16
BEE 2600 Fall 2016 Case Study #1 Diffusion and Pharmacokinetics of Anti-VEGF Drugs Written by Sachiye Koide Due Date: 09/27/2016 Macular degeneration is the leading cause of age-related vision loss and affects more than 10 million Americans today. Considered an incurable disease, macular degeneration is caused by deterioration in the macula, the central portion of the retina, and is the consequence of overexpression of vascular endothelial growth factor (VEGF). VEGF is a signal protein that stimulates vasculogenesis and angiogenesis, and helps restore oxygen supply to tissues as part of the cardiovascular system when circulation is inadequate. When functioning normally, VEGF creates new blood vessels, such as during embryonic development, after injury, and when bypassing blocked vessels. However, overexpression of VEGF can have harmful consequences such as macular degeneration and cancer metastasis. Anti-VEGF drugs currently being used to treat macular degeneration include Bevacizumab and Ranibizumab, which can be administered straight to the eyes. However, direct injection of the anti-VEGF drugs into the eyes may cause an uneven drug concentration profile and require frequent eye injections for long-term treatment. Recently, coatings of hydrophilic gels (commonly referred to as hydrogels) have been used as drug delivery vehicles and have the advantage of time- controlled drug release [4]. Hydrogels are extensive polymer networks whose hydrophilic structure of chemical and physical crosslinks (entanglements, crystallites, and hydrogen-bonded structures) allows them to absorb copious amounts of biological fluid ten to twenty times their molecular weight without dissolving [1]. Hydrogels have proved to be extremely useful in biomedical and pharmaceutical applications due to their high water content, similarity to natural tissue, and biocompatibility [10]. Drugs can be concentrated within the polymer and released through a diffusion mechanism that allows for reduced dosing frequency. The physical properties of the hydrogel, drug-polymer interactions, drug concentration and drug solubility determine the diffusion kinetics, duration, and rate of drug release from the hydrogel [15]. There are several types of controlled-delivery hydrogel systems, including: diffusion- controlled, swelling-controlled, chemically-controlled, and environmentally-controlled [15]. In part 1 of this case study, we will focus on diffusion-based drug delivery hydrogels in the distribution of Bevacizumab and Ranibizumab to patients with macular degeneration. Part 1: In treating macular degeneration, the hydrogel containing the drugs is injected into the vitreous humor of the eye where the anti-VEGF drugs diffuse into the surrounding eye tissue. The hydrogel has a spherical shape with the drugs concentrated in the center of the gel (Fig. 2). The outer radius of the hydrogel sphere is 0.72 mm. The drug concentration at the center is 12.351 !! !" . After a certain time, the hydrogel reaches a steady state where the concentration of the drug at the interface of the hydrogel and eye tissue is zero (the drug is immediately absorbed by the tissue), while the concentration of the drug in the center of the gel continues to be constant. In Fig. 1:Physiology of macular degeneration in the eye.

Case Study Assignment 2016

Embed Size (px)

Citation preview

Page 1: Case Study Assignment 2016

BEE 2600 Fall 2016 Case Study #1

Diffusion and Pharmacokinetics of Anti-VEGF Drugs Written by Sachiye Koide

Due Date: 09/27/2016 Macular degeneration is the leading cause of age-related vision loss and affects more than 10 million Americans today. Considered an incurable disease, macular degeneration is caused by deterioration in the macula, the central portion of the retina, and is the consequence of overexpression of vascular endothelial growth factor (VEGF). VEGF is a signal protein that stimulates vasculogenesis and angiogenesis, and helps restore oxygen supply to tissues as part of the cardiovascular system when circulation is inadequate. When functioning normally, VEGF creates new blood vessels, such as during embryonic development, after injury, and when bypassing blocked vessels. However, overexpression of VEGF can have harmful consequences such as macular degeneration and cancer metastasis.

Anti-VEGF drugs currently being used to treat macular degeneration include Bevacizumab and Ranibizumab, which can be administered straight to the eyes. However, direct injection of the anti-VEGF drugs into the eyes may cause an uneven drug concentration profile and require frequent eye injections for long-term treatment. Recently, coatings of hydrophilic gels (commonly referred to as hydrogels) have been used as drug delivery vehicles and have the advantage of time-controlled drug release [4]. Hydrogels are extensive polymer networks whose hydrophilic structure of chemical and physical crosslinks (entanglements, crystallites, and hydrogen-bonded structures) allows them to absorb copious amounts of biological fluid ten to twenty times their molecular weight without dissolving [1]. Hydrogels have proved to be extremely useful in biomedical and pharmaceutical applications due to their high water content, similarity to natural tissue, and biocompatibility [10]. Drugs can be concentrated within the polymer and released through a diffusion mechanism that allows for reduced dosing frequency. The physical properties of the hydrogel, drug-polymer interactions, drug concentration and drug solubility determine the diffusion kinetics, duration, and rate of drug release from the hydrogel [15]. There are several types of controlled-delivery hydrogel systems, including: diffusion-controlled, swelling-controlled, chemically-controlled, and environmentally-controlled [15]. In part 1 of this case study, we will focus on diffusion-based drug delivery hydrogels in the distribution of Bevacizumab and Ranibizumab to patients with macular degeneration. Part 1:

In treating macular degeneration, the hydrogel containing the drugs is injected into the vitreous humor of the eye where the anti-VEGF drugs diffuse into the surrounding eye tissue. The hydrogel has a spherical shape with the drugs concentrated in the center of the gel (Fig. 2). The outer radius of the hydrogel sphere is 0.72 mm. The drug concentration at the center is 12.351 !!

