73
Catalytic Asymmetric Hydroaminations (And Hydroalkoxylations, But Mostly Hydroaminations) Anna Allen MacMillan Group Meeting February 16, 2011

Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Catalytic Asymmetric Hydroaminations(And Hydroalkoxylations, But Mostly Hydroaminations)

Anna Allen

MacMillan Group Meeting

February 16, 2011

Page 2: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Hydroamination (and Hydroalkoxylation): An Outline

Brief Introduction to Hydroaminations

Rare Earth Metal-Catalyzed Asymmetric Hydroaminations

Group 4 Metal-Catalyzed Asymmetric Hydroaminations

Late Transition Metal-Catalyzed Asymmetric Hydroaminations

Base-Catalyzed Asymmetric Hydroaminations

Brønsted Acid-Catalyzed Asymmetric Hydroaminations

Intramolecular reactionsIntermolecular reactions

Cationic metal catalystsNeutral metal catalysts

Iridium-catalyzed reactionsPalladium-catalyzed reactionsGold-catalyzed reactionsRhodium-catalyzed reactions

Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.Aillaud, I.; Collin, J.; Hannedouche, J.; Schulz, E. Dalton Trans. 2007, 5105.

Hultzsch, K. C. Adv. Synth. Catal. 2005, 347, 367.

Page 3: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Hydroamination Reactions

! Amines are a valuable and commercially important class of compounds used for bulk chemicals specialty chemicals and pharmaceuticals

! Most classical methods require refined starting materials and generate unwanted byproducts

synthesis of amines:

OH

R

NH2

RR R

Br

R

NH2

RR R

O

R

NH2

RR R

R

NH2

RR R

NO2

RR R2N H

RR

NR2

H

hydroamination reaction:

direct addition of an amine across a carbon-carbon multiple bond

! Hydroaminations are 100% atom economical and use simple and inexpensive starting materials

Page 4: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Hydroamination Reactions

RR R2N H

RR

NR2

H

hydroamination reaction: direct addition of an amine across a carbon-carbon multiple bond

R

R R R2N HR

R

NR2

H

NH2

HN

RR NH2

HHN

R

H

Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

Why are hydroamination reactions not used more?

Challenges: thermodynamically feasible (slightly exothermal) but entropically negative

repulsion between the nitrogen lone pair and the olefin/alkyne !-system

high reaction barrier

regioselectivity (markovnikov vs. anti-markovnikov) for intermolecular reactionsanti-markovnikov on the "Top 10 Challenges for Catalysis" in 1993

Haggins, J. Chem. Eng. News 1993, 71, 23.

RR R2N H

RR

NR2

H

R

R R R2N HR

R

NR2

H

NH2

HN

RR NH2

HHN

R

Halkylamine vinylamine

Page 5: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Hydroamination Reactions

RR R2N H

RR

NR2

H

hydroamination reaction: direct addition of an amine across a carbon-carbon multiple bond

R

R R R2N HR

R

NR2

H

NH2

HN

RR NH2

HHN

R

H

Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

RR R2N H

RR

NR2

H

R

R R R2N HR

R

NR2

H

NH2

HN

RR NH2

HHN

R

Halkylamine vinylaminealkylamine vinylamine

Page 6: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Hydroamination Reactions

RR R2N H

RR

NR2

H

hydroamination reaction: direct addition of an amine across a carbon-carbon multiple bond

R

R R R2N HR

R

NR2

H

NH2

HN

RR NH2

HHN

R

H

Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

RR R2N H

RR

NR2

H

R

R R R2N HR

R

NR2

H

NH2

HN

RR NH2

HHN

R

Halkylamine vinylaminealkylamine vinylamine

this talk focuses on generating enantioenriched amines

Page 7: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rare Earth Metal Catalyzed Hydroaminations

Page 8: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rare Earth Metal-Catalyzed Intramolecular Hydroaminations: Seminal Work

! Seminal work of lanthanide-catalyzed hydroamination reaction was reported in 1989 by Marks using

La X(TMS)2 La H

2X = CH, N

Sm

O

O

Gagné, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108.Gagné, M. R.; Nolan, S. P.; Marks, T. J. Organometallics 1990, 9, 1716.

H2Nn

HNMe

n

1-5 mol% catalyst

HNMe

HNMe

HNMe

MeMe

HNMe Me

HNMe

13 (25 ºC)140 (60 ºC)

TOF:(h–1)

125 (25 ºC) 5 (60 ºC) 13 (80 ºC) 84 (25 ºC)

generally produces the exocyclic hydroamination product

metallocene-based catalysts

Page 9: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

LnHN

R

Mechanism for Rare Earth Metal-Catalyzed Hydroaminations

Ln

R

HNR NH2

HN

R

XH(TMS)2

R NH2Ln X(TMS)2 LnHNR

!+

!+ !–

!–

catalyst activation

protonolysisolefin insertion

rate-limiting step

"H ~ 0 kcal/mol"H ~ –13 kcal/mol

For aminoalkynes, aminoallenes,conjugated aminodienes

olefin insertion: "H ~ –19 to –35 kcal/molprotonolysis: "H ~ 0 to +4 kcal/mol

X = CH, N

! Transformation proceeds through a rare earth metal amido species

Page 10: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rare Earth Metal Catalysts for Intramolecular Hydroamination! Catalytic activity in rare earth metal-catalyzed hydroamination of aminoalkenes generally increase with increased accessibility to the metal center

H2NHNMecatalyst

MeMe

Me Me

Lu CH(TMS)2 Sm CH(TMS)2 La CH(TMS)2

0.977 Å 1.079 Å 1.160 Å<1 h–1 (80 ºC) 48 h–1 (60 ºC) 95 h–1 (25 ºC)

increasing ionic radii / decreased steric encumbrance

increasing reactivity

Lu CH(TMS)2 LuSi CH(TMS)2 LuSiN

CH(TMS)2

<1 h–1 (80 ºC) 75 h–1 (80 ºC) 90 h–1 (25 ºC)

Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

! Trend usually holds for alkenes using metallocene catalysts, but alkynes often show reverse trend

Page 11: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rare Earth Metal-Catalyzed Asymmetric Hydroamination: Seminal Work

! The first chiral lanthanocene catalysts were reported by Marks in 1992

Ln

R*

Si X(SiMe3)2

Cp

Me

MeMe

Cp

Me

MeMe

Cp

Me

MeMePh

(+)-neomenthyl (–)-menthyl (–)-phenylmenthyl

R* =

Ln = La, Nd, Sm, Y, LuX = CH, N

Gagné, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics, 1992, 11, 2003.

H2N

HNMe

MeMe

Me Me

Sm

R*

Si N(SiMe3)2

R* = (–)-menthyl

74% ee (S)

–30 ºC

Page 12: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rare Earth Metal-Catalyzed Asymmetric Hydroamination: Seminal Work

! The first chiral lanthanocene catalysts were reported by Marks in 1992

Ln

R*

Si X(SiMe3)2

Cp

Me

MeMe

Cp

Me

MeMe

Cp

Me

MeMePh

(+)-neomenthyl (–)-menthyl (–)-phenylmenthyl

R* =

Ln = La, Nd, Sm, Y, LuX = CH, N

Gagné, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics, 1992, 11, 2003.

