10
Cathodic Protection Design in Deep Water: Be Safe, Not Sorry! by Jim Britton (1999) Abstract Offshore structures in deep water are now quite common. However, a deep water development project still requires significant capital investment on the part of the operator. Corrosion failure is not acceptable. This paper presents a common sense approach to cathodic protection design on deep water projects. Some practical tips for avoiding pitfalls are presented as well as an analysis of the role of ROV's in maintenance and monitoring of these assets. Introduction The worldwide development of deep water oil and gas prospects has resulted in the emergence of many alternative schemes and structures designed to produce oil and gas more cost effectively. Early developments used large fixed jacket structures such as the Shell Cognac and Bullwinkle platforms, which are located in water depths of 1000 feet and 1350 feet respectively in the Gulf of Mexico. As drilling moved to even greater depths, these fixed structures were no longer cost effective, and new structure designs emerged: Tension Leg Platforms (TLP's), Floating Production Systems (FPS's), SPAR designs. All of these structures have process facilities located on the surface, above subsea wellheads. The completion of remote subsea wells connected by flow lines and control umbilicals to a surface production facility is now the most common design, being a very cost effective method for developing smaller reservoirs. These remote wells are often several miles from the production facility, and it is not uncommon for several subsea wells to be connected to a single subsea manifold structure, which is in turn connected by pipeline to a production or storage facility on the surface. Cathodic protection (CP) for these wells, manifolds, flow lines, jumpers and umbilicals is the main focus of this paper. Environmental Considerations Understanding Deep Water There are three major factors impacting cathodic protection design in deep water. It is important to understand these factors and how they work together to drive CP designs in this environment: 1. Water Temperature As depth increases, water temperature decreases, and temperature has a direct affect on water resistivity. By affecting the solubility of nutrient salts, lower temperatures change the composition and morphology of calcareous deposits formed at the cathode. 2. Water Resistivity The increase of water resistivity raises the anode to seawater resistance, and this increase in resistance decreases current output from fixed anodes. Water resistivity is therefore a major factor in sizing anodes (rather than using stock sizes) to meet the desired weightocurrent ratios.

Cathodic Protection Design in Deep Water

Embed Size (px)

DESCRIPTION

Cathodic Protection Design in Deep Water

Citation preview

  • CathodicProtectionDesigninDeepWater:BeSafe,NotSorry!byJimBritton(1999)AbstractOffshore structures in deepwater are now quite common.However, a deepwater developmentprojectstillrequiressignificantcapitalinvestmentonthepartoftheoperator.Corrosionfailureisnotacceptable.Thispaperpresentsacommon senseapproach tocathodicprotectiondesignondeepwaterprojects.SomepracticaltipsforavoidingpitfallsarepresentedaswellasananalysisoftheroleofROV'sinmaintenanceandmonitoringoftheseassets.IntroductionTheworldwidedevelopmentofdeepwateroilandgasprospectshasresulted intheemergenceofmanyalternativeschemesandstructuresdesignedtoproduceoilandgasmorecosteffectively.Earlydevelopmentsused large fixed jacketstructuressuchastheShellCognacandBullwinkleplatforms,whicharelocatedinwaterdepthsof1000feetand1350feetrespectivelyintheGulfofMexico.Asdrillingmovedtoevengreaterdepths,thesefixedstructureswerenolongercosteffective,andnewstructuredesignsemerged:TensionLegPlatforms(TLP's),FloatingProductionSystems(FPS's),SPARdesigns.Allofthesestructureshaveprocessfacilitieslocatedonthesurface,abovesubseawellheads.Thecompletionofremotesubseawellsconnectedbyflow linesandcontrolumbilicalstoasurfaceproductionfacilityisnowthemostcommondesign,beingaverycosteffectivemethodfordevelopingsmallerreservoirs.Theseremotewellsareoftenseveralmilesfromtheproductionfacility,anditisnotuncommonforseveralsubseawellstobeconnectedtoasinglesubseamanifoldstructure,whichisinturnconnectedbypipelinetoaproductionorstoragefacilityonthesurface.Cathodicprotection(CP)forthesewells,manifolds,flowlines,jumpersandumbilicalsisthemainfocusofthispaper.EnvironmentalConsiderationsUnderstandingDeepWater Therearethreemajorfactors impactingcathodicprotectiondesign indeepwater.ItisimportanttounderstandthesefactorsandhowtheyworktogethertodriveCPdesignsinthisenvironment:1.WaterTemperature Asdepth increases,water temperaturedecreases,and temperaturehasadirect affect onwater resistivity. By affecting the solubility of nutrient salts, lower temperatureschangethecompositionandmorphologyofcalcareousdepositsformedatthecathode.2.WaterResistivityTheincreaseofwaterresistivityraisestheanodetoseawaterresistance,andthisincrease in resistancedecreasescurrentoutput from fixedanodes.Water resistivity is thereforeamajor factor insizinganodes (rather thanusingstocksizes) tomeet thedesiredweigh tocurrentratios.

