with least squares

Statistical Methods BND 2011 Michael Feindt

Page 23: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Solution of linear optimisation problem

Statistical Methods BND 2011 Michael Feindt

Page 24: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Dependence on measurement error (residual) distribution Straight line fit to 20 data points (ndf=20-2=18)

Three different distribution functions, all mean 0, standard deviation=0.5

Statistical Methods BND 2011 Michael Feindt

Page 25: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Parameter estimation with least squares 25000 Monte-Carlo tests:

All parameter-distributions are Gaussian, with width compatible to expectation from error propagation (for both parameters)

Statistical Methods BND 2011 Michael Feindt

Page 26: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Parameter estimation with least squares

Statistical Methods BND 2011 Michael Feindt

Page 27: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Robust least squares

Outlyers in data (z.B. typing error, wrong hits on a track...) can influence fitvery strongly (due to quadratic dependence) and can lead to completely nonsense solutions. Simple recipe for robustification: 1.  Normal least squares fit, delivers residuals 2.  Modify data through limitation of residuals to cσ. A good choice is c=1.5. 3. Redo fit with pseudo-measurements instead of origina ones. There are other, robust loss-functions (z.B. Huber-funktion), but not any more analytically solvable.

Statistical Methods BND 2011 Michael Feindt

Page 28: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Häufige Fehler bei χ - Minimierung

2

Statistical Methods BND 2011 Michael Feindt

Page 29: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Häufige Fehler bei χ – Minimierung (Forts.)

2

Statistical Methods BND 2011 Michael Feindt

Page 30: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Vorsicht bei kleinen Zahlen!

2

Soll-Resultat

Statistical Methods BND 2011 Michael Feindt

Page 31: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Attention with small numbers!

2

Statistical Methods BND 2011 Michael Feindt

Page 32: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Non linear least squares

Statistical Methods BND 2011 Michael Feindt

Often non-linear function f(x,a) appears in model. Then linearize this. For that you need good STARTING VALUES in order to perform a TAYLOR EXPANSION. After solution of liearized problem ITERATE to perform a Taylor expansion around the new solution. If iteration doesn‘t improve, shorten Change of solution vector. Converge criteria are needed.

Page 33: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Least squares with additional constraints

Statistical Methods BND 2011 Michael Feindt

Example: Kinematic fitting in π0 decay

Measured:

A priori knowledge: Photons stem from π0 decay.

Constraint: Invariant mass m(γγ) = m (π0)

Change measured paramters such that constraints are exactly fulfilled and χ2 is minimal. This can improve e.g. E(π0) resolution considerably

Page 34: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Least squares with constraints (2)

Statistical Methods BND 2011 Michael Feindt

Write conditions in form

Solution by introduction of Lagrange multipliers and minimizsation of

w.r.t.

constraint is fulfilled

Page 35: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood Parameter Estimation

Statistical Methods BND 2011 Michael Feindt

Several independent measurements of a quantity were performed.

We have a model for the probability density with parameter vector a.

Find best estimator for a and ist uncertainty.

Page 36: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood Prinziple

Statistical Methods BND 2011 Michael Feindt

Likelihood function: Values of probability density for n independent measurements (product) to observe just the values xi is called likelihood function:

It only depends on parameters a (measurements are fixed!)

Maximum likelihood principle: The best estimator of a is the one maximizing the likelihood function

Page 37: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood in Practice

Statistical Methods BND 2011 Michael Feindt

Technical and theoretical reasons: Minimize (negative) logarithm of likelihood function

Likelihood equation defines estimator

Combination of several (uncorrelated) experiments is easy:

Page 38: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood-Error Estimation F(a) approximately quadratic around minimum First derivative approx linear, =0 at minimum Second derivative almost constant Standard deviation = 1 / curvature

Statistical Methods BND 2011 Michael Feindt

Page 39: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood-- Applications binned maximum likelihood model-PDF in analytic form Often: model-PDF only known by Monte-Carlo need >10-fold MC- statistics in 1D: smooth MC-prediction or take into accound finite MC-statistics explicitely with the method of Barlow

Statistical Methods BND 2011 Michael Feindt

Page 40: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Binomial distribution (1)

Statistical Methods BND 2011 Michael Feindt

When the success probability for a certain Bernoulli (yes or no) event is p, then the probability to achieve exactly k successes in n experiments is given by the binomial distribution:

The factor

is the number of combinations to select k elements from n different elements

The factor

Expectation value

Variance

Page 41: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood Fit for p of a binomial distribution

A coin is thrown N times. What can be stated about the probability P to throw „head“ ?

0 trials: We dont know anything. p flat in [0,1].

1. trial: head. Then probability of p(Kopf)=0 is zero.

N trials: p(head) distribution gets more precise, and Gaussian.

Statistical Methods BND 2011 Michael Feindt

Page 42: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood mit Bayes-Prior

H H

N N

Statistical Methods BND 2011 Michael Feindt

Page 43: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood binomial fit Probability distributions (2)

Statistical Methods BND 2011 Michael Feindt

Uncertainty gets smaller with

Page 44: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood binomial fit with different a priori assumptions

Different a priori-Annahmen: 1. p flat in [0,1]. 2. Coin is probably oky. Gaussian around 0.5. 3.  Coin is probably manipulated, but I dont know in which direction. Most professional non-informative Bayesian prior (Jeffreys prior) for binomial likelihood: Beta(0.5,0.5)

Statistical Methods BND 2011 Michael Feindt

Page 45: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Statistical Methods BND 2011 Michael Feindt

Page 46: Cauchy- (=Breit-Wigner-) distribution

Einführung in die Datenanalyse Michael Feindt Maria Laach 2004

Maximum Likelihood binomial fit with different a priori assumptions

Statistical Methods BND 2011 Michael Feindt

Influence of prior gets negligiable with more precise likelihood. Chooe vague priors (do not exclude anything!) for faster convergence (The narrow Gaussian here was worst!)