!". After a certain time, the hydrogel reaches a steady state where the concentration of the

drug at the interface of the hydrogel and eye tissue is zero (the drug is immediately absorbed by the tissue), while the concentration of the drug in the center of the gel continues to be constant. In

Fig.  1:Physiology  of  macular  degeneration  in  the  eye.  

Page 2: Case Study Assignment 2016

this study, we will model the drug diffusion through the hydrogel by only considering a small section (the rectangle section illustrated in Figure 2). We will assume there is no curve in this small section, and model it as a slab of drug and hydrogel. Assume that the hydrogel is in direct contact with the tissue throughout this section.

Bevacizumab has a diffusion coefficient of 4.1Γ—10βˆ’7  cm2/s  and  a  degradation  rate  of  7.943   x   10-­‐7   Β΅g/mm3/s.     Ranibizumab   has   a   diffusion   coefficient   of   6.7Γ—10βˆ’7   cm2/s   and   a  degradation  rate  of  Ξ±  +  Ξ²z  where  Ξ±  =  3.972  x  10-­‐4  Β΅g/mm3/s  and  Ξ²  =  -­‐5.516  x  10-­‐4  Β΅g/mm4/s. For this exercise, assume the anti-VEGF drug diffuses directly from the center of the hydrogel into the eye tissue in one dimension only, and the porosity of the hydrogel is 1. We are only concerned with diffusion from the center of the hydrogel into the eye tissue. Ignore any diffusion into the vitreous liquid.

Figure 2: Structure of the hydrogel containing the drug in the center.

1. Perform a literature search on the two drugs to determine the underlying mechanism of

using anti-VEGF drugs in treating macular degeneration (this will be included in your introduction)

2. Draw a schematic diagram modeling the diffusion of Bevacizumab and Ranibizumab through the hydrogel. Be sure to include all boundary conditions and list all variables (including definition and units for each variable) and assumptions.

3. Separately derive the steady-state concentration for Bevacizumab and Ranibizumab through the hydrogel using Fick’s Second Law of Diffusion in terms of the variables only.(You need to solve for k1 and k2 constants)

4. Graph both drug concentration profiles with respect to the depth of the hydrogel on the same plot.

5. Find the expressions for the flux of Bevacizumab and Ranibizumab at the hydrogel-eye tissue interface, first in terms of variables, and then substitute the values and units into the expressions. Leave final answers in units of [Β΅g/mm2/s].

6. How long does it take for a small molecule of each drug to diffuse from the hydrogel into the eye tissue [hours]?

7. Which drug is more suitable for the time-controlled released delivery for macular degeneration from a transport point of view (considering the flux and time of diffusion)? Remember that your aim is to minimize the need for frequent injections by choosing a method that releases drug slowly over time.

Part II:

Page 3: Case Study Assignment 2016

Besides being a treatment for macular degeneration, Bevacizumab is the first anti-angiogenic antibody approved by the FDA for metastatic cancers [4]. However, the doses are much higher than the amount given to treat macular degeneration, at around 100 mg per dose via intravenous injection [8]. The higher dosage of Bevacizumab in healthy organs would result in a number of side effects. In Part II of the assignment, we will evaluate the toxicity of Bevacizumab and its pharmacokinetics.

Typically, cancer patients receive an injection of Bevacizumab every three weeks, or when Bevacizumab levels in the blood go down to lower than 0.008 mg/mL. For an adult patient, assume the volume of blood in the entire body is 5.5L. The elimination half-life of bevacizumab is 20 days.

In the treatment of metastatic cancers with Bevacizumab, consider an IV to be the reservoir for the drug and can hold 1000 mL of fluid. The elution rate of the fluid into the blood is 7.72 mL/min [3]. Bevacizumab subsequently moves into the tissue at a rate of Kt=0.082 β„Žπ‘Ÿ!! and the kidney at a rate of Kk= 0.041 β„Žπ‘Ÿ!!. From the kidney, the drug is excreted at a rate of Ke= 0.056 β„Žπ‘Ÿ!!. From the tissue, some of the drug moves back into the bloodstream at a rate Kb= 0.00025 mg/hr and some gets metabolized at a rate Km= 0.02 β„Žπ‘Ÿ!!. Assume that all the Bevacizumab is eventually either metabolized by the tissue or excreted from the body by the kidney.

1. Draw a pharmacokinetic model for the process of transport and excretion of

Bevacizumab in the body using Word or PowerPoint. Include the IV reservoir, blood, tissue, kidney, and all the appropriate rate constants. List all variables and assumptions.

2. Derive the rate equations for the mass of the Bevacizumab in the IV reservoir, blood, tissue, and kidney at time t. Start with a word equation and mass balance for each. Write all expressions in terms of variables and do not solve the equations.