  • 3. Calcareous Deposits These deposits are formed on the cathode surface as a result ofelectrochemical reactions associated with cathodic protection. This phenomenon is the majorcontributing factor towhy cathodicprotection systemswork in seawater.The calcareousdeposit,actingasabarriercoating,dramaticallyreducesthecurrentdensityrequiredforcathodicprotectiontooccur.Calcareousdeposits formmuch slower incoldwater,and ingeneralare lessdense thandepositsformedinwarmerwaters.Lessdensedepositsrequireahighercurrentdensitytomaintainrequiredcathodicpolarization.Insummary,designingdeepwatercathodicprotectionsystemsrequires the followingbasicdesigncriteriamodification:1.Usehigher initial (polarization)andmaintenance currentdensity values thanwouldbeused inshallowwarmwater.2.Usehigherseawaterresistivityvalueswhencomputinganoderesistance/currentoutput.3.Usecoatingstoreducecathodicprotectioncurrentrequirements.CathodicProtectionDesign(basicconsiderations)DesignConservatively If"conservative" isdefinedas"beingwithinsensible limits," thenwemustdesigndeepwatercathodicprotectionsystemsveryconservatively.Thecostassociatedwithdeepwateroilandgasprojectsismeasuredintens,orevenhundredsofmillionsofdollars.Costsassociatedwithinsiturepairsquicklyescalatewhenthereisaproblem.Forthisreason,corrosionfailuresarenotanoption.Cathodicprotectionsystemsforthesepiecesofequipmenthaverelativecostsinthetensofthousandsofdollars.Cathodicprotectionisrelativelycheap;useitwisely.Trytogetitrightthefirsttime.UseCoatingsAspreviouslystated,cathodicprotectiondesignincoldwaterrequiresmorecathodicprotectioncurrentperunitarea,andincoldwaterastandardanodegeometrywillmakelesscurrentavailable. ItquicklybecomesobviousthatcoveringupsomesurfaceareawithcoatingsmakesaCPdesignmuchmoremanageable.Coatingsalsoprovideadditionalbenefitssuchas increased insituvisibility,andcorrosionprotectionduringonshorefabricationandstorage.CoatingEfficiencyWhatistheappropriatecoatingbreakdownfactortouse?Thisquestionhasbeendebatedamong corrosionengineers fordecades.Publishedguidelines vary in their adviceon thissubject.Oneprominentcodeconsiderssomecoatingscompletelyworthlessafter20years[1].Thesameguidelinelaterprovidesthisstatement:"Operator'sexperienceofaspecificpaintcoatingsystemmayjustifytheuseoflessconservativecoatingbreakdownfactorsthanspecifiedinthisdocument."Clearlyconservativecommonsensemustrule.Forpipelines,itiscommonpracticetoassignacoatingbreakdownfactorof5%overthedesign life.Forcoatingsonseawater immersedsurfacesnearthebottom,wewouldrecommendincreasingthisnumbersto1015%initialdamageand2025%overthedesignlife.Thiswillrequiremoreanodes,butremember:besafe,notsorry.