Ln

R*

SiHN

Ha

He

Ln

R*

SiN He

Ha

Ln

R*

Si HNHe

Ha

Ln

R*

Si N

Ha

He

HNMe

HNMe

favoured favoured

disfavoured disfavoured

Page 13: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rare Earth Metal-Catalyzed Asymmetric Hydroamination: Seminal Work

! The first chiral lanthanocene catalysts were reported by Marks in 1992

Ln

R*

Si X(SiMe3)2

Cp

Me

MeMe

Cp

Me

MeMe

Cp

Me

MeMePh

(+)-neomenthyl (–)-menthyl (–)-phenylmenthyl

R* =

Ln = La, Nd, Sm, Y, LuX = CH, N

Gagné, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics, 1992, 11, 2003.Hultzsch, K.C. Adv. Synth. Catal, 2005, 347, 367.

ionic radii of rare earth metal effects the enantioselectivity

maximum enantioseletivity observed with samarocene

Page 14: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rare Earth Metal-Catalyzed Asymmetric Hydroamination: Seminal Work

! The first chiral lanthanocene catalysts were reported by Marks in 1992

Ln

R*

Si X(SiMe3)2

Cp

Me

MeMe

Cp

Me

MeMe

Cp

Me

MeMePh

(+)-neomenthyl (–)-menthyl (–)-phenylmenthyl

R* =

Ln = La, Nd, Sm, Y, LuX = CH, N

Gagné, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics, 1992, 11, 2003.Hong, S.; Marks, T. J.; Acc. Chem. Res. 2004, 37, 673.

H2N

HNMe

catalyst

25 ºC

Sm

(–)-menthyl

Si N(SiMe3)2

62% ee (S)

Sm

(–)-menthyl

Si(Me3Si)2N

60% ee (S)

Sm

(+)-neomenthyl

Si N(SiMe3)2

55% ee (R)

Y

(+)-neomenthyl

Si(Me3Si)2N

50% ee (R)

Sm

(+)-neomenthyl

Si CH(SiMe3)2

61% ee (R)

(±)

you can obtain 61% ee from a racemic precatalyst

ee of product is independent of ee of precatalyst

Page 15: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Epimerization of Chiral Lanthanocene Complexes

! Marks' chrial lanthanocene complexes were found to epimerize under hydroamination conditions

But why does racemic catalyst give enantioenriched product?

Ln

R*

Si NHR LnSi N(SiMe3)2

R*

LnSiNHR

NH2R

NHR

*R H

NH2RNH2R

Ln

(+)-neomenthyl

Si E(SiMe3)2 Ln

(–)-menthyl

Si E(SiMe3)2 Ln

(–)-phenylmenthyl

Si E(SiMe3)2

80:20 (R):(S) >95:5 (S):(R) 90:10 (S):(R)

equilbrium ratio are independent of the epimer ratio of the precatalyst

Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673.

Page 16: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Chiral Rare Earth Metal Catalysts Based on Non-Cyclopentadienyl Ligands

! In 2003, new chiral hydroamination catalysts based on non-metallocene ligands were reported

MeNMeN

Ln

t-Bu

t-Bu

t-Bu

t-Bu

N(SiHMe2)2Me

NMeN

LaN(SiHMe2)2THF

t-But-Bu

t-Bu

t-Bu

OMe

OMeMe

NMeN

YN(SiHMe2)2

(THF)2

t-But-Bu

t-Bu

t-Bu

O

O

MeNMeN

LaN(SiHMe2)2

(THF)2O

O

t-Bu

t-Bu

t-Bu

t-Bu

Chiral Bisarylamido and Aminophenolate Catalysts

O'Shaughnessy, P. N.; Scott, P. Tetrahedron: Asymmetry 2003, 14, 1979

NH2

Me Me HNMe

MeMe

catalyst

100% cv60-70 ºC

336 h, 50% ee 192 h, 21% ee 24 h, 11% ee

40 h, 61% eeComplexes were shown to be configurationally

stable under hydroamination conditions

168 h, 33% ee168 h, 18% ee

YSmLa

Page 17: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Chiral Rare Earth Metal Catalysts Based on Non-Cyclopentadienyl Ligands! Hultsch's 3,3'-bis(trisarylsilyl)binaphtholate catalyst can allow for higher enantioselectivity

Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748.Gribkov, D. V.; Hultzsch, K. C. Chem. Commun. 2004, 730.

NH2

R1 R2 HNMe

R1R2

catalyst, Ln = Y

>98% cv22 ºC

2 h, 53% ee

OO

Ln

Si

Si

Me

Me

Me

Me

3

3

Me2N

Me2NPh

HNMe

MeMe

HNMe

HNMe

Me

20 h, 83% ee 1.2 h, 65% ee, 1.4:1 dr

favouredHNMe disfavoured

HNMe

! Hultzsch's 3,3'-bis(trisarylsilyl)binaphtholate catalyst can allow for higher enantioselectivity

Page 18: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Chiral Rare Earth Metal Catalysts Based on Non-Cyclopentadienyl Ligands! Hultsch's 3,3'-bis(trisarylsilyl)binaphtholate catalyst can allow for higher enantioselectivity

Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748.Gribkov, D. V.; Hultzsch, K. C. Chem. Commun. 2004, 730.

NH2

R1 R2 HNMe

R1R2

catalyst, Ln = Y

>98% cv22 ºC

2 h, 53% ee

OO

Ln

Si

Si

Me

Me

Me

Me

3

3

Me2N

Me2NPh

HNMe

MeMe

HNMe

HNMe

Me

20 h, 83% ee 1.2 h, 65% ee, 1.4:1 dr

14 h, 68% ee

HNMe

MeMe

HNMe

HNMe

16.5 h, 90% ee

0.5 h, 78% ee0.1 h, 80% ee

HNMe

PhPh

HNMe

21 h, 55% ee

Ln = Lu

Chiral Rare Earth Metal Catalysts Based on Non-Cyclopentadienyl Ligands! Hultsch's 3,3'-bis(trisarylsilyl)binaphtholate catalyst can allow for higher enantioselectivity

NH2

R1 R2 HNMe

R1R2

catalyst, Ln = Y

>98% cv22 ºC

2 h, 53% ee

OO

Ln

Si

Si

Me

Me

Me

Me

3

3

Me2N

Me2NPh

HNMe

MeMe

HNMe

HNMe

Me

20 h, 83% ee 1.2 h, 65% ee, 1.4:1 dr

! Hultzsch's 3,3'-bis(trisarylsilyl)binaphtholate catalyst can allow for higher enantioselectivity

Page 19: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Chiral Rare Earth Metal Catalysts Based on Non-Cyclopentadienyl Ligands

! Livinghouse reported a bisthiolate yttrium complex showing less substrate dependence

N

NY

Me

Me

S

S

Me

Me

SiMe2Ph

SiMe2Ph

N(SiMe3)2

NHR3R

R R2N

R3

R2

RR5 mol% catalyst

C6D6, 60 ºC

NH

Me

MeMe

NH

Me NH

NH

Ph

MeMe

N

Me

Me

n

n

Me

MeMe

9h, 87% ee 8h, 81% ee 3h, 80% ee 3h, 82% ee 30h, 69% ee(75 ºC)

Kim, J. Y.; Livinghouse, T. Org. Lett. 2005, 7, 1737.

