62
10 th CaRLa Winter School 2017 Heidelberg February 1217, 2017 Final Program

Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

10th CaRLa Winter School 2017 Heidelberg

February 12-­17, 2017

Final Program

Page 2: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Welcome to the 10th CaRLa Winter School Welcome to the CaRLa Winter School in Heidelberg, presented by CaRLa, our joint research laboratory of BASF and University of Heidelberg! With this event, we will foster the international scientific exchange between established and young researches in the field of homogeneous catalysis. The conference takes place from February 12-­17, 2017 at the German-­American-­Institute downtown Heidelberg, within walking distance to the old town. Our scientific program consists of 1 Keynote Lecture, 8 lectures, 8 teaching sessions and poster presentations. There will be a morning and an afternoon session, whereby unlike at most conferences, only the first part of each session will be a scientific lecture, while the second part has a more educational focus. We provide a prolonged lunch break between the two sessions for individual use or further meetings between the participants, except on Tuesday (February 14), were we will have a lunch together at the conference venue. Every participant will have the opportunity to present his poster during the poster sessions and a light dinner will be provided on Sunday, Monday and Wednesday. Tuesday evening is also for individual use or meeting with other participants. We encourage the scientific exchange between all participants during the week and therefore will leave enough room for discussions and also provide a social event for this purpose (visit of the Kulturbrauerei in the old town of Heidelberg) The conference is fully sponsored by BASF and we will have the opportunity for making an excursion to BASF on Thursday afternoon. If you need any help or have questions on the Winter School and your stay in Heidelberg, please do not hesitate to contact us. We wish you all a stimulating and inspiring stay in Heidelberg at our CaRLa Winter School and let´s have a great time!

Thomas Schaub A. Stephen K. Hashmi

Page 3: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

INDEX

Page

Welcome Message

Index

Program

Lecture Sessions

Poster Abstracts

List of Lecturers

List of Participants

Hotel Map

Map of Lunch Venues

2

3

4

9

26

56

57

61

62

Page 4: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

4

Page 5: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

SUNDAY • 12th February

Until 16:00 Arrival and Welcome Coffee

16:30 Opening Ceremony A. Stephen K. Hashmi

17:00 Keynote Lecture BASF Thomas Schaub

18:00 Light Dinner and Get Together

MONDAY • 13th February

09:00 Session Carsten Bolm

10:00 Coffee Break

10:15 Session Carsten Bolm

11:15 Coffee Break

11:30 Flash Poster Presentation

12:00 Free Time (Lunch)

14:30 Session Nicolai Cramer

15:30 Coffee Break

15:45 Session Nicolai Cramer

16:45 Coffee Break

17:00 Flash Poster Presentation

18:00 Light Dinner

5

Page 6: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

TUESDAY • 14th February

09:00 Session Tohru Yamada

10:00 Coffee Break

10:15 Session Tohru Yamada

11:15 Coffee Break

11:30 BASF Career-Lunch and Poster Session

14:30 Session Thorsten Bach

15:30 Coffee Break

15:45 Session Thorsten Bach

16:45 Coffee Break

17:00 Flash Poster Presentation

18:00 Free Time

6

Page 7: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

WEDNESDAY • 15th February

09:00 Session Michael J. Krische

10:00 Coffee Break

10:15 Session Michael J. Krische

11:15 Coffee Break

11:30 Flash Poster Presentation

12:00 Free Time (Lunch)

14:30 Session Sylviane Sabo-Etienne

15:30 Coffee Break

15:45 Session Sylviane Sabo-Etienne

16:45 Coffee Break

17:00 Flash Poster Presentation

18:00 Light Dinner

7

Page 8: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

THURSDAY • 16th February

09:00 Session A. Stephen K. Hashmi

10:00 Coffee Break

10:15 Session A. Stephen K. Hashmi

11:15 Lunch and Poster Session

13:00 Excursion to BASF

18:00 Symposium Dinner

FRIDAY • 17th February

09:00 Session Bernd Plietker

10:00 Coffee Break

10:15 Session Bernd Plietker

11:15 Coffee Break

11:30 Poster Prize Ceremony and Closing Remarks

12:00 Departure

8

Page 9: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Lecture Sessions

9

Page 10: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

CaRLa-­ Basic Research for Industrial Applications Thomas Schaub*a,b

aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-­69120

Heidelberg. bBASF SE, Synthesis and Homogeneous Catalysis, D-­67056

Ludwigshafen

e-­mail: [email protected]

CaRLa is a collaborative laboratory jointly financed by BASF and the University of Heidelberg. We are working on leapfrog innovations for industrial relevant reactions through intensive exchange between basic academic and applied industrial research. This will be exemplified on four projects presented in this lecture: a) sodium acrylate from CO2, 1 b) reductive amination of ketones with NH3/H2, 2 c) phosgene free synthesis of isocyanates using CO2

3 and d) selective dehydroperoxidation.4 1 a) Eur. J. Org. Chem. 2015, 32, 7122-­7130;; b) Catal. Today 2017, 281,

379-­386;; c) ChemCatChem, 2017, DOI: 10.1002/ccts.201601150 2 Adv. Synth. Catal. 2016, 358, 358-­363. 3 a) ChemSusChem, 2016, 9, 1586-­1590;; b) Appl. Organomet. Chem. 2017, in

press. 4 Inorg. Chem. 2017, in press.

10

Page 11: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Mechanochemical activation in catalysis and asymmetric synthesis

Carsten Bolm*

Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany

e-­mail: [email protected]­aachen.de

Various reactions benefit from mechanochemical activation modes.1 Illustrative examples are asymmetric Michael additions onto nitroolefins,2 diastereoselective alkylations of nickel complexes,3 solventless rhodium-­ and iridium-­catalyzed C–H-­bond functionalizations4,5 including catalyst preparations,6 enzymatic kinetic resolutions,7 and lignin degradations.8

References

1. James, S. L.;; Collier, P.;; Parkin, I.;; Hyett, G.;; Braga, D.;; Maini, L.;; Jones, B.;;

Friscic, T.;; Bolm, C.;; Krebs, A.: Mack, J.;; Waddell, D. C.;; Shearouse, W. C.;;

Orpen, G.;; Adams, C.;; Steed, J. W.;; Harris, K. D. M. Chem. Soc. Rev. 2012, 41,

413 -­ 447. 2. Jörres, M.;; Mersmann, S.;; Raabe, G.;; Bolm, C. Green Chem.

2013, 15, 612 -­ 616. 3. Jörres, M.;; Aceña, J. L.;; Soloshonok, V. A.;; Bolm, C.

ChemCatChem 2015, 7, 1265 -­ 1269. 4. Hermann, G. N.;; Becker, P.;; Bolm, C.

Angew. Chem. Int. Ed. 2015, 54, 7414 -­ 7417. 5. Hermann, G. N.;; Becker, P.;;

Bolm, C. Angew. Chem. Int. Ed. 2016, 55, 3781 -­ 3784 6. Hernandez, J. G.,

Bolm, C. Chem. Commun. 2015, 51, 12582 -­ 12584. 7. Hernández, J. G.;;

Frings, M.;; Bolm, C. ChemCatChem 2016, 8, 1769 -­ 1772 8. Kleine, T.;;

Buendia. J.;; Bolm, C. Green Chem. 2013, 15, 160 -­ 166.