3. Use the rate equation for blood to find an expression in terms of variables for the mass of Bevacizumab in the blood with respect to time.

4. If the patient is given a 100 mg dose through the IV, calculate the time it takes to deliver all of the contents of the IV bag containing the Bevacizumab. What is the concentration of drug in the blood once the entire contents of the IV has been delivered (considering absorption and elimination processes of the drug)?

5. How long until the patient can receive another dose? Hint: use the elimination half-life of Bevacizumab for your calculation.

References:

1. Ahmed, EM. 2015. Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research. 6(2):105-121. doi:10.1016/j.jare.2013.07.006

2. Bhattarai N, Gunn J, Zhang M. 2010. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews. 62(1): 83-99. doi:10.1016/j.addr.2009.07.019

3. Fournier RL. 1998. Basic transport phenomena in biomedical engineering. CRC Press. 4. Li SK, Liddell MR, Wen H. 2011. Effective electrophoretic mobilities and charges of

anti-VEGF proteins determined by capillary zone electrophoresis, J of Pharmaceutical and Biomedical Analysis. 55(3):603-607. doi:10.1016/j.jpba.2010.12.027

5. Lin C, Metters AT. 2006. Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced Drug Delivery Reviews. 58: 1379-1408. doi:10.1016/j.addr.2006.09.004

Page 4: Case Study Assignment 2016

6. Marcarelli R. 2015. Injectable β€˜self-healing’ hydrogel could target cancer cells, treat macular degeneration. HNGN [Internet]. [cited 2016 March]. Available from: http://www.hngn.com/articles/71174/20150220/

7. Medscape: drugs and diseases [Internet]. c1994-2016. WebMD LLC: [cited 2016 March]. Available from: http://reference.medscape.com/drug/avastin-bevacizumab-342257 [H]

8. Michels S. 2006. Is intravitreal bevacizumab (Avastin) safe? BMJ. 90(11):1333-1334 9. Peppas NA, Colombo P. 1997. Analysis of drug release behavior from swellable polymer

carriers using the dimensionality index. Journal of Controlled Release. 45(1): 35-40. doi:10.1016/S0168-3659(96)01542-8

10. Peppas, NA. 1997. Hydrogels and drug delivery. Current Opinion in Colloid & Interface Science. 2(5):531-537. doi:10.1016/j.addr.2009.07.019

11. Pike DB, Cai S, Pomraning KR, Firpo MA, Fisher RJ, Shu XZ, Prestwich GD, Peattie RA. 2006. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials. 27(30):5242-5251

12. Porter TL, Stewart R, Reed J, Morton K. 2007. Models of hydrogel swelling with applications to hydration sensing. PMC. 7(9):1980-1991

13. RxList: the internet drug index [Internet]. c2016. RxList Inc.: [cited 2016 March]. Available from: http://www.rxlist.com/lucentis-drug.htm

14. Salter JT, Miller KD. 2006. Targeting VEGF for breast cancer: safety and toxicity data with bevacizumab. Medscape CME and Education [Internet]. C1994-2016. WebMD LLC:[cited 2016 March].

15. Wei C, Kim C, Kim H, Limsakul P. 2012. Hydrogel drug delivery: diffusion models. [cited 2016 March].

Page 5: Case Study Assignment 2016

SOLUTIONS  1.)  Literature  Search    2.)  Variables    

 Given:  L  =  0.72  mm  Concentration  of  Bevacizumab/Ranibizumab  inside  the  hydrogel  =  12.351 !!

!"  

Ξ΅ = porosity = 1    

Variables:  CB(z)= concentration of Bevacizumab at a given depth of z  CB,hydrogel = CB(0) = concentration of Bevacizumab at center of hydrogel (z=0)     = 12.351 Β΅g/uL  

CB,vitreous  =  CB(L) = concentration of Bevacizumab at vitreous-hydrogel boundary  DS,B= Bevacizumab diffusion coefficient = 4.1Γ—10βˆ’7 cm2/s = 4.1Γ—10βˆ’5 mm2/s  RB = Bevacizumab degradation rate = 7.943 x 10-7 Β΅g/mm3/s    

CR(z)= concentration of Ranibizumab at a given depth of z  CR,hydrogel = CR(0) = concentration of Ranibizumab at center of hydrogel (z=0)     = 12.351 ug/uL  

CR,tissue  =  CR(L) = concentration of Ranibizumab at vitreous-hydrogel boundary  DS,R = Ranibizumab diffusion coefficient = 6.7Γ—10βˆ’7 cm2/s = 6.7 x 10-5 mm2/s  RR = Ranibizumab degradation rate = Ξ± + Ξ²z  

Ξ± = 3.972 x 10-4 Β΅g/mm3/s

Ξ² = -5.516 x 10-4 Β΅g/mm4/s  

Assumptions: β€’ Drug diffuses directly from the center of the hydrogel into the eye tissue in one direction. β€’ Only consider drug diffusion in one small section and model it as a slab of the hydrogel with uniform thickness. β€’ Porosity of the hydrogel is 1 β€’ Concentration of Bevacizumab /  Ranibizumab in the hydrogel is the same as at z = 0 (the center of the gel), and is assumed to be constant throughout the diffusion process

 

Eye  Tissue  

z  =  0,  πΆ!,!!"#$%&' = 12.351 !!!"  