Page 20: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Other Chiral Rare Earth Metal Catalysts for Intramolecular Hydroamination

! There are still more chiral catalysts for intramolecular hydroamination....

NN

Y N(SiMe3)2

Pi-Pr2

Pi-Pr2

S

S

61% ee

OO

Ln N(SiHMe2)2

t-Bu

t-Bu

(THF)n

Me

Me

Me

Me

8-36% ee

N

NN

NN

N

N

N

t-Bu

t-Bu

17% ee 5% ee

Y N(SiMe3)2Y N(SiMe3)2

N

NN

N

Ph Ph

i-Pr i-Pr

Lu

9-44% ee

N N

N NY

N(SiMe3)2

11% ee

N N

OOPh

Ph Ph

Ph

Ln

(Me3Si)2N N(SiMe3)2

17-67% ee

N

NLn

R

R

N

N

R

R

Li(THF)n

60-73% ee

(Marks)

(Trifonov)

(Trifonov)(Marks)

Page 21: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Intermolecular Hydroamination Catalyzed by Rare Earth Metal Catalysts

! Only a very limited number of reports of of rare earth catalyzed intermolecular reactions, both racemically and enantioselectively

Primary Challenge: inefficient competition between strongly binding amines and weakly binding alkenes for vacant coordination sites

New Consideration: regioselectivity (Markovnikov vs. anti-Markovnikov)

rate = k[amine]0[alkene]1[catalyst]1

large excess of alkene is generaly required, contradicting the atom economical aspect of hydroaminations

Me H2N Me MeHN Me

Me Me

HN Me

markovnikov anti-markovnikov

Page 22: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Asymmetric Intermolecular Hydroamination Catalyzed by Rare Earth Metals

! In 2010 Hultzsch reports the first (and to date the only) asymmetric intermolecular hydroamination using a chiral binaphtholate yttrium catalyst

OO

Y

SiPh3

SiPh3

Me2N

Me2NPh

R1 R2NH25 mol% catalyst

benzene or toluene150 ºC

HN

MeR19 to 15 equiv

R2

HN

Me

Ph

Me n

n = 1n = 2n = 4

70%, 61% ee54%, 61% ee72%, 57% ee

≥ 85% cv

HN

Me

Ph HN

Me

PhHN

Me

Ph

HN

MeMe 3

HN

MePh

HN

MePh OMe

59%, 51% ee 72%, 56% ee 25%, --% ee

Ph

61%, 61% ee 68%, 54% ee 67%, 56% ee

HN

MeMe 3

75% cv, 73% de

HN

MeMe 3

< 20%, --% de

Ph Ph

Me Me

terminal alkene primary amine

Reznichenko, A. L.; Nguyen, H.N.; Hultszch, K. C. Angew. Chem. Int. Ed. 2010, 49, 8984.

Page 23: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rare Earth Metal Catalyzed Hydroaminations: Summary

! Rare earth metal catalyzed hydroaminations are almost exclusively restricted to intramolecular

PROS CONSNo protecting groups Very low functional group toleranceAir and moisture sensitive - GLOVEBOX

Ln

R*

Si X(SiMe3)2

ansa-Metallocene

OO

Y

SiPh3

SiPh3

Me2N

Me2NPh

(Marks)binaphtholate/biphenolate

(Marks, Hultzsch, Scott)bisthiolate

(Livinghouse)

! Current Asymmetric State of the Art - Livinghouse's bisthiolate and Hultzsch's binaphtholate catalysts

Y-bisthiolate

9 h, 87% ee

HN

Me

Ph

Me

H2N Ph

Me

Y-binaphtholate

22 ºC72, 61% ee

NHR3MeMe N

HMe

MeMe

60 ºC

Non-activated alkenes and simple amines

NN

Y

Me

Me

S

S

Me

Me

SiMe2Ph

SiMe2Ph

N(SiMe3)2

Page 24: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Group 4 Metal-Catalyzed Hydroaminations

Page 25: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Ti

Group 4 Metal-Catalyzed Hydroamination! Early studies of group 4 metals as catalysts for hydroamination restricted scope to alkynes and allenes

TiMe

MeTi

NH

N

Me

Me

MeMe

N MeMe

MeTiSi

N NR2

NR2

TiNEt2

O

N

NEt2Ph

i-Pri-Pr

2

Ti

N

SiN NMe2

NMe2

NMe2

Ti NMe2

N

N

Me

N

HR

Less air and moisture sensitive

Better functional group tolerance

Many precatalysts commercially available

Müller, T. E.; Hultzsch, K.C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008,108, 3795.

R'NH2

Effective for both inter- and intramolecular[Ti]

R H R

NR'

H

NR'

markovnikov anti-markovnikov

O TiMe

t-Bu

t-Bu

NMe2

NMe2

•R

R'NH2

[Ti]

R

NR'

Me

Page 26: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Group 4 Metal-Catalyzed Hydroamination of Alkenes! Cationic group 4 metal complexes are isoelectronic to lanthanocene complexes so should have similar reactivity

Gribkov, D. V.; Hultzsch, K.C. Angew. Chem. Int. Ed. 2004,43, 5452.Knight, P. D.; Munslow, P. N.; O'Shaughnessy, Scott, P. Chem. Commun. 2004, 894.

Zr Me

MeB(C6F5)3

La CH(TMS)2

14e–, d0 14e–, d0

! Scope of group 4 metal-catalyzed hydroaminations should be able to include aminoalkenes

Page 27: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Group 4 Metal-Catalyzed Hydroamination of Alkenes! Cationic group 4 metal complexes are isoelectronic to lanthanocene complexes so should have similar reactivity

Gribkov, D. V.; Hultzsch, K.C. Angew. Chem. Int. Ed. 2004,43, 5452.Knight, P. D.; Munslow, P. N.; O'Shaughnessy, Scott, P. Chem. Commun. 2004, 894.

MeNMeN

Zr

Me

Me

O

O Ph

t-Bu

t-Bu

t-Bu

t-Bu

B(C6F5)4

! In 2004 both Hultzsch (racemic) and Scott (enantioselective) reported cationic zirconium catalysts for the intramolecular hydroamination of alkenes using secondary amines

HN

RnNR

Me100 ºC

10 mol% catalystR R

NMe

Me NMe

Me

64% ee, 4 h 14% ee, 48 h 20% ee, 3 h

100% cv

NMeMe

82% ee, 3 h

MeMe Me

Me

NMe

Me

n

RR

Scott:

Page 28: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Mechanism of Cationic Group 4 Metal-Catalyzed Hydroamination! Hydroamination reactions with cationic group 4 metal complexes proceed through an analogous mechanism to the rare earth metal catalysts

Gribkov, D. V.; Hultzsch, K.C. Angew. Chem. Int. Ed. 2004,43, 5452.Knight, P. D.; Munslow, P. N.; O'Shaughnessy, Scott, P. Chem. Commun. 2004, 894.