11

Page 12: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

The beauty and mystery of sulfur chemistry Carsten Bolm*

Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany

e-­mail: [email protected]­aachen.de

The chemistry of

S will be presented by facts and reaction details to be discussed.1 . References

1. As recommended pre-­information please see:

http://www.youtube.com/watch?v=TOg_koMvrOA

http://www.youtube.com/watch?v=k1MpKj_yCnk

http://www.youtube.com/watch?v=w4AWq8i2Scg

https://www.youtube.com/watch?v=y37EzVzasG4

12

Page 13: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Chiral Cyclopentadienyl Ligands – Design & Catalysis Nicolai Cramer*a

aLaboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA,

BCH 4305, CH-­1015 Lausanne

e-­mail: [email protected]

Application of chiral derivatives of the versatile and ubiquitous cyclopentadienyl ligand has long remained an underdeveloped area in asymmetric catalysis. In this presentation recent exciting results that demonstrate their enormous potential for diverse type of reactions are highlighted.1 I will discuss design principles and strategies of different ligand families and give an overview of their complexation chemistry. An in depth examination of the potential of derived Cpx-­metal complexes in catalytic enantioselective reactions will be provided. Current limitations and potential strategies addressing them to advance the field further will be as provided.

1 a) C. G. Newton, D. Kossler, N. Cramer, J. Am. Chem. Soc. 2016, 138, 3935;;

b) B. Ye, N. Cramer, Acc. Chem. Res. 2015, 48, 1308.

13

Page 14: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Failed Experiment or New Discovery? Learning from the Unexpected

Nicolai Cramer*a

aLaboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA,

BCH 4305, CH-­1015 Lausanne

e-­mail: [email protected]

In experimentally sciences like synthetic organic chemistry and transition-­metal catalysis, reactions fail from time to time. One considers an experiment as failed because the flask broke or it yielded a different product. However, when not the expected results are obtained, one has the chance to learn and to understand what actually happened. Occasionally, this offers a great chance to push your science to a new direction and to readjust the research goals. I will discuss with examples from my laboratory how one can understand and turn investigations of unexpected results into the one eye-­opening experiment leading to new hypotheses. This could be turning a rather annoying side reaction into a valuable transformation. Furthermore, the question whether working “dirty” is a good or a bad thing by will be discussed with examples of catalytic impurities.

14

Page 15: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Silver-­Catalyzed C-­C Bond Formation with Carbon Dioxide Tohru Yamada*a

a Department of Chemistry, Keio University

e-­mail: [email protected]

A silver / DBU system was developed for the effective catalyst to activate alkyne derivatives as p-­Lewis acid. The reaction of propargylic alcohols with carbon dioxide afforded the corresponding cyclic carbonates under mild conditions.1,2,3 This catalyst system was successfully applied to ketone derivatives containing an alkyne group to afford the corresponding lactone derivatives4 or dihydroisobenzofuran derivatives.5 The C-­C triple bond activation by silver catalyst was also applied to the reaction of propargylic amine derivatives with carbon dioxide to produce benzoxazin-­2-­one6 via 6-­exo-­dig cyclization, or via further rearrangement to afford 4-­hydroxyquinolin-­2(1H)-­one and tetramic acid derivatives7,8 .

1 W. Yamada, Y. Sugawara, H.-­M. Chen, T. Ikeno, T. Yamada, Eur. J. Org. Chem. 2007, 2604-­2607. 2 Y. Sugawara, W. Yamada, S. Yoshida, T. Ikeno, T. Yamada, J. Am. Chem. Soc. 2007, 129, 12902-­12903. 3 S. Yoshida, K. Fukui, S. Kikuchi, T. Yamada, J. Am. Chem. Soc. 2010, 132, 4072-­4073. 4 S. Kikuchi, K. Sekine, T. Ishida, T. Yamada, Angew. Chem. Int. Ed. 2012, 51, 6989-­6992. 5 K. Sekine, A. Takayanagi, S. Kikuchi, T. Yamada, Chem. Commun. 2013, 49, 11320-­11322. 6 T. Ishida, S. Kikuchi, T. Tsubo, T. Yamada, Org. Lett. 2013, 15, 848-­851. 7 T. Ishida, S. Kikuchi, T. Yamada, Org. Lett. 2013, 15, 3710-­3713. 8 T. Ishida, R. Kobayashi, T. Yamada, Org. Lett. 2015, 17, 5706-­5709.

R2

XCO

O

R1R1

Ag+

15

Page 16: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Microwave Effect on Enantioselective Catalysis Tohru Yamada*a

a Department of Chemistry, Keio University

e-­mail: [email protected]

Microwave irradiation for organic syntheses is of great advantage to shorten the reaction time and to improve the chemical yields as well as selectivities compared with the convective heating. The acceleration mechanism was in general assumed to be a simple thermal effect, though some remarkable effects cannot be explained. We reported several reaction systems1,2,3,4 accelerated with microwave irradiation without any loss of enantioselectivity. Based on the Arrhenius equation, the enantioselectivity is described as a function of the reaction temperature. The observed MW enhancement on enantiselective catalyses was strongly suggested to be not caused by simple heating, but microwave effects directly on the substrate molecule should be considered.

ΔΔH

lnK = −R

1T

+RΔΔS

= ln100+%ee100− %ee

1 S. Kikuchi, T. Tsubo, T. Ashizawa, T. Yamada, Chem. Lett. 2010, 39, 574-­ 575. 2 K. Nushiro, S. Kikuchi, T. Yamada, Chem. Lett. 2013, 42, 165-­167. 3 S. Tashima, K. Nushiro, K. Saito, T. Yamada, Bull. Chem. Soc. Jpn. 2016, 89, 833-­835. 4 K. Nushiro, S. Kikuchi T. Yamada, Chem. Commun., 2013, 49, 8371-­8373.

16

Page 17: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

[2+2] Photocycloaddition Reactions: Applications in Natural Product Synthesis and the Quest

for Enantioselective Catalysis

Thorsten Bacha

a Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, D-­85747 Garching

e-­mail: [email protected]

[2+2] Photocycloaddition reactions represent undisputedly the most important reaction class in photochemistry.1 The creation of up to four new stereogenic centers in a single step and the further use of the formed cyclobutane rings – either directly or after appropriate ring opening – are hallmarks of this powerful transformation. In recent years, our group has employed stereoselective [2+2] photocycloaddition reactions for the synthesis of various target compounds. In addition, the issue of enantioselectivity2 has been intensively addressed. The presentation discusses the background of our studies and provides the latest results of our research efforts in this area.

1 S. Poplata, A. Tröster, Y.-­Q. Zou, T. Bach, Chem. Rev. 2016, 116, 9748-­9815. 2 R. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed. 2015,

54, 3872-­3890.

17

Page 18: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

[2+2] Photocycloaddition Reactions: Understanding the Key Mechanistic Features and the

Selectivity Pattern

Thorsten Bacha

a Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, D-­85747 Garching

e-­mail: [email protected]

The training session will mainly deal with the [2+2] photocycloaddition reaction and its mechanism. A focus will be

on the reaction of a,b-­unsaturated carbonyl compounds in an intra-­ and intermolecular fashion. 1 Applications to natural product total synthesis2 will be discussed and the stereo-­selectivity pattern of the reaction will be outlined. There will be a set of exercises to be solved by the participants.

1 (a) J. P. Hehn, C. Müller, T. Bach, in Handbook of Synthetic Photochemistry

(Eds.: A. Albini, M. Fagnoni), Wiley-­VCH, Weinheim 2010, 171-­215;; (b) S.

