1
BACKGROUND & SUMMARY RESULTS AND DISCUSSION NEW RHODOCOCCUS AND ARTHROBACTER PHAGES: ANNOTATION, LYSOGENS, REGULATORY ELEMENTS AND UNUSUAL SEQUENCE COVERAGE BEHAVIOR WITHIN CLUSTER AT. Carnegie Mellon University, Mellon College of Science 0 ACKNOWLEDGEMENTS • HHMI SEAPHAGES Program • Pi2sburgh Bacteriophage Ins=tute • phages.db • Daniel Russell (U.Pi2sburgh): Illumina sequencing of BeatusComenden= Leslie Chen, Holly Furnari, Tianyu Gu, Alicia C Hugge2, Erin W Kavanagh, Raashmi Krishnasamy, Kendal L Krivinko, Noel Lau, Mason D Miles, Ruhani K Mumick, Alex G Muralles, Aru Rajeevan, Sarah L Simon, Noelle Toong, Siyao Wang, Yue Xu, Nan Zhang, Zachary Zumbo, Jonathan Jarvik, A. Javier Lopez, Swarna Mohan G) Arthrobacter Phage BeatusComenden=: Ion Torrent read distribu=on does not exhibit strand bias, although Illumina reads are strongly biased to bo2om strand as for KitKat and KellEzio Forward reads Reverse reads Analysis of IonTorrent Reads in CodonCode Aligner. Average Read length 200 bp Average Coverage: 248.6 Candidate Promoters and Possible Regulatory Elements Near Lysogeny Genes of UhSalsa E) Rhodoccocus phage UhSalsa is temperate UhSalsa lysogens release infec=ous par=cles: R. Erythropolis lawns poured over bacterial streaks Lysogen 1 streak R. erythropolis streak UhSalsa lysogens are immune to UhSalsa and related CA phages: Spot tests (1) (2) UhSalsa lysogens contain UhSalsa DNA: PCR Analysis (3) 4 Rounds of Colony Purifica=on Cells Exhibit Immunity Cells Contain Phage DNA Cells Release Infec=ous Par=cles Candidate Lysogen 250 500 750 1000 1500 1. Lysogen 1 2. Lysogen 2 3. UhSalsa phage 4. R. erythropolis (nonlysogen) D) 10 -1 10 -2 10 -3 10 -4 R. erythropolis (non-lysogen) Lysogen 1 Lysogen 2 Gene 37 PCR M Gene 51 PCR 1 2 3 4 1 2 3 4 Bacteriophages are the most abundant biological entities on earth, with important ecological impact as well as biomedical applications. To improve our understanding of their biology and evolution, we searched for new phages that infect Actinobacterial hosts Rhodococcus erythropolis or Arthrobacter sp. Arthrobacter has potential applications in bioremediation, whereas Rhodococcus can compromise wastewater treatment plants but has potential applications as a whole-cell catalyst. • We discovered 3 Rhodococcus phages and 9 Arthrobacter phages, which we sequenced on the Ion Torrent PGM platform (Panel A). One Rhodococcus phage (UhSalsa) and one Arthrobacter phage (Swenson) were also sequenced on the Illumina Platform and assembled at University of Pittsburgh. These two genomes were completely annotated (Panels B and C). The remainder were assembled using SPades and partially annotated pending sequence finishing (Panel A). • We investigated Rhodococcus phage UhSalsa in more detail, confirming experimentally that it is a temperate phage (Panel D) and identifying candidate transcriptional elements associated with its integrase, excisionase and repressor genes (Panels E and F). • Although the other two known members of cluster AT exhibited extremely biased read coverage upon Illumina sequencing (>95% reverse strand: phagesdb.org), our closely related phage BeatusComendenti (Panel A) did not exhibit strand coverage bias in IonTorrent sequencing (Panel G). However, sequencing the same