[Zr]RN

[Zr]RN

!+

+ !–

!–

RN

[Zr]

HNMe

HN

R

R = H

R ≠ H

[Zr]N

catalyticallyinactive

! Primary aminoalkenes result in no reaction because cationic zirconium amido species are readily deprotonated to yield catalytically inactive zirconium imido species

! Neutral metal imido species operate by a different mechanism and are unreactive towards non- activated alkenes using these catalysts

HN

R[Zr]–CH3CH4

Page 29: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Zr

Asymmetric Neutral Group 4 Metal-Catalyzed Hydroamination! In recent years, several groups have developed chiral neutral zirconium catalysts for primary amines

Watson, D. A.; Chiu, M.; Bergman, R. G. Organometallics 2006, 25, 4731.Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L. Angew. Chem. Int. Ed. 2007, 46, 354.

Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem. Commun. 2008, 1422.Zi, G.; Liu, X.; Xiang, L.; Song, H. Organometallics 2009, 28, 1127.

NH2n N

HMe

R1 R2 catalyst n

R1

R2

N

NP

Zr

P O

O

Ar Ar

Ar Ar

Ar = 3,5-C6H3Me2

NMe2

NMe2

Bergman, 2006

MeNMeN

Zr

O

O

Mes

Mes

NMe2

NMe2

Schafer (Scott), 2007

Me2N O

N

t-Bu

t-BuO

H

RR = Ph, t-Bu

Scott, 2008

N

OZrMes

NMe2

NMe2

Me2N 2

Zi, 200933-99%, 33-80% ee 82-98%, 62-93% ee >95%, 14-70% ee

(2 substrates)(7 substrates)(8 substrates)83-100%, 38-72% ee

(3 substrates)

substrates require !-geminal substitutiongenerally restricted to pyrrolidines

Page 30: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Zr

Asymmetric Neutral Group 4 Metal-Catalyzed Hydroamination! In recent years, several groups have developed chiral neutral zirconium catalysts for primary amines

Watson, D. A.; Chiu, M.; Bergman, R. G. Organometallics 2006, 25, 4731.Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L. Angew. Chem. Int. Ed. 2007, 46, 354.

Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem. Commun. 2008, 1422.Zi, G.; Liu, X.; Xiang, L.; Song, H. Organometallics 2009, 28, 1127.

NH2n N

HMe

R1 R2 catalyst n

R1

R2

N

NP

Zr

P O

O

Ar Ar

Ar Ar

Ar = 3,5-C6H3Me2

NMe2

NMe2

Bergman, 2006

MeNMeN

Zr

O

O

Mes

Mes

NMe2

NMe2

Schafer (Scott), 2007

Me2N O

N

t-Bu

t-BuO

H

RR = Ph, t-Bu

Scott, 2008

N

OZrMes

NMe2

NMe2

Me2N 2

Zi, 200933-99%, 33-80% ee 82-98%, 62-93% ee >95%, 14-70% ee

(2 substrates)(7 substrates)(8 substrates)83-100%, 38-72% ee

(3 substrates)

NH

Me

MeMe

NH

Me NH

Me

80%, 93% ee 91%, 88% ee 88%, 74% ee

NH

Me

96%, 82% ee

Page 31: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Zr

Asymmetric Neutral Group 4 Metal-Catalyzed Hydroamination! In recent years, several groups have developed chiral neutral zirconium catalysts for primary amines

Watson, D. A.; Chiu, M.; Bergman, R. G. Organometallics 2006, 25, 4731.Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L. Angew. Chem. Int. Ed. 2007, 46, 354.

Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem. Commun. 2008, 1422.Zi, G.; Liu, X.; Xiang, L.; Song, H. Organometallics 2009, 28, 1127.

NH2n N

HMe

R1 R2 catalyst n

R1

R2

N

NP

Zr

P O

O

Ar Ar

Ar Ar

Ar = 3,5-C6H3Me2

NMe2

NMe2

Bergman, 2006

MeNMeN

Zr

O

O

Mes

Mes

NMe2

NMe2

Schafer (Scott), 2007

Me2N O

N

t-Bu

t-BuO

H

RR = Ph, t-Bu

Scott, 2008

N

OZrMes

NMe2

NMe2

Me2N 2

Zi, 200933-99%, 33-80% ee 82-98%, 62-93% ee >95%, 14-70% ee

(2 substrates)(7 substrates)(8 substrates)83-100%, 38-72% ee

(3 substrates)

substrates require !-geminal substitutiongenerally restricted to pyrrolidines

Page 32: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Mechanism of Neutral Group 4 Metal-Catalyzed Hydroamination! Hydroamination reactions with neutral group 4 metal complexes proceed through a [2 + 2] cycloaddition of a metal imido species and the alkene

Bexrud, J. A.; Bear, J. D.; Leitch, D. C.; Schafer, L. L. Org. Lett. 2005, 7, 1959.Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.

[Zr] N

[Zr] N

HNMe

H2N

H2N

HNMe2

LnZr

[Zr] N

[2 + 2] cycloaddition

N

Me

[Zr]NHprotonolysis

NMe2

Page 33: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Asymmetric Neutral Group 4 Metal-Catalyzed Hydroamination! This year (Jan 2011) Sadow reported a highly enantioselective intramolecular hydroamination

Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem. Int. Ed. 2011, 50, ASAP.

NH2n N

HMe

R1 R210 mol% catalyst n

R1

R2

generally restricted to !-geminal substituted pyrrolidines

BPh

O

N

ON

ZrNMe2

NMe2

C6D6, 25 ºC

NH

Me

PhPh

NH

Me NH

Me NH

Me

MeMe

NMe

Me

PhPh

NH

Me

Me

NH

MeNH

NH

Me Me

PhPh

>95% cv, 93% ee >95% cv, 90% ee(98% ee in THF, 5d)

88% cv, 92% ee 89% cv, 89% ee

0% cv, --% ee

>95% cv, 93, 92% ee, 1:1 dr

24% cv, --% ee 65% cv, 46% ee 48% cv, 31% ee

Page 34: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Group 4 Hydroaminations: Summary

! Group 4 metal complex catalyzed hydroaminations are almost exclusively intramolecular for alkenes

PROS CONSNo protecting groups Intramolecular only for alkenes (non-strained)Scope limited (ie, pyrrolidines with !-substitution)

! Current Asymmetric State of the Art - Sadow's neutral zirconium catalyst for primary aminoalkenes

! Numerous examples of inter- and intramolecular hydroaminations for alkynes and allenes

Less air and moisture sensitiveMore functional group tolerance (halides, ethers, nitriles)

BPh

O

N

ON

ZrNMe2

NMe2NH2

NH

Me

Ph Ph10 mol% catalyst

PhPh

C6D6, 25 ºC

>95% cv, 93% IY93% ee

! Group 4 metal-catalyzed asymmetric hydroaminations are exclusively intramolecuar for alkenes

Page 35: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Late Transition Metal-Catalyzed Hydroaminations