Poplata, A. Tröster, Y.-­Q. Zou, T. Bach, Chem. Rev. 2016, 116, 9748-­9815. 2 T. Bach, J. P. Hehn, Angew. Chem. Int. Ed. 2011, 50, 1000-­1045.

18

Page 19: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Hydrogen-­Mediated C-­C Bond Formation Michael J. Krische

University of Texas at Austin, Department of Chemistry (A5300)

AUSTIN, TX 78712-­0165

e-­mail: [email protected]

Merging the characteristics of hydrogenation and carbonyl addition, a broad, new family of catalytic C-­C bond formations has been developed. These processes are enantio-­ and site-­selective and preclude the use of stoichiometric organometallic reagents. Using these methods, total syntheses of several iconic type I polyketide natural products were undertaken, availing routes significantly more concise than previously possible.

Reviews & Perspectives: (a) Feng, J.;; Kasun, Z. A.;; Krische, M. J. J. Am. Chem.

Soc. 2016, 138, 5467. (b) Ketcham, J. M.;; Shin, I.;; Montgomery, T. P.;; Krische,

M. J. Angew. Chem. Int. Ed. 2014, 53, 9142.

19

Page 20: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Dihydrogen and Polyfunctional ligands: useful tools for applications in catalysis Sylviane Sabo-­Etienne

Laboratoire de Chimie de Coordination du CNRS (LCC-­CNRS),

University of Toulouse, 205 route de Narbonne, BP 44099, 31077

Toulouse Cedex 4, FRANCE

e-­mail: sylviane.sabo@lcc-­toulouse.fr

Most of the time, catalytic transformations require access to one or two vacant sites around the metal center. Labile or hemilabile ligands are thus interesting bricks to produce unsaturated species keeping in mind stability factors with respect to activity. In this context, dihydrogen ligands and polyfunctionnal ligands displaying an agostic interaction can play a major role in various catalytic processes, allowing in particular the use of milder conditions. During this lecture, selected examples will be detailed to emphasize some key features of these potentially unsaturated species in connection with applications in the fields of energy and catalysis.

20

Page 21: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Catalysis and sigma complexes Sylviane Sabo-­Etienne

Laboratoire de Chimie de Coordination du CNRS (LCC-­CNRS),

University of Toulouse, 205 route de Narbonne, BP 44099, 31077

Toulouse Cedex 4, FRANCE

e-­mail: sylviane.sabo@lcc-­toulouse.fr

Oxidative addition and reductive elimination are two pathways encountered in a wide variety of catalytic cycles. An alternative to these two elementary steps might involve the intermediacy of sigma complexes. If we want to control activity and selectivity issues, it is thus necessary to gain knowledge on the properties of this unique class of complexes which involves one (or in some cases two) three-­centers, two-­electron bonds. How can we distinguish these types of complexes from those resulting from direct oxidative addition? How can we benefit from labeling experiments to gain knowledge on the bonding interactions? Nowadays, we have access to a large variety of characterization techniques. Some of them might require sophisticated levels and be cost or/and time expensive. Can we bypass them? How can we combine catalytic in situ monitoring and stoichiometric experiments to decipher the mechanism of a catalytic system?

21

Page 22: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Gold Catalysis – Unique and Fundamental Features

A. Stephen K. Hashmi

Organisch-­Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

Phone: +49-­6221-­548413;; e-­mail: [email protected];; Web Page: http://www.hashmi.de

Triggered by new reactivity patterns discovered in 2000,[1,2] in

the last 17 years gold catalysis has developed from an oddity to

one of the most active sectors of catalysis research.[3] During

the initial years the steadily increasing number of researchers

in this field was focusing on methodology development.

Subsequently, mechanistic investigation became more

relevant.[4] In the last years the number of applications in total

synthesis exploded.[5]

The initial decade was completely dominated by simple

reactivity patterns, nucleophilic additions to alkynes, allenes

and alkene, typical intermediates would be vinylgold/arylgold

species or gold carbene species.[3,6]

It was only in 2012 when the group of Liming Zhang[7] and our

group initiated the next generation of gold-­catalyzed

reactions.[8] These reaction led to unique gold vinylidene

intermediates, which opened up a new sector of gold catalysis.

22

Page 23: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

In 2013 as a third mechanistic principle photoredox catalysis

with gold complexes evolved, here after pioneering work of

Barriault[9] our group also contributed.[10]

The presentation will explain the basic concepts and the

highlight catalyst development, methodology development and

mechanistic studies in detail.

References [1] A. S. K. Hashmi, L. Schwarz, J.-­H. Choi, T. M. Frost, Angew. Chem. Int. Ed. Engl. 2000, 39, 2285-­2288. [2] A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am. Chem. Soc. 2000, 122, 11553-­11554. [3] A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-­3211. [4] A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232-­5241. [5] D. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331-­1367 and Chem. Soc. Rev. 2012, 41, 2448-­2462 and Chem. Soc. Rev. 2008, 37, 1766-­1775. [6] A. S. K. Hashmi, Top. Organomet. Chem. 2013, 44, 143-­164. [7] L. Ye, Y. Wang, D. H. Aue, L. Zhang, J. Am. Chem. Soc. 2012, 134, 31–34 [8] a) A. S. K. Hashmi, I. Braun, M. Rudolph, F. Rominger, Organometallics 2012, 31, 644–661;; A. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M. Wieteck, M. Rudolph, F. Rominger, Angew. Chem. Int. Ed. 2012, 51, 4456-­4460. [9] G. Revol, T. McCallum, M. Morin, F. Gagosz, L. Barriault, Angew. Chem. Int. Ed. 2013, 52, 13342-­13345. [10] J. Xie, S. Shi, T. Zhang, N. Mehrkens, M. Rudolph, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2015, 54, 6046-­6050.

23

Page 24: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

26

Poster Abstracts

Page 25: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

CaRLa – The Catalysis Research Laboratory

A. Stephen K. Hashmi*a,b and Thomas Schaub*a,c

aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-­69120

Heidelberg. bOCI, Universität Heidelberg, Im Neuenheimer Feld 270, D-­69120

Heidelberg.cBASF SE, Synthesis and Homogeneous Catalysis, D-­67056

Ludwigshafen

e-­mail: [email protected], [email protected]

CaRLa aims to build up an efficient network between academia and industry to facilitate transfer of knowledge between both partners (University of Heidelberg and BASF SE) and to develop new homogeneous catalysts with application potential within industry. In CaRLa research projects are initiated and funded by BASF as well as by the University of Heidelberg. In these projects, we work in close collaboration and tight exchange between BASF and the University of Heidelberg. In our projects we focus on problems in homogeneous catalysis with industrial relevance, where also examples from academia are rare. Our projects require a deep mechanistic understanding for a rational development of new catalytic systems, whereby the transfer to an application or to a further process development is the goal of each CaRLa-­project.

27

Poster 1

Page 26: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Transition-­Metal-­Free Amination of Pyridine-­2-­Sulfonyl Chloride and Related N-­Heterocycles using Magnesium

Amides Moritz Balkenhohl, Cyril François, Daniela Sustac Roman,

Pauline Quinio and Paul Knochela aDepartment of Chemistry, Ludwig-­Maximilians-­Universität München,

Butenandtstr. 5-­13, Haus F, 81377 Munich, Germany

e-­mail: [email protected]­muenchen.de

Modern amination reactions often require transition metals such as

palladium or nickel.1 Due to their high cost and toxicity, the

development of new transition-­metal-­free methods is desirable.2

Herein we report a new amination procedure of chlorosulfonyl

substituted N-­heterocycles or related sulfonamides using magnesium

amides leading to the respective aminated N-­heterocycles.