  • QualityControlItiscriticalthatsacrificialanodesworkasdesigned.Anodeswhichfailtoactivate,orwhichperformwithsignificantlyreducedgalvanicefficiencycouldmeanthatananoderetrofitwillberequiredprematurely.Deepwateranoderetrofitprojectsarenotimpossible,buttheyareusuallyveryexpensive. Anode performance can be guaranteed if the following quality control guidelines areobserved: 1.Write a clearly defined specification with special emphasis on electrochemical potential andefficiencytesting.Anyseriousdeficienciesinchemicalcompositionwillbeexposedduringthesetests.AhelpfuldocumenthasrecentlybeenrevisedbyaNACET7Ltechnicalcommittee[2].2.Useananodealloywithaproventrackrecord.TheAlInZnSianodealloysarepreferablebecausetheirbehavior inmudenvironments ismorepredictable,andbecausethereare lessenvironmentalconcernsthanwithMercury(Hg)orTin(Sn)activatedmaterials.Aluminum(AlInZnSi)anodesaremoreefficientandlighterthanzincanodesandhavethehighestavailableopencircuitpotential.3. Ensure that the anode specifications require that the testing be performed at the minimumanticipatedservicetemperature.4. Specify an anode chemistry that will work in cold water and cold saline mud. A suggestedmodificationofanambienttemperaturechemicalcompositionversusoneintendedforcoldwaterispresentedinTable1.Thiswillresultinfewerrejectsatthetestingphaseandwillreducetheriskofanodesnotactivatingwheninstalled.5.ExpectwhatyouInspect.Usequalifiedthirdpartyinspectorstoassureanodequality.Table1AnodeChemistryModificationforColdWaterService

    Element TypicalComposition ColdWaterCompositionIron(Fe) 0.10%max 0.07%maxZinc(Zn) 2.87.0% 4.755.25%Copper(Cu) 0.006%max 0.005%maxSilicon(Si) 0.20%max 0.10%maxIndium(In) 0.010.03% 0.015%0.025%Cadmium(Cd) NotSpecified 0.002%maxOthers(each) 0.02%max 0.02%maxAluminum(Al) Remainder Remainder

  • SpecialConsiderationsforSubseaProductionEquipmentThemechanicalcomplexityofasubseawellheadassemblyorasubseaproductionmanifoldcausesanumber of unusual problems for a cathodic protection designer. The wide array of specializedmaterialsusedcanresultinunexpectedcompatibilityissues.Itisimportanttobeawareofpitfallsandtodesignthecathodicprotectionsystemsaroundthem.Someproblemsspecifictosubseaproductionequipmentareaddressedinthefollowingsections.A.ElectricalContinuity Manyof thesubseastructurescurrentlybeing installedhavehundredsofindividualcomponentsandmanymovingparts.Atypicalsubseawellheadtreeisshownbelow(Figure1).Theanodesforthesedevicesaretypicallyweldedtothesupportframe(s).Ifallthepiecesoftheassembly are not electrically connectedwith a sufficiently low resistance to the frame, then anunbondedcomponentisfreetocorrodeatwhateverrateappliestothatmaterialinseawater.Somecausesofdiscontinuityare:1. Coated components joined by bolting. This often results in the fastener and one of the twocomponentsbeingoutofcircuitwiththecathodicprotectionsystem.Thiscausesspecialproblemsifthefastenerismadefromamaterialsubjecttocrevicecorrosion.2.Fluorocarbon(Xylan)coatedfastenersthatareusedbecauseoftheirpredictabletorquepropertiesand their limitedatmosphericcorrosionprotectionareoften left isolatedbecauseof thedielectricpropertiesofthecoating.Damagetotheheadsofboltsandnutsfromwrenchesleavesthefastenerstocorrodefreely.3.Necessaryarticulatedjointsoftenresultsindiscontinuitiesacrossthearticulationmechanism.4.Mechanicalconnectorsandstabbingpoststhatmayappeartoguaranteeelectricalcontactcanandhaveleftentiresectionsofsubseaassembliesdiscontinuous.