Page 36: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Late Transition Metal-Catalyzed Asymmetric Hydroamination

! Late transition metals are highly attractive and desirable for asymmetric hydroaminations

Higher functional group toleranceLowest air and moisture sensitivity

! Most substrates are restricted to activated substrates, such as strained olefins, styrenes, dienes, alkynes

Rh 45

Ni 28

Au 79

Pd 46

Pt 78

Ir 77

Ru 44

Cu 29

Zn 30

Page 37: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Late Transition Metal-Catalyzed Asymmetric Hydroamination

! Late transition metals are highly attractive and desirable for asymmetric hydroaminations

Higher functional group toleranceLowest air and moisture sensitivity

! Most substrates are restricted to activated substrates, such as strained olefins, styrenes, dienes, alkynes

Rh 45

Ni 28

Au 79

Pd 46

Pt 78

Ir 77

Ru 44

Cu 29

Zn 30

Fe 26

Ag 47

Page 38: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Late Transition Metal-Catalyzed Asymmetric Hydroamination

! Late transition metals are highly attractive and desirable for asymmetric hydroaminations

Higher functional group toleranceLowest air and moisture sensitivity

! Most substrates are restricted to activated substrates, such as strained olefins, styrenes, dienes, alkynes

Rh 45

Ni 28

Au 79

Pd 46

Pt 78

Ir 77

Ru 44

Cu 29

Zn 30

Fe 26

Ag 47

Page 39: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Late Transition Metal-Catalyzed Asymmetric Hydroamination

! Late transition metals are highly attractive and desirable for asymmetric hydroaminations

Higher functional group toleranceLowest air and moisture sensitivity

! Most substrates are restricted to activated substrates, such as strained olefins, styrenes, dienes, alkynes

Rh 45

Ni 28

Au 79

Pd 46

Pt 78

Ir 77

Ru 44

Cu 29

Zn 30

Fe 26

Ag 47

Page 40: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Iridium-Catalyzed Intermolecular Hydroamination

! The first iridium-catalyzed hydromation was reported in 1989 by Milstein

H

Ir(PEt3)2(C2H4)2ClNH2

Ir(PEt3)2(C2H4)2Cl

Ir(PEt3)2Cl

– 2 C2H4

Ir(PEt3)2(NHPh)(H)Cl

H

Ir

ClEt3P N

Ph

Et3P

NHPh

NH2

HNHPh

THF

H

Ir

ClEt3P NHPh

Et3P

Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1989, 110, 6738.

oxidative additionreductive elimination

coordination to exo face

Page 41: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Iridium-Catalyzed Intermolecular Hydroamination

! Inspired by Milstein, Togni and coworkers developed an asymmetric version in 1997

H

1 mol% [IrCl(PP)]2NH2 NHPh

[N(P(NMe2)3)2]+F–

Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1989, 110, 6738.

FePPh2

Me Cy2P

IrCl

ClFe

Ph2P

PCy2 Me

Ir

P

PIr

Cl

Cl

P

PIr

Ph2

Ph2

Ph2

Ph2

81% IY, 38% ee3.4 h –1

22% IY, 95% ee0.15 h –1

75 ºC

Fluoride required for yield and enatioselectivity

acts as a good !-donating ligand on iridiumdeprotonates aniline to generate anilide

Possible roles:

Page 42: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Iridium-Catalyzed Intermolecular Hydroamination

! In 2008, Hartwig and coworkers improved the iridium catalyzed hydroamination to provide high yields and enantioselectivities for a wider scope of bicyclic alkenes

H

1 mol% [Ir(coe)2Cl]2NH2 NHAr

2 mol% KHMDS

Zhou, J.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 12220.

P

P

70 ºC

O

O

O

O

ArAr

ArAr

t-BuOMe

t-Bu

Ar =

2 mol% (R)-DTBM-SegphosR

R

R

R

R

DTBM-SegphosH

HN

R

R = t-BuBrOMeCF3

H

HN

H

HN

OMe

Me

Me

H

HN

Me

Me

H

HN

Me

MeN

OO

Me

85%, 92% ee91%, 96% ee75%, 98% ee77%, 91% ee

94%, 99% ee 88%, 99% ee

90%, 99% ee 84%, 98% ee

Page 43: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Asymmetric Intermolecular Hydroamination

! In 2001, Hartwig reported the first enantioselective palladium-catalyzed hydroamination of dienes

5 mol% [Pd(!-allyl)Cl]2NH2

Lober, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366

23 ºC, 120 h

11 mol% ligandR

63%, 92% ee

HN

R

NH HNO O

P PPh2 Ph2

HNH

N

HN

MeMe

HN

EtO2C

HN

F3C

ligand

59%, 90% ee 78%, 86% ee

83%, 95% ee 73%, 95% ee

LnPd

PdLn

PdLn

PhH2N

PhHN

PdLn

HN

NH2proton shift

Page 44: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Asymmetric Intermolecular Hydroamination

! In 2001, Hartwig reported the first successful palladium-catalyzed hydroamination of dienes

5 mol% [Pd(!-allyl)Cl]2NH2

Lober, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366

23 ºC, 120 h

11 mol% ligandR

63%, 92% ee

HN

R

NH HNO O

P PPh2 Ph2

HNH

N

HN

MeMe

HN

EtO2C

HN

F3C

ligand

59%, 90% ee 78%, 86% ee

83%, 95% ee 73%, 95% ee

naphthyl units extremely important for enantioselectivity

NH HNO O

P PPh2 Ph2

65%, 11% ee

HN

Palladium-Catalyzed Asymmetric Intermolecular Hydroamination

! In 2001, Hartwig reported the first enantioselective palladium-catalyzed hydroamination of dienes

Page 45: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Asymmetric Intermolecular Hydroamination of Styrenes

! Hydroamination of styrenes is a powerful synthetic transformation for benzylic or homobenzylic amines

NH2

R RNHR

Me

R

HN

R

markovnikov anti-markovnikov

Rcatalyst

OMe

NMe2

OH

Effexor(Venlafaxine)

N

N

OMe

Duragesic(Fentanyl)

NH

Me

O

NH2

H2N

Vyvanse(Lisdexamfetamine)

Me

NH2

Adderall(Amphetamine &

Dextroamphetamine)

HN

O

OMe

Concerta(Methylphenidate)

OO

NMe

Me

Me

NMe2

Exelon(Rivastigmine)

Page 46: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Asymmetric Intermolecular Hydroamination

! Several groups have developed hydroaminations of styrenes using aryl amines

PdL*NH2

Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9546.Li, K.; Horton, P. N.; Hursthouse, M. B.; Hii, K. K. J. Organomet. Chem. 2003, 665, 250.

Hu, A.; Ogasawara, M.; Sakamoto, T.; Okada, A.; Nakajima, K.; Takahashi, T.; Lin, W. Adv. Synth. Catal. 2006, 348, 2051.