Additionally, the directed ortho-­metalation of pyridine-­2-­sulfonamides

using TMPMgCl·LiCl was investigated. Reaction of the metal species

with various electrophiles and subsequent amination using

magnesium amides lead to a range of 2,3-­functionalized pyridines.3

1 (a) Wagaw, S.;; Buchwald, S. L. J. Org. Chem. 1996, 61, 7240-­7241. (b) Wolfe, J. P.;;

Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6054-­6058.

2 Handbook on the Toxicology of Metals;; Friberg, L.;; Nordberg, G. F.;; Vouk, V. B.;; Eds.;;

Elsevier: Amsterdam, 1986

3 Balkenhohl, M.;; François, C.;; Sustac Roman, D.;; Quinio, P.;; Knochel, P. Org. Lett. 2017,

manuscript under revision.

28

Poster 2

Page 27: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Coordination Induced Bond Weakening as a Strategy for Hydrogen Release from Ammonia, Water and Ammonia

Borane Máté J. Bezdek,a Sheng Guo,a Paul J. Chirik*a

aDepartment of Chemistry, Princeton University, Princeton, New Jersey, USA

E-­Mail: [email protected]

Ammonia and other abundant small molecules such as water and ammonia-­borane are carbon-­free sources of dihydrogen and promising alternatives to current natural gas technology. Chloride abstraction from the molybdenum(I) complex, (PhTpy)(PPh2Me)2MoCl 1 (PhTpy = 4’-­Ph-­2,2’,6’,2’’-­terpyridine) in the presence of NH3, NH3BH3 or H2O resulted in rapid generation of H2 with formation of the corresponding “parent” molybdenum(II) amide, borylamide and hydroxide compounds. With NH3, the ammine complex preceding H2 evolution was isolated, structurally characterized and the exceedingly low N-­H bond dissociation free energy of the ammonia ligand experimentally measured as 45.8 kcal/mol, a value confirmed by DFT computations. The origin of the coordination-­induced bond weakening effect will be discussed, together with the application of the bis(phosphine) terpyridine molybdenum(I) structural motif in ammonia borane dehydrogenation catalysis. 1 (a) Bezdek, M.J.;; Guo, S.;; Chirik, P.J. Inorg. Chem. 2016, 55, 3117-­3127;; (b)

Bezdek, M.J.;; Guo, S.;; Chirik, P.J. Science 2016, 354, 730-­733.

29

Poster 3

Page 28: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Rhodium catalyzed hydroaminomethylation of acrylates

for the synthesis of γ-aminobutyric esters.

Anton Cunillera, Cyril Godard, Aurora Ruiz, Carmen Claver *

a Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/

Marcel·lí Domingo s/n, Tarragona, 43007, Spain

e-mail: [email protected]

The efficient and selective synthesis of amines using easily available and abundant precursors is a long-standing goal of chemical research, since they are powerful building blocks for

the synthesis of pharmaceutical and agrochemical products.1

Among amine containing molecules, γ-aminobutyric acids (GABA) have attracted considerable attention since it plays an important role in reducing neuronal excitability. Moreover, this

scaffold is present in several natural products.2

In this context, rhodium catalyzed hydroaminomethylation is anattractive reaction for the synthesis of GABA motifs since it

allows the production of amines with high atom economy.3

In this work, we report the synthesis of γ-aminobutyric esters via rhodium catalyzed hydroaminomethylation of acrylates with different amines. Optimization of the conditions and screening of phosphorus ligands were tested in order to control the regio-and chemoselectivity of the process to obtain the desired products.

1 Blunt, J. W.; Copp, B. R.; Keyzers, R. A.; Munro, M. H. G.; Prinsep, M. R.

Nat. Prod. Rep. 2012, 29, 144-222.2

3

Chung, J. H.; Hunter, L. J. Org. Chem, 2011, 76, 5502-5505.

Crozet, D.; Urrutigoity. M.; Kalck, P. Chem. Cat. Chem. 2011, 3, 1102-1118.

1

2

3

30

Poster 4

Page 29: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Recent Developments in the Field of Catalytic Alkyne Metathesis

Henrike Ehrhorn,a Prof. Dr. Matthias Tamm.a

aTechnische Universität Braunschweig, IAAC, Hagenring 30, 38106

Braunschweig, Germany.

e-­mail: h.ehrhorn@tu-­braunschweig.de

Alkyne metathesis has only recently become the focus of at-­tention due to advances in the development of well-­defined catalysts.1,2 Our research group has shown the efficient me-­tathesis of terminal alkynes (TAM) using the molybdenum precatalyst [MesC≡MoOCMe(CF3)23] (1). Complex 1 is suita-­ble for homodimerization, ring closing and cross metathesis and can even be grafted onto partially dehydroxylated silica (SiO2-­700) to create a heterogeneous alkyne metathesis cata-­lyst.3,4 By modifying the alkoxide ligands of potential catalysts we are able to shift its activity. This allows us to gain a better understanding of the alkyne metathesis. 1 X. Wu, M. Tamm, Beilstein J. Org. Chem. 2011, 7, 82–93. 2 A. Fürstner, An-­

gew. Chem. Int. Ed. 2013, 52, 2794–2819. 3 B. Haberlag, M. Freytag, C. G.

Daniliuc, P. G. Jones, M. Tamm, Angew. Chem. Int. Ed. 2012, 51,

13019–13022. 4 D. P. Estes, C. Bittner, Ò. Àrias, M. Casey, A. Fedorov, M.

Tamm, C. Copéret, Angew. Chem. Int. Ed. 2016, 128, 14166–14170.

31

Poster 5

Page 30: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Palladium-Catalyzed Hydrohalogenation of Enynes Using Ammonium Halide Salts

David A. Petrone,a Ivan Franzoni,a Juntao Ye,a José F.

Rodriguez,a Amalia I. Poblador-Bahamonde,*b Mark Lautens*a

aDepartment of Chemistry, University of Toronto, Toronto, Canada bDepartment of Organic Chemistry, University of Geneva, Geneva, Switzerland

e-mail: [email protected]; [email protected]

Small molecules (e.g. CO and H2) are commonly used in

combination with transition metal catalysts to upgrade the value of commodity building blocks.1 Despite the development

of efficient surrogates of these species to reduce the difficulties

associated with their handling,2 the application of convenient

HX surrogates in transition metal catalysis remains elusive. Herein, we present the successful development of an

unprecedented Pd-catalyzed hydrohalogenation of enynes

using safe and practical ammonium halides salts as HX

surrogates.3 Experimental and computational studies support the existence of a crucial E-to-Z vinyl-Pd isomerization and a

carbon–halogen bond-forming reductive elimination processes.