𝐢!,!!"#$%&' = 12.351¡μ𝑔𝑒𝐿  

 z  =  L,  CB,  tissue  =    C(L)  =  0  !!!"

 

 

Hydrogel  

Bevacizumab/  ranibizumab  diffusion  

L  

Page 6: Case Study Assignment 2016

β€’ The eye tissue absorbs the drug instantly, so that the concentration at the interface of hydrogel and eye tissue is zero. β€’ Bevacizumab is degraded at a rate of R in the hydrogel wall and Ranibizumab  is  degraded  at  a  rate  R  =  Ξ±  +  Ξ²z  that  decreases  with  increasing  depth

β€’ The  mass  of  Bevacizumab/  Ranibizumab  is  conserved   β€’ Diffusion  rate,  porosity,  and  thickness  are  constant  throughout  the  hydrogel. β€’ The  concentrations  of  Bevacizumab/  Ranibizumab  are  homogeneous  throughout  the  center  of  the  hydrogel  at  time  =  0  

β€’ System  is  in  steady  state

3.) Derivation of Concentration Bevacizumab

πœ€π›ΏπΆ!𝛿𝑑 =  π·!,!

𝛿!𝐢!𝛿𝑧! βˆ’ 𝑅!  

 πœ€ !!!

!"=  0   π‘ π‘‘π‘’π‘Žπ‘‘π‘¦  π‘ π‘‘π‘Žπ‘‘π‘’  π‘Žπ‘›π‘‘  πœ€ = 1  

 

𝐷!,!𝛿!𝐢!𝛿𝑧! =  π‘…!  

 π›Ώ!𝐢!𝛿𝑧! 𝑑𝑧 =  

𝑅!𝐷!,!

𝑑𝑧  

 π›ΏπΆ!𝛿𝑧 𝑑𝑧 =   (

𝑅!𝐷!,!

𝑧 + π‘˜!)𝑑𝑧  

   

𝐢! 𝑧 =  π‘…!2𝐷!,!

𝑧! + π‘˜!𝑧 + π‘˜!  

 At  z  =  0,  CB  (0)  =  CB,hydrogel  

𝑅!2𝐷!,!

(0)! + π‘˜!(0)+ π‘˜! =  πΆ!,!!"#$%&'  

 π‘˜! =  πΆ!,!!"#$%&'  

 At  z  =  L,  CB(L)  =  CB,tissue  

𝑅!2𝐷!,!

(𝐿)! + π‘˜!𝐿 +  πΆ!,!!"#$%&' =  0  

 

Page 7: Case Study Assignment 2016

π‘˜! =  βˆ’𝐢!,!!"#$%&' βˆ’  

𝑅!2𝐷!,!

(𝐿)!

𝐿    

π‘˜! =  βˆ’𝐢!,!!"#$%&'

𝐿 βˆ’  π‘…!2𝐷!,!

𝐿  

   

 π‘ͺ𝑩 𝒛 =π‘Ήπ‘©πŸπ‘«π’”,𝑩

π’›πŸ βˆ’π‘ͺ𝑩,π’‰π’šπ’…π’“π’π’ˆπ’†π’

𝑳 +  π‘Ήπ‘©πŸπ‘«π’”,𝑩

𝑳 𝒛+ π‘ͺ𝑩,π’‰π’šπ’…π’“π’π’ˆπ’†π’    

 

Derivation  for  Ranibizumab:    

πœ€π›ΏπΆ!𝛿𝑑 =  π·!,!

𝛿!𝐢!𝛿𝑧! βˆ’ 𝑅!  

 π›ΏπΆ!𝛿𝑑 =  0   π‘ π‘‘π‘’π‘Žπ‘‘π‘¦  π‘ π‘‘π‘Žπ‘‘π‘’  π‘Žπ‘›π‘‘  πœ€ = 1  

   

𝐷!,!𝛿!𝐢!𝛿𝑧! =  π›Ό +  π›½π‘§  

 π›Ώ!𝐢!𝛿𝑧! 𝑑𝑧 =  

𝛼 +  π›½π‘§π·!,!

𝑑𝑧  

 π›ΏπΆ!𝛿𝑧 𝑑𝑧 =  

𝛼𝑧𝐷!,!

+𝛽𝑧!

2𝐷!,!+  π‘˜!   𝑑𝑧  

   

𝐢! 𝑧 =  π›Όπ‘§!

2𝐷!,!+  

𝛽𝑧!

6𝐷!,!+  π‘˜!𝑧 +  π‘˜!  

Determining  constants  at  the  boundary  conditions:  At  z  =  0,  CR  (0)  =  CR,hydrogel    

𝐢!,!!"#$%&' =  π›Ό(0)!

2𝐷!,!+  π›½(0)!

6𝐷!,!+  π‘˜!(0)+  π‘˜!  