80%, 81% ee

RPd-catalyzed reaction generally gives

markovnikov productsNH

Me

R

PPh2

PPh2

Hartwig, Hii, Hu

PPh2

PPh2

PPh2

PPh2

SiMe3

SiMe3

t-Bu

t-BuHu

O

O

O

O

F3C

Me

NHPh

Me

NHPh

99%, 64% ee

Me

NHPh

(Hartwig) (Hartwig)

93%, 70% ee(Hii)

Me

NHPh

79%, 59% ee(Hu, silyl BINAP)

MeO

70%, 84% ee

MeO2C

Me

NHPh

(Hu, SegPhos)

85%, 72% ee

Cl

Me

NHPh

(Hu, SegPhos)

Limited to the addition of aryl amines

Page 47: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Asymmetric Intermolecular Hydroamination

! Hartwig reoptimized the reaction to be successful with secondary alkylamines

5 mol% Pd(O2CCF3)2HN

Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 14286.

N

Me

MePh

MePh

36%, 63% ee

10 mol% ligand50 mol% TfOH

dioxane, 50 ºC, 48 h

Fe

P

P

Et

Et

EtEt

! Only one asymmetric example was reported with lower yield than the racemic variant

Page 48: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Hydroamination of Styrenes: Mechanism

Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1166.

Ar

ArNH2

NAr

Ar Me

PdP

P

X

X

migratory insertioninto Pd-H

PhNH2

Ph

Ph NH

MePh

PdP

P

H

X

PdP

P

H

Ar

X–

PdP

P

X–Me

Ar

PdP

P X–

Me

ArNH2Ar

Wacker-typeoxidation

nucleophilic attack of amineon activated arene

H

Me

PdP P

(S)attack at Cinversion

attack at Pdretention

NHPh

Ph HMe

NHPh

Ph MeH

(S)

(R)

Page 49: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Hydroamination of Styrenes: Mechanism

Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 1166.

Ar

ArNH2

NAr

Ar Me

PdP

P

X

X

migratory insertioninto Pd-H

PhNH2

Ph

Ph NH

MePh

PdP

P

H

X

PdP

P

H

Ar

X–

PdP

P

X–Me

Ar

PdP

P X–

Me

ArNH2Ar

Wacker-typeoxidation

nucleophilic attack of amineon activated arene

H

Me

PdP P

(S)attack at Cinversion

attack at Pdretention

NHPh

Ph HMe

NHPh

Ph MeH

(S)

(R)

Page 50: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Intramolecular Asymmetric Hydroamination of Alkynes

! Hydroamination of alkynes usually does not introduce a new stereocenter

NH

H2N

R

RN

R

catalyst

! Palladium-catalyzed hydroamination of alkynes proceeds through a different mechanism and creates a stereocenter

NNf

5-20 mol% Pd(dba)3

PPh2

PPh2

R

NHNf

R(R,R)-RENORPHOS

25-100 mol% RENORPHOS

10-40 mol% PhCO2Hn

n

NNf

Ph NNF

OMe

NNF

CF3

NNf

Ph NNf

Lutete, L. M.; Kadota, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 1622.

Ph

93%, 91% ee 90%, 81% ee 85%, 88% ee

92%, 90% ee 90%, 87% ee

Page 51: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Intramolecular Asymmetric Hydroamination of Alkynes

! The palladium-catalyzed hydroamination of aminoalkynes proceeds through an allene

NNf

5-20 mol% Pd(dba)3

PPh2

PPh2

R

NHNf

R(R,R)-RENORPHOS

25-100 mol% RENORPHOS

10-40 mol% PhCO2Hn

n

Lutete, L. M.; Kadota, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 1622.

hydridopalladation

PdP

P

H

OBz

PdP

P

OBz

hydropalladation

NHNf

R

R

NHNf

PdP

P

OBz

NHNf

!-elimination

R

PdP

POBz

RNNf

NNf

R

Page 52: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Palladium-Catalyzed Intramolecular Asymmetric Hydroalkoxylation of Alkynes

! Yamamoto was able to extend this methodology to the first asymmetric hydroalkoxylation, although with lower yield and selectivity

O

10 mol% Pd(dba)3

PPh2

PPh2

R

HO

R(R,R)-RENORPHOS

60 mol% RENORPHOS

20 mol% PhCO2Hn

n

O Ph O

OMe

O

CF3

O Ph O

Patil, N. T.; Lutete, L. M.; Wu, H.; Pahadi, N. K.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2006, 71, 4270.

Ph

52%, 80% ee 48%, 40% ee 60%, 82% ee

61%, 78% ee 57%, 86% ee

Why do we not see hydroalkoxylation as often as hydroamination?

! diminished nucleophilicity and weaker Lewis base character of oxygen! high thermodynamic stability of O-H !-bonds (111 kcal vs 93 kcal for N-H)

Page 53: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Gold-Catalyzed Asymmetric Hydroamination Reactions

! The ability of gold complexes to activate carbon-carbon multiple bonds make them attractive candidates for hydroamination catalysts

Nishina, N.; Yamamoto, Y. Angew. Chem. Int. Ed. 2006, 45, 3314.

! However, to date there are only a few reports of enantioselective hydroamination reactions

•C5H11

HH

C5H11

10 mol% AuBr3

C5H11 C5H11

NHPhPhNH2 80%, 99% ee

Yamamoto's chirality transfer (2006):

THF 30 ºC

Page 54: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Gold(I)-Catalyzed Asymmetric Hydroamination of Aminoallenes

! The first enantioselective gold-catalyzed hydroaminations were by Toste and Widenhoefer in 2007 using dinuclear gold(I)-phosphine complexes with biaryl-based backbone

LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. Org. Lett. 2007, 9, 2887.

NHPG•

R

R PGN

R

R

PPh2AuOPNBPPh2AuOPNB

PPh2AuOPNBPPh2AuOPNB

O

O

O

O

PPh2AuOPNBPPh2AuOPNB

MeO

Cl

Cl

MeOPAr2AuClPAr2AuCl

MeOMeO

PG = Ts (Toste, 41-99%, 70-99% ee) Cbz (Widenhoefer, 61-99%, 34-91% ee)

(Widenhoefer) (Toste) (Toste) (Toste)

! Scope of the reaction is limited to terminal and trisubstituted allenes

P Au

P Au X

X

TsN

Me

Me

98%, 99% ee

TsN

88%, 98% ee

70%, 88% ee

TsN

79%, 98% ee O

O

TsN

Me

Me

PhPh

CbzN

97%, 81% ee

PhPh

CbzN

83%, 91% ee

PhPh

Et

Et

CbzN

PhPh

91%, 76% eeToste

Widenhoefer

Page 55: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Gold(I)-Catalyzed Asymmetric Hydroamination and Hydroalkoxylation

! Widenhoefer's general protocol can be extended to other substrate classes

OH•

R O RPAr2AuClPAr2AuCl

MeOMeO

P Au

P Au X

X

5 mol% AgOTs

2.5 mol%

P AuCl

P AuCl

RN NH

O

Men RN N

O MeMe

n

2.5 mol%

5 mol% AgOTfmarkovnikov

First intermolecular asymmetric hydroamination catalyzed by gold(I)

t-BuOMe

t-Bu

Ar =

MeN

86%, 76% ee

O MeMe

5 PhN

80%, 71% ee

O MeMe

5 t-BuN

89%, 78% ee

O MeMe

5

Zhang, Z.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 5373.Zhang, Z.; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2007, 46, 283.

substrate scope demonstrated for the asymmetric variant is very limited

O

67%, 93% ee 95%, 1:1 E/Z, 93, 95% ee

O

PhPhPh

Ph

O Me

PhPh

88%, >20:1 Z/E, >95% ee

O

PhPh

96%, 88% ee(from racemic alllene)

C5H11

(from allene at 94% ee)

simple amine

Page 56: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Gold(I)-Catalyzed Asymmetric Hydroamination and Hydroalkoxylation

! Toste also wanted to expand the scope of the hydroamination protocol, but with poor results

OH•

OP AuCl

P AuCl

3 mol% AgX

3 mol%

! Changing to a chiral counterion gave significantly better results

Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.