1 G. T. Whiteker and C. J. Cobley Top. Organomet. Chem. 2012, 42, 35–46. 2 B. N. Bhwal and B. Morandi ACS Catal. 2016, 6, 7528–7535. 3 D. A. Petrone, I. Franzoni, J. Ye, J. F. Rodriguez, A. I. Poblador-Bahamonde

and M. Lautens Submitted

32

Poster 6

Page 31: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Direct Synthesis of Primary Amines via Ruthenium-­Catalysed Amination of Ketones with

Ammonia and Hydrogen

Joan Gallardo-­Donaire,a Martin Ernst,b A. Stephen K. Hashmi,a,b and Thomas Schaub,c,*,b

aCatalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120

Heidelberg, Germany. bOrganisch-­Chemisches-­Institut, Ruprecht-­Karls-­

Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg. cBASF

SE, Synthesis and Homogeneous Catalysis, 67056 Ludwigshafen, Germany

e-­mail: [email protected]

A highly selective reductive amination of ketones to primary amines with ammonia and hydrogen using a simple ruthenium catalyst has been developed. The protocol described constitutes an efficient and direct atom-­economical approach

en route to a-­methylbenzylamine derivatives. The presence of catalytic amounts of aluminum triflate turned out to be crucial for achieving high conversion towards primary amines, with the highest selectivity reported up to date with an NH3/H2 system. Our precatalyst and ligand are both commercially available and inexpensive. Moreover, twelve examples with yields up to 99% have been described. J. Gallardo-­Donaire, M. Ernst, O. Trapp, T. Schaub, Adv. Synth. Catal. 2016,

358, 358-­363

33

Poster 7

Page 32: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

UNRAVELLING A CATALYTIC PATHWAY FOR CO2 TO FORMALDEHYDE CONVERSION Tulika Gupta, and Peter Comba

Institute of Inorganic Chemistry, Heidelberg University, Germany

e-­mail: [email protected]­heidelberg.de

We are interested in an efficient catalytic conversion of CO2 to

formaldehyde. The thermodynamics of the transformation an

relevant transition states of a recently published catalytic

reaction based on a simple Ru-­based catalyst1 have been

studied by DFT calculations. These results will be used to

optimize this transformation in terms of selectivity, efficiency

and catalyst stability. We

were keen to estimate

catalytic cycle for recently

reported conversion of CO2

to DMM (dimethoxy

methane) using theoretical

tools.2

1 Wesselbaum,S.;; Moha,V.;; Meuresch, M.;; Broinski, S;;. Thenert, K. M. J. Kothe, Stein, T. V.;; Englert, U.;; H𝑜𝑜lscher, M.;; Klankermayer, J. and Leitner, W. Chem. Sci. 2015, 6, 693-­704.

2 Thenert, K.;; Beydoun, K.;; Wiesenthal, J.;; Leitner, W. and Klankmayer, J. Angew. Chem. Int. Ed. 2016, 55, 12266.

M-­‐catalyst

34

Poster 8

Page 33: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Vanadium Catalyzed Dehydroperoxidation Jessica Hamann,a Anna-­Corina Schmidt, a Joaquim Henrique

Teles,b A. Stephen K. Hashmi,a,c Thomas Schaub*a,b

aCatalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120

Heidelberg, Germany. bBASF SE, Synthesis and Homogeneous Catalysis,

67056 Ludwigshafen, Germany. cOrganisch-­Chemisches-­Institut,

Ruprecht-­Karls-­Universität Heidelberg, Im Neuenheimer Feld 270, 69120

Heidelberg.

e-­mail: [email protected]

Cylclohexanone is the required starting material for the

synthesis of e-­caprolactam. When oxidizing cyclohexane in the absence of any catalyst under the conditions of the process, cyclohexyl hydroperoxide is the major product formed. In order to minimize the number of process steps in the production of

e-­caprolactam, a selective decomposition of the hydroperoxide solely to the ketone would be a very attractive target. Therefore, vanadium(V) 1 complexes were identified as very promising homogeneous catalysts, as they form alkylperoxo complexes, which by intramolecular hydrogen transfer, release the corresponding alkyl ketone together with one equivalent of water. 1A.-­C. Schmidt, M. Hermsen, F. Rominger, R. Dehn, J. H. Teles, A. Schäfer, O.

Trapp, and T. Schaub, Inorg. Chem. 2017, In press.

35

Poster 9

Page 34: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Computational Study of the Vanadium-­Catalyzed Decomposition of Alkyl Hydroperoxides to Ketones

Marko Hermsen,a,b Anna-­Corina Schmidt,a Ansgar Schäfer,b Thomas Schaub*a,b

aCatalysis Research Laboratory (CaRLa), INF 584, Heidelberg, Germany. bBASF SE, Carl-­Bosch-­Straße 38, 67056 Ludwigshafen, Germany.

e-­mail: [email protected]

Vanadium(V) dipicolinato complexes were found to be promising candidates for the decomposition of secondary alkyl hydroperoxides to the corresponding ketones and water. As decomposition of cyclohexyl hydroperoxide is currently the main industrial route to cyclohexanone, but also inevitably forms the corresponding alcohol, we set out to explain the formation of ketone in a radical-­free mechanism that has so far not been reported. A computational investigation of different possible mechanisms identified an intramolecular hydrogen transfer to the vanadium catalyst that is key to the observed reactivity.1 1 Schmidt, A.-­C.;; Hermsen, M.;; Rominger, F.;; Dehn, R.;; Teles, J.;; Schäfer, A.;;

Trapp, O.;; Schaub, T. Inorg. Chem. 2017, in press.

36

Poster 10

Page 35: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

C-­F Activation by IPr** Nickel Complexes

Alexander Hertl, Bernd F. Straub*

Organisch-­Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg

University, 69120 Heidelberg, Germany

e-­mail: [email protected]­heidelberg.de

The N-­heterocyclic carbene IPr** features high steric demand that ensures coordination of transition metals by only one ancillary ligand. Thus, IPr** stabilizes coordinatively unsatura-­ted metal fragments.1 DFT calculations for the C-­F activation by mono-­NHC nickel(0) complexes are compared to previously published reactions of bis-­NHC nickel(0) systems.2,3 Experi-­mentally, the IPr**Ni system is reactive in the hydrodefluorina-­tion of hexafluorobenzene.

1 Weber, S. G.;; Loos, C;; Rominger, F;; Straub, B. F. ARKIVOK 2012, 3,

226-­242. 2 Schaub, T.;; Fischer, P.;; Steffen, A.;; Braun, T.;; Radius, U.;; Mix, A. J. Am.

Chem. Soc. 2008, 130, 9304-­9317. 3 Fischer, P.;; Götz, K.;; Eichhorn, A.;; Radius, U. Organometallics. 2012, 31,

1374-­1383.

37

Poster 11

Page 36: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

CuH-Catalyzed Enantioselective Hydroamination of Olefins Using N-Arylhydroxylamine Esters

Saki Ichikawa,a Stephen L. Buchwald *a

a Department of Chemistry, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, United States

e-mail: [email protected]

Enantiomerically enriched N-arylamines are common

structures found in a variety of bioactive molecules.1

CuH-catalyzed hydroamination2 of alkenes is an attractive strategy for the synthesis of enantioenriched N-arylamines

because alkenes are stable, common intermediates in organic

synthesis and the overall approach is convergent. After

extensive investigation of the reaction conditions, the CuH-catalyzed enantioselective hydroamination of olefins

using N-arylhydroxylamine esters proceeds efficiently in the

presence of t-BuOH as an additive. A wide range of olefins and

N-arylhydroxylamine esters can be used as substrates in this process to prepare enantioenriched N-arylamines.

1 Nugent, T. C., Ed. Chiral Amine Synthesis: Methods, Developments and

Applications; Wiley-VCH: Weinheim, Germany, 2010. 2 Pirnot, M.T.; Wang, Y.-M.; Buchwald, S. L. Angew. Chem. Int. Ed. 2016, 55,

48 –57.