 π‘˜! =  πΆ!,!!"#$%&'  

 At  z  =  L,  CR  (L)  =  CR,tissue  =  0    

Page 8: Case Study Assignment 2016

0 =  π›ΌπΏ!

2𝐷!,!+  

𝛽𝐿!

6𝐷!,!+  π‘˜!𝐿 +  πΆ!,!!"#$%&'  

 

βˆ’π‘˜!𝐿 =  π›ΌπΏ!

2𝐷!,!+  

𝛽𝐿!

6𝐷!,!+  πΆ!,!!"#$%&'  

 

π‘˜! =  βˆ’𝛼𝐿2𝐷!,!

βˆ’  π›½πΏ!

6𝐷!,!βˆ’  πΆ!,!!"#$%&'

𝐿  

   

π‘ͺ𝑹 𝒛 =  πœΆπ’›πŸ

πŸπ‘«π’”,𝑹+  

πœ·π’›πŸ‘

πŸ”π‘«π’”,π‘Ήβˆ’  

πœΆπ‘³πŸπ‘«π’”,𝑹

+  πœ·π‘³πŸ

πŸ”π‘«π’”,𝑹+  π‘ͺ!,!!"#$%&'

𝑳 𝒛+  π‘ͺ!,!!"#$%&'  

   4.)  Matlab  Code  and  Graph    Figure 1: Concentration profiles with respect to the depth of the hydrogel wall for Bevacizumab and Ranibizumab  

   5.  Bevacizumab  Flux:  

𝐹𝑙𝑒π‘₯ =  βˆ’𝐷!,!𝛿𝐢!𝛿𝑧

Page 9: Case Study Assignment 2016

𝛿𝐢!𝛿𝑧 =  

𝑅!𝐷!,!

𝑧 +  βˆ’𝐢!,!!"#$%&'

𝐿 βˆ’  π‘…!2𝐷!,!

𝐿  

 

𝐹𝑙𝑒π‘₯ =  βˆ’𝐷!,!𝑅!𝐷!,!

𝑧 +  βˆ’𝐢!,!!"#$%&'

𝐿 βˆ’  π‘…!2𝐷!,!

𝐿

At z = L, (this part can be substitute later)

𝐹𝑙𝑒π‘₯ = βˆ’π‘…!𝐿 +  π·!,! βˆ— 𝐢!,!!"#$%&'

𝐿 +  π‘…!𝐿2

𝑭𝒍𝒖𝒙 =   βˆ’π‘Ήπ‘©π‘³πŸ +  

𝑫𝒔,𝑩 βˆ— π‘ͺ!,!!"#$%&'𝑳  

 

𝐹𝑙𝑒π‘₯ =  βˆ’(7.943  x  10βˆ’7   ¡μg

π‘šπ‘š!𝑠)(0.72  mm)

2 +  4.1Γ—10!!mm

!

s βˆ— 12.351  Β΅ΞΌπ‘”/π‘šπ‘š!

0.72  π‘šπ‘š  

 

𝐹𝑙𝑒π‘₯ = πŸ•.πŸŽπŸ‘  π±πŸπŸŽ!πŸ’Β΅ΞΌπ 

π’Žπ’ŽπŸ β‹… 𝒔        Ranibizumab  Flux    

𝐹𝑙𝑒π‘₯ =  βˆ’𝐷!,!𝛿𝐢!𝛿𝑧

𝛿𝐢!𝛿𝑧 =  

𝛼𝑧𝐷!,!

+𝛽𝑧!

2𝐷!,!  βˆ’

𝛼𝐿2𝐷!,!

βˆ’  π›½πΏ!

6𝐷!,!βˆ’  πΆ!,!!"#$%&'

𝐿

𝐹𝑙𝑒π‘₯ =  βˆ’𝐷!,!𝛼𝑧𝐷!,!

+𝛽𝑧!

2𝐷!,!  βˆ’

𝛼𝐿2𝐷!,!

βˆ’  π›½πΏ!

6𝐷!,!βˆ’  πΆ!,!!"#$%&'

𝐿

At z = L,

𝐹𝑙𝑒π‘₯ =  βˆ’𝛼𝐿 βˆ’π›½πΏ!

2 +𝛼𝐿2 +  

𝛽𝐿!

6 +  π·!,! βˆ— 𝐢!,!!"#$%&'

𝐿

Page 10: Case Study Assignment 2016

𝑭𝒍𝒖𝒙 =  βˆ’πœ·π‘³πŸ

πŸ‘ βˆ’πœΆπ‘³πŸ +  

𝑫𝒔,𝑹 βˆ— π‘ͺ𝑹,π’‰π’šπ’…π’“π’π’ˆπ’†π’π‘³

𝐹𝑙𝑒π‘₯ =

 βˆ’βˆ’ 5.516  x  10βˆ’4 ¡μg

π‘šπ‘š4βˆ—π‘ !.!"!! 2

!βˆ’

3.972  x  10βˆ’4 ¡μgπ‘šπ‘š3βˆ—π‘ 

!.!"  !!

!+  

(6.7  x  10βˆ’5mm2

s )(!".!"#   !"!!!)

!.!"  !!