  • FIGURE1.TypicalSubseaWellheadAssemblyFigure2.CathodicProtectionTestPointonUpperLeftCorerofPanel

  • Figure3.TypicalElectricalDiscontinuityAcrossLinkageMechanism

    B.ContinuityTestingMostsubseadevelopmentprojectsincludeaphasecalledSystemIntegrationTesting(SIT).Allthevariouscomponentsofthesystemarestackeduporconnectedondry landtosimulatethecompletedoffshoreinstallation.Thisisaperfectopportunitytoverifyelectricalcontinuitythroughouttheassembly.Continuityisverifiedfromacommontestpointonthecomponentwheretheanodesareattachedtoallothercomponentsthatcomprisetheassembly.Astandardmultimetercanbeusedtochecktheresistance,werecommendthatavalueof0.3orlessbeverified(excludingtest lead resistance). The same test points (Figure 2) are used as inspection points for life cyclemonitoringofthesystem.Discontinuities(andtherewillusuallybesome)canbefixedonshorequiteeasily.AnexampleofatypicaldiscontinuityfoundduringaninspectionisshowninFigure3.FixingContinuityProblemsSomewaystoaddresscontinuityproblemsare:1.Tackweldacrossboltedjoints.2.Usestainlesssteelwirejumpersbetweencomponents.3.Usestar(serrated)washersunderboltbeads.4.Removecoatingsunderboltbeads.5.Useconductivefastenercoatings.6.Locateanodesonmorecomponents.C.MaterialIncompatibilitiesThewidearrayofmaterialsandcorrosionresistantalloysusedontheseprojectscancauseproblems.Itis importanttoreviewallmaterialsthatwillbeexposedtocathodicprotectionfortheirsusceptibilitytohydrogendamageattheexpectedpotential.Materialsthatshouldbecloselycheckedinclude:somealloysoftitanium,somestainlesssteels(400seriesforexample)and174PH. Sometimes it isdifficult toprevent components from receiving cathodicprotectioneventhoughthematerialselectionengineermaynothaveintendedit.