38

Poster 12

Page 37: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Oxidative Diversification of Amino Acids and Peptides by Small-­Molecule Iron Catalysis

Thomas J. Osberger a, Donald C. Rogness a, Antonia F. Stepanb, Jeffrey T. Kohrt c, and M. Christina White*a

aRoger Adams Laboratory, Department of Chemistry, University of Illinois at

Urbana-­Champaign, USA;; b Pfizer Worldwide Research and Development,

Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, USA;; c

Worldwide Medicinal Chemistry, Pfizer Worldwide Research and development,

Cambridge, Massachusetts 02139, USA

e-­mail: [email protected]

A strategy for the oxidative diversification of amino acids inspired by non-­ribosomal peptide synthetase (NRPS) oxidative tailoring enzymes is described.1 The application of small molecule, non-­heme iron catalyzed C-­H oxidations on the amino acids proline, leucine, valine, and norvaline affords hydroxylated amino acids, which are versatile synthetic intermediates, leading to 21 unnatural amino acids containing seven distinct functional group classes. In particular, the highly chemoselective oxidation of proline to 5-­hydroxyproline in complex peptide settings enables the rapid diversification of proline-­containing peptides to a variety of sequences possessing structurally and functionally diverse residues, representing five distinct functional group classes. 1Osberger, T. J.;; Rogness, D. C.;; Stepan, A. F., Kohrt, J. T., and White. M.C.

Nature, 2016, 537, 214-­219.

39

Poster 13

Page 38: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Secondary Interactions Determine Regioselectivity in Ruthenium-­catalysed Hydroelementation Reactions

Dragos-­Adrian Roşcaa, Larry Wolfa, Alois Fürstner*a

aMax-­Planck-­Institut für Kohlenforschung, D-­45470, Mülheim/Ruhr, Germany

e-­mail: rosca@mpi-­muelheim.mpg.de

The conversion of internal alkynes into E-­alkenes is a challenging but indispensable organic transformation. 1 We have recently shown that this reaction can be conducted with high regioselectivity by employing [Cp*RuCl] based catalysts. Mechanistic studies show that ligand pre-­organisation in the coordination sphere of the metal through secondary interactions is essential, and the results will be discussed.1, 2

1 (a) Frihed, T. G., Fürstner, A. Bull. Chem. Soc. Jpn. 2016, 89, 135. (b)

Rummelt, S. M.;; Radkowski, K., Roşca, D.-­A., Fürstner, A. J. Am.Chem. Soc.

2015, 137, 5506. 2 Roşca, D.-­A., Radkowski, K.;; Wolf, L.;; Wagh, M.;; Goddard, R.;; Fürstner, A. J.

Am. Chem. Soc. (in revision).

Secondary Interactions Determine Regioselectivity in Ruthenium-catalysed Hydroelementation Reactions

Roşca Dragos-Adrian,a Wolf Larry,a Fürstner Alois*a

aMax-Planck-Institut für Kohlenforschung, D-45470, Mülheim/Ruhr, Germany

e-mail: [email protected]

The conversion of internal alkynes into E-alkenes is a challenging but indispensable organic transformation. 1 We have recently shown that this reaction can be conducted with high regioselectivity by employing [Cp*RuCl] based catalysts. Mechanistic studies show that ligand pre-organisation in the coordination sphere of the metal through secondary interactions is essential, and the results will be discussed.1, 2

Rαβ OH

R'Ru

R

OR'

H ER3

ClH

αβ

pre-organisation

Ru

R' O H

RH

Cl

ER3

regioselectivitydetermining

diastereoselectivitydetermining

R ER3

HHO

R'

alpha/trans addition

R3E-H

[Cp*RuCl]4β

α

E = Si, Ge, Sn

(cat.)

1 (a) Frihed, T. G., Fürstner, A. Bull. Chem. Soc. Jpn. 2016, 89, 135. (b)

Rummelt, S. M.; Radkowski, K., Roşca, D.-A., Fürstner, A. J. Am.Chem. Soc.

2015, 137, 5506.2 Roşca, D.-A., Radkowski, K.; Wolf, L.; Wagh, M.; Goddard, R.; Fürstner, A. J.

Am. Chem. Soc. (in revision).

40

Poster 14

Page 39: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Enantiospecific and Diastereoselective Synthesis of Chiral Piperidines via Iridium Catalysis

Tobias Sandmeier,a Erick M. Carriera*a

aLaboratorium für Organische Cghemie, ETH Zürich, Switzerland

e-­mail: [email protected]

In recent years, saturated heterocycles such as piperidines have become important building blocks in medicinal chemistry and crop protection.1 Herein we report our approach towards the synthesis of saturated N-­heterocycles by iridium catalysis. Intramolecular attack of an in situ generated enamine2 on an iridium allyl complex followed by the addition of a reducing agent affords enantioenriched piperidines in one pot. The reaction proceeds with high yields as well as good to excellent diastereoselectivities and enantiospecificities and shows a broad functional group tolerance. 1 Lowvering, F.;; Bikker, J.;; Humblet, C. J. Med. Chem. 2009, 52, 6752−6756. 2 Krautwald, S.;; Sarlah, D.;; Schafroth, M. A.;; Carreira, E. M. Science, 2013,

340, 1065−1068. Krautwald, S.;; Schafroth, M. A.;; Sarlah, D;; Carreira, E. M. J.

Am. Chem. Soc. 2014, 136, 3020−3023. Sandmeier, T.;; Krautwald, S.;; Zipfel,

H. F.;; Carreira, E. M.;; Angew. Chem. Int. Ed. 2015, 54, 14363–14367.

41

Poster 15

Page 40: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Nucleophilic Deoxyfluorination of Phenols via Aryl Fluorosulfonate Intermediates

Sydonie Schimlera, Megan Cismesiaa, Patrick Hanley b, Robert Froeseb, Matthew Jansmab, Douglas Blandb and Melanie

Sanford*a

aDepartment of Chemistry, University of Michigan, 930 North University

Avenue, Ann Arbor, Michigan 48109, USA bCore Research & Development, The Dow Chemical Company, 1710 Building,

Midland, Michigan 48674, USA

e-­mail: [email protected]

This poster presents a method for the deoxyfluorination of phenols via the nucleophilic fluorination of aryl fluorosulfonate (ArOFs) intermediates. The reaction of ArOFs with tetramethylammonium fluoride (NMe4F) proceeds under mild conditions (often at room temperature) and with a broad scope of electronically-­diverse and functional group-­rich substrates. In addition, the one-­pot conversion of phenols to aryl fluorides is demonstrated for a series of bioactive substrates. Ab initio calculations suggest that carbon-­fluorine bond formation proceeds via a concerted transition state (rather than a discrete Meisenheimer intermediate) with a low activation barrier.

42

Poster 16

Page 41: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Inducing Enantioselectivity through Self-­Recognition Jan Felix Scholtes, Oliver Trapp*

Fakultät für Chemie und Pharmazie, Ludwig-­Maximilians-­Universität München

Butenandtstraße 5-­13, München

e-­mail: [email protected]­muenchen.de

Stereodynamic biphenyl ligands have shown to be a powerful tool in enantioselective catalysis when combined with a method to affect their stereochemical ratio. 1-­4 We present a novel set of ligands featuring chiral sites for non-­covalent interaction, that undergo strong intermolecular hydrogen bonding. These interactions result in remarkable conformative structuring and affect the ligand’s diastereomeric ratio. Leading to a strong enrichment of one ligand rotamere, this allows to generate an enantioselective catalyst for asymmetric hydrogenation.