𝑭𝒍𝒖𝒙 =  πŸ.𝟏𝟎𝟐  π’™  πŸπŸŽ!πŸ‘  Β΅ΞΌπ’ˆ/π’Žπ’ŽπŸ/𝒔

6.    Time  of  Diffusion                

π‘₯! = 2𝑛𝐷!𝑑    

t  =   !!

!!!!  

 For  Bevacizumab:  π‘‘ = (!.!"#  !")!

!βˆ™!βˆ™(!.!"!"!!  !"!/!)  =  6321  s  =  1.76  hours  

 For  Ranibizumab: 𝑑 = (!.!"#  !")!

!βˆ™!βˆ™(!.!"!"!!!!!/!) = 3867 s = 1.07 hours

7.

Compared to Ranibizumab, Bevacizumab takes longer time to diffuse and has a smaller flux at the interface of the hydrogel and the vitreous fluid. Therefore, Bevacizumab is a better drug for this macular degeneration treatment.

 

Part  2.  

 

1.) Pharmacokinetic  model      

IV  

U  K  

T  

kb  

 RV  

kk  

kt  

ke  

Page 11: Case Study Assignment 2016

L = mass of Bevacizumab in IV [mg] = 100 mg B = mass of Bevacizumab in blood [mg] T = mass of Bevacizumab in tissue [mg] K = mass of Bevacizumab in kidney [mg] U = mass of Bevacizumab excreted [mg] D* = mass of Bevacizumab metabolized [mg] r = elution rate = 7.72 mL/min v = volume of IV bag = 1000 mL c = concentration of drug in IV = L/v = 100 mg/1000 mL = 0.1 mg/mL RV = rc =7.72 mL/min x 0.1 mg/mLx 60min/1h = 46.32[mg/h] kb = rate of movement of drug from tissue back into bloodstream = 0.00025 [mg/s] kt = rate of movement of drug into tissue = 0.082 [1/hr] kk = rate of movement of drug into kidney = 0.041 [1/hr] ke = rate of excretion of drug from kidney = 0.056 [1/hr] km = rate of metabolism of drug in tissue = 0.02 [1/hr] t = time since administration of dose [hr] VB = volume of blood = 5.5 L

thalf=drug elimination half life= 20 days Bthreshold= maximum mass of drug in blood for additional dose = 0.008mg/mL

Assumptions: β€’ The concentration of Bevacizumab in the IV reservoir and in the blood is constant β€’ No new dose is needed if concentration of drug is above 0.008 mg/mL in the

blood. β€’ There are 5.5 L of blood in the patient’s bloodstream. β€’ The IV reservoir has a 1000 mL volume. β€’ Flow rates are constant and unaffected by other bodily functions. β€’ Bevacizumab only enters through the IV. β€’ Bevacizumab diffuses completely into the bloodstream. β€’ Diffusion rate and porosity are constant across the bloodstream. β€’ The presence of Bevacizumab does not affect metabolism of Bevacizumab. β€’ Temperature and pH of the system are uniform and thus do not affect rates.

D*  km  

B  

Page 12: Case Study Assignment 2016

β€’ There is no drug in the blood initially (at t = 0).      IV:  πΆβ„Žπ‘Žπ‘›π‘”𝑒  π‘œπ‘“  π‘šπ‘Žπ‘ π‘   π‘œπ‘“

 Bevacizumab𝑖𝑛  πΌπ‘‰

=   π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  πΌπ‘‰ βˆ’   π‘€π‘Žπ‘ π‘   π‘œπ‘“  π΅π‘’π‘£π‘Žπ‘π‘–π‘§π‘’π‘šπ‘Žπ‘π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  π‘π‘™π‘œπ‘œπ‘‘π‘ π‘‘π‘Ÿπ‘’π‘Žπ‘š  

 βˆ†πΏ = βˆ’π‘š!  !"  !βˆ†π‘‘       β†’    

βˆ†!βˆ†!= βˆ’π‘…!      

 π’…𝑳𝒅𝒕 =  βˆ’𝑹𝑽  

 Blood:  πΆβ„Žπ‘Žπ‘›π‘”𝑒  π‘–𝑛  π‘šπ‘Žπ‘ π‘   π‘œπ‘“  

Bevacizumab  π‘–𝑛  π‘π‘™π‘œπ‘œπ‘‘

=

  π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  π‘π‘™π‘œπ‘œπ‘‘π‘ π‘‘π‘Ÿπ‘’π‘Žπ‘š βˆ’   π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  π‘‘𝑖𝑠𝑠𝑒𝑒 βˆ’

  π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  π‘˜π‘–𝑑𝑛𝑒𝑦 +   π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘Ÿπ‘’ βˆ’ π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  π‘π‘™π‘œπ‘œπ‘‘π‘ π‘‘π‘Ÿπ‘’π‘Žπ‘š    

 

βˆ†π΅ = π‘š!  !"  !βˆ†π‘‘ βˆ’π‘š!  !"  !βˆ†π‘‘ βˆ’π‘š!  !"  !βˆ†π‘‘ +π‘š!  !"  !βˆ†π‘‘               β†’                βˆ†π΅βˆ†π‘‘

= 𝑅! βˆ’ π‘˜!𝐡  βˆ’  π‘˜!𝐡 + π‘˜!