  • beadequatelyprotected.Careshouldbetakentoensurethattheseareasareprovidedwithanodesinsideandoutsidethecompartment.Otherareaspotentiallysubjecttoshieldingincludecomponentswithmechanicallyattacheddielectricbuoyancymodules(syntacticfoam),thesecanbehavelikeultrathickdisbondedcoatings.Controlpodsoftenhavecontroltubingmanifoldsunderaprotectivesteelcover.Theseareasmustreceivespecialattentionfromthecathodicprotectiondesigner.E.MudBuriedSteelThemudburiedsteel(pilings,wellcasings,mudmatsanchorsetc.)hasasurfaceareawhichisoftenanorderofmagnitudegreaterthanthesteelsurfaceinthewaterzone.Inadditiontothe largearea,thesurfacesareusuallynotcoated.Eventhoughtheseareasrequiresignificantlylower current densities, the large area can amount to a disproportionately high anode weightrequirement,andavailableanodeattachmentrealestate(areasatwhichtopossiblyconnectanodes)isusuallyatapremium.Besurethattheseareasareaccountedforconservativelyandconsiderthefollowingpointsanddesignoptionswhenaccountingforthemudburiedarea.1.Usecurrentattenuationmodelstocalculatehowfaritwouldbepossibleforananodeto"throw"current.Don'taccountforsteelareasbelowthis,becausethecorrosionratewillusuallybeminimal.Ourdesignersusuallyonlyaccount for the first200 feetofpilingsandwell conductorsbelow theseabed,usingamaintenancecurrentdensityof20mA/m2(2mA/ft2).2.Considertheuseofsealedthermalsprayedaluminumcoatings(TSA)toreducecurrentrequirement.Inthiscase,wesuggestusingthesamecurrentdensity,stillonthefirst200feet,butapplyacoatingfactorof15%bare.3.InstallattachmentsonthetopofpilingswhichsimplifyROVattachmentofcables.Withthisprovisioninplace,itisrelativelysimpletoinstallsomeseabedanodesledsataremotelocationtoprovidethecurrenttotheseareasandtopreventdrainfromtheclosefittedanodesonthesubseaequipment.Thisprovisionisrecommendedonallofthesetypesofprojects.4.Don'tforgetthatpilingshaveaninsidetoo.Thetopsectionofpilingsnormallyextendsomedistanceabovethepileguide;theyareusuallybaresteelandthusrepresentasignificantpercentageoftheseawaterimmersedbaresteelarea.Don'tforgetthis!Cathodicprotectioncurrentwillbelosttotheinsideaswellastheoutsidesurfacesofthesepilings.Coatingtheuppersectionsofthesepilings isstronglyrecommended.SealedTSAcoatingswillworkverywellhere,andtheycanbeappliedtobothsurfaces.F. ROV Compatibility At extreme depths >1000 feet, allwork on the facilitieswill have to beperformedbyaRemotelyOperatedVehicle(ROV).Thesemachines,whilecontinuallyimproving,arestillmachineswithlimiteddexterityandatether/umbilical.TokeepthecathodicprotectiondesignROVfriendly,followthesesimplesteps:1.Placeanodes inareaswheretheywillnot interferewithROVoperations,andavoiddesignsthatintroducepotentialsnagpointsfortheROVumbilical/tether.

  • 2.WhenplacingROVtestpoints,includeagrabrailforthevehicletoholdwhilemonitoringthepoint.ThiswillreducewearandtearontheROV'smanipulatorsandonthemonitoringequipment.Figure2showsatypicalCPtestpointonatree(notethegrabrail).AnROVstabtypecurrentdensitysensorisshowninFigure4(again,notethegrabrail).

    Figure4.ROVStabonaCurrentDensitySensorGrabRailonLeft3.Forpotentialmonitoring,provideclearlymarked,baresteelteststab locations.Thehighqualitycoatingsusedonmanyofthesefacilitiesdonotallowstabbingprobestoeasilypenetrate.Attemptingtoestablishacleantipcontactthroughahighqualitymarineepoxypaintcoulddamagethesubseaequipment.ItalsoputstremendousstrainontheROVhydraulicsystems.4.Whenspecifyingcathodicprotectionprobesorcurrentprobes,selectamountthatwilleasilyfittheROVmanipulatorandwhichwill requireminimum interface to theROVelectronicand fiberopticsystems. Figure 5 shows a recently developed self contained deepwater CP probe designed foroperationatupto10,000feet,whilerequiringnoelectricalinterfacetotheROV.AstandardtipcontactCPprobe,whichrequiressurfaceinterfacing,isalsoshown(Figure6).Figure5.10,000FeetRatedSelfContainedCPProbe(updatedimage)

    Figure6.StandardDualElementROVCPProbe(updatedimage)