1 Aikawa, K.;; Mikami, K. Chem. Commun. 2012, 48, 11050-­11069. 2 Storch, G.;; Trapp, O. Angew. Chem. Int. Ed. 2015, 54, 3580-­3586. 3 Storch, G.;; Siebert, M.;; Rominger, F.;; Trapp, O. Chem. Commun 2015, 51,

15665-­15668 4 Storch, G.;; Trapp, O. Nature Chemistry, 2016, DOI 10.1038/nchem.2638

43

Poster 17

Page 42: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Overcoming Limitations in ‘Frustrated Lewis Pair’ Catalysis: Strategies for Achieving Carbonyl

Hydrogenation and Moisture Tolerance Daniel Scotta, Matthew Fuchter, Andrew Ashley*a

aDepartment of Chemistry, Imperial College London, UK, SW7 2AZ

e-­mail: [email protected]

In recent years transition metal-­free ‘frustrated Lewis pairs’ (FLPs) have provided a remarkably simple new paradigm for H2 activation and catalytic hydrogenation. While early FLP catalysts are limited by high sensitivity to hydroxylic functional groups (including H2O), in this poster we describe two complementary systems which overcome this problem (with the latter displaying excellent thermal stability), leading to the first examples of both FLP-­catalysed C=O bond hydrogenation, and moisture-­tolerant FLP hydrogenation catalysis.1,2,3

1 Scott, D.J.;; Fuchter, M.J.;; Ashley, A.E. J. Am. Chem. Soc. 2014, 136,

15813-­15816. 2 Scott, D.J.;; Simmons, T.R.;; Lawrence E.J.;; Wildgoose, G.G.;; Fuchter, M.J.;;

Ashley, A.E. ACS Catal. 2015, 5, 5540-­5544. 3 Scott, D.J.;; Phillips, N.A.;; Sapsford, J.S.;; Deacy, A.C.;; Fuchter, M.J.;; Ashley,

A.E. Angew. Chem. Int. Ed. 2016, 55, 14738-­14742.

44

Poster 18

Page 43: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Ni-­Catalyzed Reductive Amidations with Isocyanates

Eloisa Serranoa, Ruben Martin*a,b

aInstitute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain bICREA, Barcelona, Spain

e-­mail: [email protected]

In recent years, cross-­electrophile coupling processes have become powerful alternatives to classical cross-­coupling reactions as they circumvent the use of pre-­formed organometallic species. By using these techniques, we have developed versatile, mild, and chemoselective nickel-­catalyzed reductive cross-­couplings for the synthesis of aliphatic amides and acrylamides, using isocyanates as amide synthons.1, 2

Br

R3 R4R3 R4

N

O

! no pre-formed metal species! hindered combinations

1ary, 2ary & 3ary aliphatic amides

NCOR1 R2R1

R2

H

N

O

H

substituted acrylamides

Ni

1 Serrano, E.;; Martin, R. Angew. Chem. Int. Ed. 2016, 55, 11207-­11211. 2 Wang, X.;; Nakajima, M.;; Serrano, E.;; Martin, R. J. Am. Chem. Soc. 2016, 138,

15531-­15534.

Overcoming Limitations in ‘Frustrated Lewis Pair’ Catalysis: Strategies for Achieving Carbonyl

Hydrogenation and Moisture Tolerance Daniel Scotta, Matthew Fuchter, Andrew Ashley*a

aDepartment of Chemistry, Imperial College London, UK, SW7 2AZ

e-­mail: [email protected]

In recent years transition metal-­free ‘frustrated Lewis pairs’ (FLPs) have provided a remarkably simple new paradigm for H2 activation and catalytic hydrogenation. While early FLP catalysts are limited by high sensitivity to hydroxylic functional groups (including H2O), in this poster we describe two complementary systems which overcome this problem (with the latter displaying excellent thermal stability), leading to the first examples of both FLP-­catalysed C=O bond hydrogenation, and moisture-­tolerant FLP hydrogenation catalysis.1,2,3

1 Scott, D.J.;; Fuchter, M.J.;; Ashley, A.E. J. Am. Chem. Soc. 2014, 136,

15813-­15816. 2 Scott, D.J.;; Simmons, T.R.;; Lawrence E.J.;; Wildgoose, G.G.;; Fuchter, M.J.;;

Ashley, A.E. ACS Catal. 2015, 5, 5540-­5544. 3 Scott, D.J.;; Phillips, N.A.;; Sapsford, J.S.;; Deacy, A.C.;; Fuchter, M.J.;; Ashley,

A.E. Angew. Chem. Int. Ed. 2016, 55, 14738-­14742.

45

Poster 19

Page 44: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Developing Electron Rich PCCarbeneP Frameworks for Cooperative Small Molecule Activation Joel D. Smith,a Prof. Warren E. Piers*a

aDepartment of Chemistry, University of Calgary, 2500 University Drive NW,

Calgary, Alberta, T2N 1N4, Canada.

e-­mail: [email protected]

Ortho-­ phenylene and benzothiophene PCcarbeneP complexes have shown great promise as possible catalysts for N2O reduction.1 Unfortunately, the performance of these systems can be hindered by C-­C cleavage at the aryl-­carbene linkage and by slow reactivity with N2O.2 With hopes to remedy these issues this research investigates the tunability of the ortho-­ phenylene moiety as a means to generate electron rich catalysts that not only react more efficiently with N2O but also possess immunity to unwanted C-­C cleavage. 1 Doyle, L. E.;; Piers, W. E.;; Borau-­Garcia, J. J. Am. Chem. Soc. 2015, 137 (6),

2187–2190. 2 Smith, J. D.;; Borau-­Garcia, J.;; Piers, W. E.;; Spasyuk, D. Can. J. Chem. 2016,

94 (4), 293–296.

46

Poster 20

Page 45: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Enantioselective and Regiodivergent Addition of Purines to Terminal Allenes: Synthesis of Abacavir

Niels Thieme* and Bernhard Breita

a Institute of Organic Chemistry, University of Freiburg, Germany

e-­mail: [email protected]

An atom-­economic N-­selective intermolecular addition of purine derivatives to terminal allenes is reported.1 Versatile allylic purine derivatives could be regioselectively synthesized by switching the metal-­source. A RhI/Josiphos catalyst system provided exclusively branched allylic purines in high yields, regio-­ and enantioselectivity. According to previous observations, 2 utilizing a Pd/dppf catalyst led to the corresponding linear achiral products. Furthermore, the developed methodology was applied on a new and straightfoward synthesis of the HIV drug abacavir.

1 Thieme, N.;; Breit, B. Angew. Chem. Int. Ed. 2017, in press

(DOI: 10.1002/anie.201610876). 2 Kadota, I.;; Shibuya, A.;; Lutete, L. M.;; Yamamoto, Y. J. Org. Chem. 1999, 64,

4570–4571.