 π’…𝑩𝒅𝒕 =  π‘Ήπ‘½ βˆ’ π’Œπ’•π‘©βˆ’  π’Œπ’Œπ‘©+ π’Œπ’ƒ  

     

Tissue:  πΆβ„Žπ‘Žπ‘›π‘”𝑒  π‘–𝑛  π‘šπ‘Žπ‘ π‘   π‘œπ‘“    Bevacizumab𝑖𝑛  π‘‘𝑖𝑠𝑠𝑒𝑒

=   π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  π‘‘𝑖𝑠𝑠𝑒𝑒 βˆ’   π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘Ÿπ‘’ βˆ’ π‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  π‘π‘™π‘œπ‘œπ‘‘π‘ π‘‘π‘Ÿπ‘’π‘Žπ‘š

βˆ’   π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘šπ‘’π‘‘π‘Žπ‘π‘œπ‘™π‘–π‘§π‘’π‘‘  π‘–𝑛  π‘‘𝑖𝑠𝑠𝑒𝑒

   

βˆ†π‘‡ = π‘š!  !"  !βˆ†π‘‘ βˆ’π‘š!  !"  !βˆ†π‘‘ βˆ’π‘š!"#$%&'()"*βˆ†π‘‘       β†’      βˆ†π‘‡βˆ†π‘‘ = π‘˜!𝐡 βˆ’ π‘˜! βˆ’ π‘˜!𝑇  

 

Page 13: Case Study Assignment 2016

𝒅𝑻𝒅𝒕 =  π’Œπ’•π‘©βˆ’  π’Œπ’ƒ βˆ’  π’Œπ’Žπ‘»  

   Kidney:  

πΆβ„Žπ‘Žπ‘›π‘”π‘’  π‘–𝑛  π‘šπ‘Žπ‘ π‘   π‘œπ‘“  Bevacizumab𝑖𝑛  π‘–𝑛  π‘˜π‘–𝑑𝑛𝑒𝑦

=   π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumabπ‘’π‘›π‘‘π‘’π‘Ÿπ‘–π‘›π‘”  π‘˜π‘–𝑑𝑛𝑒𝑦 βˆ’   π‘€π‘Žπ‘ π‘   π‘œπ‘“  Bevacizumab𝑒π‘₯π‘π‘Ÿπ‘’π‘‘π‘–π‘œπ‘›  

 

βˆ†πΎ = π‘š!  !"  !βˆ†π‘‘ βˆ’π‘š!"#$!%!&βˆ†π‘‘       β†’      βˆ†πΎβˆ†π‘‘ = π‘˜!𝐡 βˆ’ π‘˜!𝐾

 π’…𝑲𝒅𝒕 =  π’Œπ’Œπ‘©βˆ’ π’Œπ’†π‘²  

 3.  Mass  of  Bevacizumab  in  the  blood  

   

𝑑𝐡𝑑𝑑 =  π‘…! βˆ’ π‘˜!𝐡 βˆ’  π‘˜!𝐡 + π‘˜!  

 π‘‘𝐡

𝑅! βˆ’ π‘˜!𝐡 βˆ’  π‘˜!𝐡 + π‘˜!=  π‘‘𝑑  

 π‘‘𝐡

𝑅! βˆ’ π‘˜!𝐡 βˆ’  π‘˜!𝐡 + π‘˜!=   𝑑𝑑  

   

(βˆ’1

π‘˜! +  π‘˜!) ln 𝑅! βˆ’ π‘˜!𝐡 βˆ’  π‘˜!𝐡 + π‘˜! =  π‘‘ + 𝑐  

 π‘™π‘› 𝑅! βˆ’ 𝐡 π‘˜! + π‘˜! + π‘˜! = βˆ’(π‘˜! + π‘˜!)(𝑑 + 𝑐)  

 π‘’!(!!!!!)(!!!) =  π‘…! βˆ’ 𝐡 π‘˜! + π‘˜! + π‘˜!  

 *simplify  left  side  

𝑒!(!!!!!)(!!!) =  π‘’!!(!!!!!)  π‘’!!(!!!!!)      

𝑒!!(!!!!!) = 𝑐!    

𝑒!(!!!!!)(!!!) =   𝑐!𝑒!!(!!!!!)    

𝑐!𝑒!!(!!!!!) =  π‘…! βˆ’ 𝐡 π‘˜! + π‘˜! + π‘˜!  

Page 14: Case Study Assignment 2016

 

𝐡 =  π‘…!  +  π‘˜! βˆ’ 𝑐!𝑒!! !!!!!

π‘˜! + π‘˜!

*Apply boundary conditions: when t=0, B=0

0 =  π‘…!  +  π‘˜! βˆ’ 𝑐!𝑒!

π‘˜! + π‘˜!

0 =  π‘…!  +  π‘˜! βˆ’ 𝑐!

π‘˜! + π‘˜!

𝑐! = 𝑅! +  π‘˜!