PAr2AuClPAr2AuCl

PAr2AuClPAr2AuCl

O

O

O

O

X = BF4, 4-(NO2)-C6H4CO2 52-89%, 0-8% ee

OO

PO

O

Chiral Au(I)Catalysts

Chiral Counterion

OH•

O

5 mol% AgCat

3 mol% dppm(AuCl)2

CH2Cl2THF

benzene

76%, 65% ee83%, 76% ee90%, 97% ee

TRIP

TRIP

! Employing a chiral counterion gave significantly better results

Page 57: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Gold(I)-Catalyzed Asymmetric Hydroamination and Hydroalkoxylation

! Toste also wanted to expand the scope of the hydroamination protocol, but with poor results

OH•

OP AuCl

P AuCl

3 mol% AgX

3 mol%

! Changing to a chiral counterion gave significantly better results

Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.

PAr2AuClPAr2AuCl

PAr2AuClPAr2AuCl

O

O

O

O

X = BF4, 4-(NO2)-C6H4CO2 52-89%, 0-8% ee

OO

PO

O

Chiral Au(I)Catalysts

Chiral Counterion

OH•

O

5 mol% AgCat

3 mol% dppm(AuCl)2

CH2Cl2THF

benzene

76%, 65% ee83%, 76% ee90%, 97% ee

TRIP

TRIP

Au+ substrateligand

counterion–short

distance

large distance

Au+ substrateligand

large distance

Au(I) complexes have linear coordination geometry

! Employing a chiral counterion gave significantly better results

Page 58: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Gold(I)-Catalyzed Asymmetric Hydroamination and Hydroalkoxylation

! Chiral counterion strategy allows for both hydroamination and hydroalkoxylation with high selectivity

NHSO2Mes•

SO2MesN

5 mol% AgCat

5 mol% PhMe2PAuCl

Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.

R

R

R

R

OO

PO

O

Chiral Counterion

OH•

O

5 mol% AgCat

2.5 mol% dppm(AuCl)2

R

R

R

R

TRIP

TRIPSO2MesN

SO2MesN

SO2MesN

Me

Me

MeMe

97%, 96% ee 88%, 98% ee 84%, 99% ee

O O O

90%, 97% ee 91%, 95% ee 79%, 99% ee

Me

Me MeMe

O Me

Me

81%, 90% ee

Page 59: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rhodium-Catalyzed Asymmetric Hydroamination of Aminoalkenes

! Late-transition metal catalyzed asymmetric hydroaminations generally require activated substrates (allenes, strained alkenes, dienes, styrenes) or alkynes

NHR•

R

R

RHN

C=C !-bond of an allene is ~ 10 kcal/mol less stable than the C=C !-bond of a simple alkene

P AuCl

P AuClRN NH

O

Men

RN N

O MeMe

n

2.5 mol%

5 mol% AgOTfxylenes, 100 ºC

! We've only seen one example of a simple alkene participating in a late transition metal-catalyzed hydroamination

H2NR R

HN

RR

Me?

Widenhoefer, 2009 What about the benchmark reaction?

Page 60: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Rhodium-Catalyzed Asymmetric Hydroamination of Aminoalkenes

Shen, X.; Buchwald, S. L. Angew. Chem. Int. Ed. 2010, 49, 564.

! In 2010, Buchwald introduced the first rhodium enantioselective hydroamination of aminoalkenes

NH R R

Ar5 mol% [Rh(cod)2]BF4

6 mol% ligand

N

Ar

RR

MePCy2

OCHPh2

Ligand

N

Ph

PhPh

Me

N

o-Tol

MeMe

Me

N

Ph

Me

N

o-Tol

Me

90%, 83% ee

75%, 62% ee

48%, 90% ee

80%, 63% ee

[Rh]+

N[Rh]

HNMe H

NR

L

L = cod or solvent

NH

R

[Rh]+

PhPh

PhPh

R H

N[RhH+]

PhPh

R

intramolecularproton transfer RhP

Cy2 L

OCHPh2

[Rh] =

Page 61: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Late Transition Metal-Catalyzed Hydroaminations: Summary

! Late transition metal-catalyzed hydroaminations (and hydroalkoxylations) are almost exclusively with activated alkenes and alkynes

PROS CONSGood functional group tolerance Limited examples for simple alkenes

! Current Asymmetric State of the Art - Toste's asymmetric counterion

! Enantioselective reactions have been developed using Ir, Pd, Au, Rh

Least air and moisture sensitiveBoth inter- and intramolecular examplesHigher enantioselectivities

OO

PO

O

TRIP

TRIP

SO2MesN

R

R O

R

R

hydroamination and hydroalkoxylation

Page 62: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Base-Catalyzed Hydroaminations

Page 63: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Main Group Metals: Base-Catalyzed Asymmetric Hydroamination

! Recent interest has focued on early and late transition metal catalysts but alkali metals have been known catalysts for over 50 years

H2C CH2 NH3

Na or Li

200 ºC, 1000 atm Me NH2 Me NH

MeMe N Me

Me

70%

Howk, B. W.; Little, E. L.; Scott, S. L.; Whitman, G. M. J. Am. Chem. Soc. 1954, 76, 1899.

! Reaction proceeds through the highly nucleophilic alkali metal amide

N H R' M

R' H

R

RN M

R

R

R"

M

NR

R

R"

N HR

R

R"

HN

R

R

Deprotonation of the amine enables nucleophilic attack on non-activated alkenes

slow

fast

Page 64: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Main Group Metals: Base-Catalyzed Asymmetric Hydroamination! A base-catalyzed hydroamination has been used by Abbott Laboratories for a scalable synthesis of a histamine-3-inhibior

Ku, Y.-Y.; Grieme, T.; Pu, Y.-M.; Bhatia, A. V. Adv. Synth. Catal. 2009, 351, 2024.

HO

Br Tf2O, toluene

30% K3PO487%

TfO

Br Br1.2 equiv

Pd(PPh3)4, Cs2CO3

92%NEt3, EtOH, 45 ºC

BF3K

BrNH

Me

1.5 equivn-BuLi, THF, –15 ºC

65%

Br

N

Me

Br

N

Me

NHN

O

1.