DNA sample on the Illumina platform (Daniel Russell, U. Pittsburgh) resulted in the same bias as for KitKat and KellEzio (not shown). This suggests that a feature or modification of the cluster AT genomes results in a platform-specific sequencing bias. B) Arthrobacter Phage Swenson: Genome Annota=on Glimmer, GeneMark and human annota=on in DNAMAster Func=ons from NCBI BLAST, CDD, HHPred Rhodococcus Phage UhSalsa: Genome Annota=on Glimmer, GeneMark and human annota=on in DNAMAster Func=ons from NCBI BLAST, CDD, HHPred C) Terminators for Rightward and Lefward Transcrip=on Flank the Integrase and Excisase Genes at the Center of UhSalsa Genome F) What is the relevant genome modification or feature that causes this platform-specific behavior of AT phage genomes? * 29 30 31 28 27 32 Excisase Integrase * * A) Phages Isolated in this Study Phage Name Genome Size (bp) Most similar phage (NCBI BLAST) % Identity Cluster Morphotype BingBing 43415 Wayne 98 AK Siphoviridae Friendshipgu 42870 Vulture 97 AK Siphoviridae Siphoviridae Siphoviridae Siphoviridae Siphoviridae Siphoviridae Myoviridae Siphoviridae ComptonP 58917 Gordon 92 AU BuchananBCBio 58919 Gordon 92 AU ArhuroReed 69991 PrincessTrina 99 AR Hongidius 70257 PrincessTrina 99 AR Swenson 15680 Sandman 97 AN Satisfachen 51297 BarretLemon 98 AO Beatus Comendenti 58762 KitKat 99 AT UhSalsa 46539 Rhodalysa 99 CA IngentiaLocuti 46438 Rhodalysa 99 CA Amici 46510 Rhodalysa 98 CA Siphoviridae Siphoviridae Siphoviridae * Kitkat: 99% identity over 98% coverage; KellEzio: 98% identity over 95% coverage * Excisase stop codon gp31 stop codon gttgtga cagccgcaga gcagatcacagcagggg cagtagaagagaagctc gtaaccgcttgactgcg cccgacctgtaaccccc tggaacgcaaaaaagcc cccctcccggttaaggg aggggggccaggggtgt tgcta gaacagagc gp28 stop codon Integrase stop codon aacctggtttga cacgatt ccccctcccttaaccggga gggggttttcgtcgttta a gaggctaggcgttcctcta cgtcacctgggaacttgat ctcggtctggagagcacct Rightward transcription terminator Leftward transcription terminator * * Sequences shared upstream of the Integrase and Repressor ORFs. • Possible regulatory elements for control of lysogeny? Conserved among wide range of Rhodococcus phages. TTGCGA(N 15-18 )tgTANANT(N 3-9 )YR Similarity to Actinomycete σ A Promoters (“housekeeping”) 1,2 Similarity to Actinomycete σ H Promoters (responses to heat, oxidative stress) 1,2 • Is excision of UhSalsa prophage induced by heat or oxidative stress? Transcription Start Point -35 -10 -35 -10 GGGAAYA-(N 15-20 )-CGTT(N 6-9 )YR 1. Engels et al (2004) Mol Microbiol 52:285-302 2. Patek M. and Nesvera J. (2011) J. Biotechnol 154:101-113 • Is integration vs excision controlled by promoter competition and switching? Integration separates the Integrase ORF from the σ A promoter but not σ H , so Integrase can be expressed for excision under stress conditions Stress: σ H promoters active Excisase + Integrase2 Excision No stress: σ A promoters active Repressor + Integrase1 Integration Excisase transcript? Integrase transcript 1? Repressor transcripts? Integrase transcript 2? SD2+GTG initiates translation in same frame. Integrase domain is unaffected Start1 SD for Integrase Start2 -10 -35 -10 -35 -10 -35 -10 -35 GATG CCAACGTACGATAGATCCATGCGCGTG ATAGGCCGACTGAGAAT -35 -10 Predicted attP integration site