*Plug c1 back in

𝐡 =  π‘…!  +  π‘˜! βˆ’ 𝑅!  +  π‘˜! 𝑒!! !!!!!

π‘˜! + π‘˜!

𝑩 = (𝑹𝑽 + π’Œπ’ƒ)πŸβˆ’ 𝒆!𝒕 π’Œπ’Œ!π’Œπ’•π’Œπ’Œ + π’Œπ’•

   4.    

   

t  =  v/r  =  1000  mL/7.72  mL/min  =  130  min  =  2.17  hr  100  mg  dose  gives  a  drug  mass  flow  rate  of:    

𝑅! = 46.32[mg/h]    

Since  π΅ = (𝑅! + π‘˜!)!!!!! !!!!!

!!!!!

 

𝐡 = (46.32  π‘šπ‘”/β„Ž + 0.00025  π‘šπ‘”/β„Ž)1βˆ’ 𝑒!!.!"#! 0.041    !!!!!    !.!"#!!!!

0.041  β„Žπ‘Ÿ!! + 0.082  β„Žπ‘Ÿ!!

   

𝑩 = πŸ–πŸ–.𝟐  π’Žπ’ˆ      

Page 15: Case Study Assignment 2016

 

π΅π‘’π‘£π‘Žπ‘π‘–π‘§π‘’π‘šπ‘Žπ‘  π‘π‘œπ‘›π‘π‘’π‘›π‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›  π‘–𝑛  π‘π‘™π‘œπ‘œπ‘‘   =  88.2  π‘šπ‘”5500  π‘šπ‘™ = 𝟎.πŸŽπŸπŸ”

π’Žπ’ˆπ’Žπ’  

 5.    

𝑑!!"# = 20  π‘‘π‘Žπ‘¦π‘           π΅!"#$ = 0.008π‘šπ‘”π‘šπ‘™ βˆ— 5500  π‘šπ‘™ = 44.0  π‘šπ‘”  

 

π‘›π‘’π‘šπ‘π‘’π‘Ÿ  π‘œπ‘“  β„Žπ‘Žπ‘™π‘“  π‘™π‘–𝑓𝑒  π‘π‘¦π‘π‘™π‘’𝑠 =  π‘‘

𝑑!!"#  

 

π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›  π‘œπ‘“  π‘œπ‘Ÿπ‘–π‘”π‘–π‘›π‘Žπ‘™  π‘π‘œπ‘›π‘π‘’π‘›π‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›  π‘Ÿπ‘’π‘šπ‘Žπ‘–π‘›π‘–π‘›π‘” =𝐡!"#$𝐡  

 Therefore:  

Bsafe  =  B !!

!  =  B !

!

!!!!"#  where  x  is  the  number  of  half  life  cycles  

     

𝐡 βˆ—12

!!!!"#

= 𝐡!"#$      

12

!!!!"#

=𝐡!"#$  π΅  

 π‘‘

𝑑!!"#ln

12 = ln

𝐡!"#$  π΅  

 

𝑑 = ln𝐡!"#$  π΅ βˆ—

𝑑!!"#

ln 12  

   

𝑑 = ln  44.0π‘šπ‘”  88.2  π‘šπ‘” βˆ—

20  π‘‘π‘Žπ‘¦π‘ 

ln 12

 

 π’• = 𝟐𝟎  π’…π’‚π’šπ’”  

 Appendix:  code for generating graphs for Part I problem 4  part 1 %graph  concentrations  of  becvacizumab  and  ranibizumab  vs  depth  of  hydrogel  wall    close  all    

Page 16: Case Study Assignment 2016

figure    hold  on    %variables    L  =  .72;  %thickness  of  hydrogel  wall    Dsb  =  4.1e-­‐5;  %  bevacizumab  diffusion  constant    Rb  =  7.943e-­‐7;  %  bevacizumab  degradation  rate    Dsr  =  6.7e-­‐5;  %ranibizumab  diffusion  constant    alpha  =  3.972e-­‐4;  %constant  for  ranibizumab  degradation  rate    beta  =  -­‐5.516e-­‐4;  %constant  for  ranibizumab  degredation  rate    Cl  =  12.351;  %drug  concentration  in  hydrogel        %%%%%plotting    z  =  linspace(0,.72,100);    k1b  =  (-­‐Cl/L)-­‐((Rb*L)/(2*Dsb));    Cb  =  (Rb/(2*Dsb))*(z.^2)  +  k1b*z  +  Cl;    plot(z,Cb,'r')    k1r  =  ((-­‐alpha*L)/(2*Dsr))-­‐((beta*(L^2))/(6*Dsr))-­‐(Cl/L);    Cr  =  ((alpha/(2*Dsr))*(z.^2))+((beta/(6*Dsr))*(z.^3))  +  (k1r*z)  +  Cl;    plot(z,Cr,'b')    axis([0  0.72  0  12.3531])    title('Concentration  of  Bevacizumab  and  Ranibizumab  vs  depth  in  hydrogel')        xlabel('depth  into  hydrogel  wall  [mm]')    ylabel('drug  concentration  [ug/mm^3]')    legend('Bevacizumab','Ranibizumab')    grid  on    hold  off    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%