  • SpecialconsiderationsfordeepwaterpipelinesQ:Whatisspecialaboutadeepwaterpipeline?A:Basicdesigncriteria fordeepwaterpipelinesand flowlinesarenotmuchdifferent fromshallowwatersystems,buttherearemorerisksassociatedwithapipelinelocatedindeepwater.Thefollowingsuggestionsareofferedtominimizetheriskofproblemswiththesecathodicprotectionsystems.Someofthesesuggestionswouldincidentallyimproveshallowwatersystemreliabilityalso.A.AnodeTapersMostdeepwaterpipelinesarenotstabilizedwithconcreteweightcoatings,thusthebraceletanodescommonlyusedareproudofthepipeline.Asaresultanodessometimesdetachduringthe layprocessduetotheanodesnaggingonthepipe layequipment[3][4].Theuseofcastpolyurethanetaperstoanchortheanodeandprovideasmoothdiametertransitionhasproventobeaveryeffectiveremedytothisproblem.Placingbothanodehalvesaparticularwaycanalsoreducetheriskofsnagging.Onewanttobesurethatalloftheanodeswillarriveontheseabedatthesixo'clockposition.Thisprocessisnotasfavorableasthetapersbutmaybetheonlyworkablesolutionifanodeshavetobeattachedonthelaybarge[5].B.PipeLay Inspection Thebestopportunity to identifyand repairproblems isalwaysduring theinstallation.Technologyisavailablewhichwillverifythatanodesareattachedtothepipeandthatthecoating isnotbadlydamagedbeforethepipehitstheseabed[5]. Inaddition,therequiredpostlayinspectionperformedbyalloperatorstocheckthelocationofthelineisalsoagreatopportunitytoverifythepipeline'scorrosioncontrolsystemperformance.SpecifythatacathodicprotectionprobebeattachedtotheROVduringthepostlay(asbuilt)inspectionrun.CathodicProtectionTestingandMonitoringwithROV'sIntroductionWithouttheROVtherewouldbenooilandgasdevelopmentinwaterdepthsgreaterthan1500feet.Theseunderwaterrobotsarecomplexmachineswithoutbrains.Wehavetomakeitsimpleforthemtodotheworkofcorrosiontechnicians[6].Withsubseadevelopmentswedonothavetheluxuryofrunningcablestothesurface.Therefore,wemustusetheROV.EquipmentmadeespeciallyforROV'sisnowavailabletoperformthefollowingtasks:ElectricalPotentialSurveysAwiderangeofequipmentisavailableforpointandcontinuouspotentialsurveysonsubseaequipmentandtheassociatedpipelines.

  • CurrentDensityandAnodeCurrentMeasurement Historically thishasbeenachievedusing theelectric fieldgradientmethod [7].Anewlydeveloped fixedmonitoring instrumentallowsacurrentdensitymonitorormonitoredanode tobedeployed formeasurementwithanROV (Figure4).Bystabbingaselfcontainedreadout into the fixedcontacts thevoltagedropshuntcanbeaccuratelyrecorded.ConclusionsWhendesigningaCPsystemindeepwater,besafe,notsorry!Paycloseattentiontothestructure,itscontinuity,what it'smade of, its geometry, and how it will be protected over its life cycle. Beconservativewithcoatingandcathodicprotectiondesigns,butmakeretrofitprovisionsbyprovidingsimpleROVattachmentpoints.Ensurethatonlyqualitymaterialsareused inthecorrosioncontrolsystem.Andlastbutnotleast,hireacorrosionengineertoreviewallthedesignspecifications,coatingsvs.materialsvs.cathodicprotection.References[1]DelNorskeVeritas(DnV)RecommendedPracticeRP8401"CathodicProtectionDesign"1993[2]NACEInternationalTMOI9098"ImpressedCurrentTestMethodforLaboratoryTestingofAluminumAnodes"[3]CORROSION'97Paper470R.H.Winters,A.Holk"CathodicProtectionRetrofitofanOffshorePipeline"[4]CORROSION'93Paper527LJ.RipponetaI."ShortingPipelineandJacketCathodicProtectionSystems"[5]OffshoreMagazineApril1996J.Britton"ProtectingPipelineCorrosionControlSystemsDuringPipeLay"[6]UnderwaterMagazineFall98P.47J.Britton"AnROYinterfaceforCorrosionMonitoringEquipment"[7]CORROSION'92Paper422J.Britton"ContinuousSurveysofCathodicProtectionSystemPerformanceonBuriedPipelinesintheGulfofMexico"