Carnegie+Mellon+University,+Mellon+College+of+Science...BACKGROUND+&+SUMMARY+ RESULTS+AND+DISCUSSION+ NEW$RHODOCOCCUS$AND$ARTHROBACTERPHAGES:$ANNOTATION,$LYSOGENS,$REGULATORY$ ELEMENTS$AND$UNUSUAL$SEQUENCE

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Carnegie+Mellon+University,+Mellon+College+of+Science...BACKGROUND+&+SUMMARY+ RESULTS+AND+DISCUSSION+ NEW$RHODOCOCCUS$AND$ARTHROBACTERPHAGES:$ANNOTATION,$LYSOGENS,$REGULATORY$ ELEMENTS$AND$UNUSUAL$SEQUENCE

BACKGROUND  &  SUMMARY   RESULTS  AND  DISCUSSION  

NEW  RHODOCOCCUS  AND  ARTHROBACTER  PHAGES:  ANNOTATION,  LYSOGENS,  REGULATORY  ELEMENTS  AND  UNUSUAL  SEQUENCE  COVERAGE  BEHAVIOR  WITHIN  CLUSTER  AT.  

Carnegie  Mellon  University,  Mellon  College  of  Science

0

ACKNOWLEDGEMENTS  •  HHMI  SEA-­‐PHAGES  Program  •  Pi2sburgh  Bacteriophage  Ins=tute  •  phages.db  •  Daniel  Russell  (U.Pi2sburgh):  Illumina  sequencing  of  BeatusComenden=  

Leslie  Chen,  Holly  Furnari,  Tianyu  Gu,  Alicia  C  Hugge2,  Erin  W  Kavanagh,  Raashmi  Krishnasamy,  Kendal  L    Krivinko,  Noel  Lau,  Mason  D  Miles,  Ruhani  K  Mumick,  Alex  G  Muralles,  Aru  Rajeevan,  Sarah  L  Simon,  Noelle  Toong,  Siyao  Wang,  Yue  Xu,  Nan  Zhang,  Zachary  Zumbo,  Jonathan  Jarvik,  A.  Javier  Lopez,  Swarna  Mohan  

G)  Arthrobacter  Phage  BeatusComenden=:  Ion  Torrent  read  distribu=on  does  not  exhibit  strand  bias,  although  Illumina  reads  are  strongly  biased  to  bo2om  strand  as  for  KitKat  and  KellEzio  

Forward  reads   Reverse  reads  Analysis  of  IonTorrent  Reads  in  CodonCode  Aligner.      Average  Read  length  200  bp    Average  Coverage:  248.6  

Candidate  Promoters  and  Possible  Regulatory  Elements  Near  Lysogeny  Genes  of  UhSalsa    

E)  

Rhodoccocus  phage  UhSalsa  is  temperate  

UhSalsa  lysogens  release  infec=ous  par=cles:  R.  Erythropolis  lawns  poured  over  bacterial  streaks  

Lysogen  1  streak   R.  erythropolis  streak  

UhSalsa  lysogens  are  immune  to  UhSalsa    and  related  CA  phages:    Spot  tests  (1)  

(2)

 UhSalsa  lysogens  contain  UhSalsa  DNA:      PCR  Analysis    (3)

4  Rounds  of  Colony  Purifica=on  

Cells  Exhibit      Immunity  

Cells  Contain  Phage  DNA  

Cells  Release  Infec=ous  Par=cles  

Candidate  Lysogen  

250

500 750

1000 1500

 1.  Lysogen  1  2.  Lysogen  2  3.  UhSalsa  phage  4.  R.  erythropolis              (non-­‐lysogen)  

D)

10-1

10-2

10-3

10-4

R. erythropolis (non-lysogen)

Lysogen 1 Lysogen 2

Gene  37  PCR  M  

Gene  51  PCR  1 2 3 4 1 2 3 4

Bacteriophages are the most abundant biological entities on earth, with important ecological impact as well as biomedical applications. To improve our understanding of their biology and evolution, we searched for new phages that infect Actinobacterial hosts Rhodococcus erythropolis or Arthrobacter sp. Arthrobacter has potential applications in bioremediation, whereas Rhodococcus can compromise wastewater treatment plants but has potential applications as a whole-cell catalyst. • We discovered 3 Rhodococcus phages and 9 Arthrobacter phages, which we sequenced on the Ion Torrent PGM platform (Panel A). One Rhodococcus phage (UhSalsa) and one Arthrobacter phage (Swenson) were also sequenced on the Illumina Platform and assembled at University of Pittsburgh. These two genomes were completely annotated (Panels B and C). The remainder were assembled using SPades and partially annotated pending sequence finishing (Panel A). • We investigated Rhodococcus phage UhSalsa in more detail, confirming experimentally that it is a temperate phage (Panel D) and identifying candidate transcriptional elements associated with its integrase, excisionase and repressor genes (Panels E and F). • Although the other two known members of cluster AT exhibited extremely biased read coverage upon Illumina sequencing (>95% reverse strand: phagesdb.org), our closely related phage BeatusComendenti (Panel A) did not exhibit strand coverage bias in IonTorrent sequencing (Panel G). However, sequencing the same DNA sample on the Illumina platform (Daniel Russell, U. Pittsburgh) resulted in the same bias as for KitKat and KellEzio (not shown). This suggests that a feature or modification of the cluster AT genomes results in a platform-specific sequencing bias.