Cu, CuI, 8-HO-quinoline140 ºC, 84%

2. citric acid, EtOH, 83%

N

N

Me

N

O

36% overall yield4 steps (+ salt formation)

former synthesis: 8 steps

bis-citrate salt

Page 65: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Main Group Metals: Base-Catalyzed Asymmetric Hydroamination! Despite being known for over 50 years, there is very limited reports of asymmetric variants

Horrillo Martinez, P.; Hultzsch, K. C.; Hampel, F. Chem. Commun. 2006, 2221.

! Cyclization proceeds with high yields and moderate selectivity

N

N

H

HMeN

NMe 2 equiv n-BuLi

Hultzsch, 2006:

NH2

R RHN Me

RR

2.5-10 mol% Li-Cat

HN Me

RR

HN

MeMe

HN Me

MePh

R = Me Ph

-(CH2)4-

96%, 68% ee97%, 31% ee98%, 74% ee 98%, 17% ee 98%, 1.2:1 dr, 64, 72% ee

Page 66: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Main Group Metals: Base-Catalyzed Asymmetric Hydroamination! Despite being known for over 50 years, there is very limited reports of asymmetric variants

Horrillo Martinez, P.; Hultzsch, K. C.; Hampel, F. Chem. Commun. 2006, 2221.

! Cyclization proceeds with high yields and moderate selectivity

N

N

H

HMeN

NMe 2 equiv n-BuLi

Hultzsch, 2006:

NH2

R RHN Me

RR

2.5-10 mol% Li-Cat

HN Me

RR

HN

MeMe

HN Me

MePh

R = Me Ph

-(CH2)4-

96%, 68% ee97%, 31% ee98%, 74% ee 98%, 17% ee 98%, 1.2:1 dr, 64, 72% ee

close proximity of the lithium atoms is essential for catalyst performance

NMe

LiN

HN Me

MeMe

56%, 2% ee

Page 67: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Main Group Metals: Base-Catalyzed Asymmetric Hydroamination! Asymmetric intramolecular hydroaminations can be carried out with catalytic n-BuLi and bisoxazolines

Ogata, T.; Ujihara, A.; Tsuchida, S.; Shimizu, T.; Kaneshige, A.; Tomioka, K. Tetrahedron Lett. 2007, 48, 6648.

Tomioka, 2007:

40 mol% catalyst

99%, 84% ee89%, 19% ee99%, 79% ee99%, 76% ee99%, 71% ee

99%, 66% ee 98%, 91% ee

N N

O O

Me Me

R R

N N

O O

Me Me

N N

O O

Me Me

N N

O O

Me Me

MeMe

H

MeMe Me

Me MeMe

HH H

MeMeMe

MeMeMe

R = i-Pr t-Bu CH2i-Pr CH2Cy CH2t-Bu

Ph

NHMe

Ph

NMe20 mol% n-BuLi

20 mol% HNi-Pr2toluene, –60 ºC

98%, 86% ee

diisopropylamine acts as an external protonating agent

Page 68: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Acid-Catalyzed Hydroaminations

Page 69: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Non-Metal Catalysts: Acid-Catalyzed Asymmetric Hydroamination

! Brønsted acids have not been used extensively as catalysts in hydroamination reactions

TsNH25 mol% TfOH

toluene70%

Li, Z.; Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett. 2006, 8, 4175.

! Reaction proceeds through the generation of a carbenium ion followed by attack of the amine

Acid-Catalysis Challenge:

Me

NHTs

TfOHH

markovnikov

TfO

TsNH2

Me

NHTs

amine is more basic than the !-system of the alkene/alkyne

formation of ammonium salts destroys nucleophilicity and avoids activation of the !-system

Page 70: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Non-Metal Catalysts: Acid-Catalyzed Asymmetric Hydroamination

! Brønsted acids have not been used extensively as catalysts in hydroamination reactions

TsNH25 mol% TfOH

toluene70%

Li, Z.; Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett. 2006, 8, 4175.

! There is an additional challenge that comes with enantioselective acid-catalyzed hydroaminations:

Me

NHTs

markovnikov

Proximity and Organization of Chiral Information

HX*

chiral bronsted acid

N

R

R'

N

R

R'H

X*

hydrogen bonding anchors chiral information close to the electrophile and

contributes to molecular organization

Me MeH

X*

Electrostatic forces can hold conjugate base in proximity to the carbocation but will lack rigidity and poor enantiotopic discrimination

Page 71: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Non-Metal Catalysts: Acid-Catalyzed Asymmetric Hydroamination

! Recently (February 2011) Toste reported the first asymmetric acid-catalyzed hydroamination

Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F. D. Nature 2011, 470, 245.

NHTsMe

MeMe

NHTs

•MeMe

Me

Meor acid-catalyst

PhF, 23 ºC

TsNMe

Me

67-99%, 80-99% ee

OO

PS

SH

Ar

Ar

Me Me

Met-Bu t-Bu

NHTsMe

MeMe

SP

SHO

O NHTs

Me

S

MeMe Me

PS

OO

Toste used a chiral Brønsted acid with a nucleophilic conjugate base that forms a covalent bond with the carbocation

MeMe

Page 72: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Non-Metal Catalysts: Acid-Catalyzed Asymmetric Hydroamination

! Recently (February 2011) Toste reported the first asymmetric acid-catalyzed hydroamination

Shapiro, N. D.; Rauniyar, V.; Hamilton, G. L.; Wu, J.; Toste, F. D. Nature 2011, 470, 245.

NHTsMe

MeMe

NHTs

•MeMe

Me

Meor acid-catalyst

PhF, 23 ºC

TsNMe

Me

67-99%, 80-99% ee

OO

PS

SH

Ar

Ar

Me Me

Met-Bu t-Bu

TsNMe

Me

TsN

TsN

Me

via dienes:

via allenes

98%, 96% ee 70%, 94% ee

Me

90%, 4.7:1 dr, 95, 90% ee

TsNMe

TsN

TsNMe

Me

91%, 3.6:1 dr, 99, 80% ee 99%, 96% ee

Me

Me

91%, 97% ee

TBSO 3

MeMe

MeMe

MeMe

MeMe

MeMe

TsN

OMe

Me

70%, 90% eeMe

Me

TsN

O

67%, 92% ee

Page 73: Catalytic Asymmetric Hydroaminationschemlabs.princeton.edu › macmillan › wp-content › uploads › sites › 6 … · anti-markovnikov on the "Top 10 Challenges for Catalysis"

Catalytic Asymmetric Hydroamination (and Alkoxylation)

! Five main catalytic pathways for asymmetric hydroamination reactions

OO

PS

SH

Ar

Ar

Rare Earth Metal Catalysis Group 4 Metal Catalysis

Late Transition Metal Catalysis Base Catalysis Acid Catalysis

intramolecular aminodienes/allenesintramolecular aminoalkenes

PPh2

PPh2 Ir Pd

Au Rh

intermolecular strained alkenes, styrenes, conjugated dienes

intramolecular aminoalkene, aminoallene, aminoalkyne

BPh

O

N

ON

ZrNMe2

NMe2

intramolecular aminoalkenes

Ln

R*

Si X(SiMe3)2

intramolecular aminoalkenesintermolecular simple alkenes