B)   Arthrobacter  Phage  Swenson:  Genome  Annota=on  Glimmer,  GeneMark  and  human  annota=on  in  DNAMAster  

Func=ons  from  NCBI  BLAST,  CDD,  HHPred  

Rhodococcus  Phage  UhSalsa:    Genome  Annota=on  Glimmer,  GeneMark  and  human  annota=on  in  DNAMAster  

Func=ons  from  NCBI  BLAST,  CDD,  HHPred  

C)  

Terminators  for  Rightward  and  Lefward  Transcrip=on  Flank  the  Integrase  and  Excisase  Genes  at  the  Center  of  UhSalsa  Genome    

F)  

What is the relevant genome modification or feature that causes this platform-specific behavior of AT phage genomes?

* 29 30

31 28 27

32

Excisase Integrase

* *

A)   Phages  Isolated  in  this  Study  

Phage Name Genome Size (bp)

Most similar phage (NCBI BLAST)

% Identity Cluster Morphotype

BingBing 43415 Wayne 98 AK

Siphoviridae

Friendshipgu 42870 Vulture 97 AK Siphoviridae

Siphoviridae

Siphoviridae

Siphoviridae

Siphoviridae

Siphoviridae

Myoviridae

Siphoviridae

ComptonP 58917 Gordon 92 AU

BuchananBCBio 58919 Gordon 92 AU

ArhuroReed 69991 PrincessTrina 99 AR

Hongidius 70257 PrincessTrina 99 AR

Swenson 15680 Sandman 97 AN

Satisfachen 51297 BarretLemon 98 AO

Beatus Comendenti 58762 KitKat 99 AT

UhSalsa 46539 Rhodalysa 99 CA

IngentiaLocuti 46438 Rhodalysa 99 CA

Amici 46510 Rhodalysa 98 CA

Siphoviridae

Siphoviridae

Siphoviridae

* Kitkat: 99% identity over 98% coverage; KellEzio: 98% identity over 95% coverage

*

Excisase stop codon

gp31 stop codon

gttgtgacagccgcagagcagatcacagcaggggcagtagaagagaagctcgtaaccgcttgactgcgcccgacctgtaaccccctggaacgcaaaaaagcccccctcccggttaagggaggggggccaggggtgttgctagaacagagc

gp28 stop codon

Integrase stop codon

aacctggtttgacacgattccccctcccttaaccgggagggggttttcgtcgtttaagaggctaggcgttcctctacgtcacctgggaacttgatctcggtctggagagcacct

Rightward transcription terminator

Leftward transcription terminator * *

Sequences shared upstream of the Integrase and Repressor ORFs.

• Possible regulatory elements for control of lysogeny?

Conserved among wide range of Rhodococcus phages.

TTGCGA(N15-18)tgTANANT(N3-9)YR Similarity to Actinomycete σA Promoters (“housekeeping”) 1,2

Similarity to Actinomycete σH Promoters (responses to heat, oxidative stress) 1,2

• Is excision of UhSalsa prophage induced by heat or oxidative stress?

Transcription Start Point -35 -10

-35 -10 GGGAAYA-(N15-20)-CGTT(N6-9)YR

1. Engels et al (2004) Mol Microbiol 52:285-302 2. Patek M. and Nesvera J. (2011) J. Biotechnol 154:101-113

• Is integration vs excision controlled by promoter competition and switching?

Integration separates the Integrase ORF from the σA promoter but not σH, so Integrase can be expressed for excision under stress conditions

Stress: σH promoters active Excisase + Integrase2 Excision

No stress: σA promoters active Repressor + Integrase1 Integration

Excisase transcript?

Integrase transcript 1?

Repressor transcripts?

Integrase transcript 2? SD2+GTG initiates translation in same frame. Integrase domain is unaffected

Start1 SD for Integrase

Start2

-10

-35

-10

-35

-10 -35

-10

-35

GATGCCAACGTACGATAGATCCATGCGCGTGATAGGCCGACTGAGAAT

-35

-10

Predicted attP integration site