47

Poster 21

Page 46: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Alkyne and Alkene Functionalization by Visible-­Light Me-­diated Photoredox Catalysis

Adrian Tlahuext-­Aca, Matthew N. Hopkinson, R. Aleyda Rosario-­Sanchez and Frank Glorius*a

aNRW Graduate School of Chemistry, Organisch-­Chemisches Institut, West-­fälische Wilhelms-­Universität Münster, Correnstrasse 40, 48149 Münster, Ger-­

many e-­mail: glorius@uni-­muenster.de

Visible-­light mediated photoredox catalysis has emerged in re-­cent years as a powerful tool in organic synthesis to access rad-­ical intermediates under remarkably mild reaction conditions.i Based on this powerful strategy, we have developed single and dual catalytic platforms to achieve a variety of C-­C and C-­X bond forming processes across alkyne and alkene substrates which are prevalent scaffolds in organic chemistry.2,3 Moreover, we have unraveled fundamental aspects of these chemistries by in-­depth mechanistic studies. For instance, we have dis-­closed the ability of photogenerated aryl radicals to undergo challenging oxidative addition steps to gold(I) catalysts in dual gold/photoredox catalysis2,4 and new oxidative quenching man-­ifolds for radical decarboxylation based on hydrogen bond as-­sisted photoinduced electron transfer allowing visible-­mediated oxyalkylation processes.3

1 Prier, C. K.;; Rankic, D. A.;; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322;; Hopkinson, M. N.;; Sahoo, B.;; Li, J.-­L;; Glorius, F. Chem. Eur. J. 2014, 20, 3874. 2 Tlahuext-­Aca, A.;; Hopkinson, M. N.;; Sahoo, B.;; Glorius, F. Chem. Sci. 2016, 7, 89;; Tlahuext-­Aca, A.;; Hopkinson, M.N.;; Garza-­Sanchez, R. A.;; Glorius, F. Chem. Eur. J. 2016, 22, 5909;; Hopkinson, M. N.;; Tlahuext-­Aca, A.;; Glorius, F. Acc. Chem. Res. 2016, 49, 2261. 3 Tlahuext-­Aca, A.;; Garza-­Sanchez, R. A.;; Glorius, F. Submitted Manuscript. 4 Tlahuext-­Aca, A.;; Hopkinson, M. N.;; Glorius, F. Chem. Eur. J. 2016, 22, 11587.

48

Poster 22

Page 47: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Highly Enantioselective Synthesis of All-­Carbon Quaternary Stereocenters Via Enantioconvergent SN1

Reaction Alison E. Wendlandt,a Prithvi Vangal,a Eric N. Jacobsen*a

aDepartment of Chemistry and Chemical Biology, Harvard University,

12 Oxford St, Cambridge MA 02138 United States

e-­mail: [email protected]

All-­carbon quaternary stereogenic centers are important structural elements in natural products and pharmaceutical compounds. Despite considerable recent progress, the enantioselective synthesis of quaternary stereocenters remains a long-­standing challenge. Using a dual hydrogen-­bond donor catalyst in combination with a strong Lewis Acid co-­catalyst, an enantioconvergent synthesis of quaternary stereocenters from simple chiral, racemic starting materials has been achieved. Preliminary mechanistic findings suggest that the reaction proceeds via an SN1-­type reaction involving enantioselective addition of nucleophile to a non heteroatom-­stabilized carbocationic intermediate.

RR

+LG LG-

(+/-) up to 96% eesimple chiral, racemic

starting materialsall-carbon quaternary

stereocenters

Alkyne and Alkene Functionalization by Visible-­Light Me-­diated Photoredox Catalysis

Adrian Tlahuext-­Aca, Matthew N. Hopkinson, R. AleydaRosario-­Sanchez and Frank Glorius*a

aNRW Graduate School of Chemistry, Organisch-­Chemisches Institut, West-­fälische Wilhelms-­Universität Münster, Correnstrasse 40, 48149 Münster, Ger-­

manye-­mail: glorius@uni-­muenster.de

Visible-­light mediated photoredox catalysis has emerged in re-­cent years as a powerful tool in organic synthesis to access rad-­ical intermediates under remarkably mild reaction conditions.i

Based on this powerful strategy, we have developed single anddual catalytic platforms to achieve a variety of C-­C and C-­Xbond forming processes across alkyne and alkene substrateswhich are prevalent scaffolds in organic chemistry.2,3 Moreover,we have unraveled fundamental aspects of these chemistriesby in-­depth mechanistic studies. For instance, we have dis-­closed the ability of photogenerated aryl radicals to undergochallenging oxidative addition steps to gold(I) catalysts in dualgold/photoredox catalysis2,4 and new oxidative quenching man-­ifolds for radical decarboxylation based on hydrogen bond as-­sisted photoinduced electron transfer allowing visible-­mediatedoxyalkylation processes.3

1 Prier, C. K.;; Rankic, D. A.;; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322;;Hopkinson, M. N.;; Sahoo, B.;; Li, J.-­L;; Glorius, F. Chem. Eur. J. 2014, 20, 3874.2 Tlahuext-­Aca, A.;; Hopkinson, M. N.;; Sahoo, B.;; Glorius, F. Chem. Sci. 2016, 7,89;; Tlahuext-­Aca, A.;; Hopkinson, M.N.;; Garza-­Sanchez, R. A.;; Glorius, F.Chem. Eur. J. 2016, 22, 5909;; Hopkinson, M. N.;; Tlahuext-­Aca, A.;; Glorius, F.Acc. Chem. Res. 2016, 49, 2261.3 Tlahuext-­Aca, A.;; Garza-­Sanchez, R. A.;; Glorius, F. Submitted Manuscript.4 Tlahuext-­Aca, A.;; Hopkinson, M. N.;; Glorius, F. Chem. Eur. J. 2016, 22, 11587.

49

Poster 23

Page 48: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Reductive Etherification of Fatty Acids or Esters with Alcohols using Molecular Hydrogen

Timo Wendlinga, Benjamin Erbb, Eugen Ristob, Lukas J.

Gooßen*a,b

aFakultät für Chemie und Biochemie, Ruhr Universität Bochum, Bochum bFachbereich Chemie, TU Kaiserslautern, Kaiserslautern

e-­mail: timo.wendling-­[email protected]

Mixtures of fatty acids and aliphatic alcohols are converted into the corresponding long-­chain ethers at 70 bar H2 in the presence of a ruthenium / triphos catalyst complex and the Brønsted acid trifluoromethanesulfonimide.1 Valuable long-­chain ether fragrances, lubricants, and surfactants are thus accessible from renewable sources via a one-­step synthesis. The reaction protocol allows the conversion of various fatty acids and esters both in pure form and as mixtures, for example, tall oil acids or rapeseed methyl ester (RME). Even the mixed triglyceride rapeseed oil, purchased from a grocery store, was cleanly converted in one step. 1 Erb, B.;; Risto, E.;; Wendling, T.;; Gooßen, L. J. ChemSusChem 2016, 9,

1442-­1448.

50

Poster 24

Page 49: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Hydrodehalogenation Catalyzed by T-­Shaped Chiral Nickel(I) Pincer Complexes

Jan Wenz,a Christoph A. Rettenmeier a, Lutz H. Gade*a

aHeidelberg University, Im Neuenheimer Feld 276, 69120 Heidelberg

e-­mail: [email protected]­heidelberg.de

Hydrodehalogenation is a promising approach to access partially halogenated building blocks from readily available bulk chemicals.

We have developed chiral nickel-­based hydrodehalogenation catalysts that act as molecular tools capable of monodehalogenating geminal organodihalides. A mechanistic study has unraveled the key species involved in the dehalogenation and the subsequent hydrogen-­transfer step.[1] [1] a) Rettenmeier C. A.;; Wadepohl, H.;; Gade, L. H. Chem. Eur. J. 2014, 20,

9657-­9665. b) Rettenmeier C. A.;; Wenz, J.;; Wadepohl, H.;; Gade, L. H. Inorg

Chem 2016, 55, 8214-­8224. c ) Wenz, J.;; Rettenmeier C. A.;; Wadepohl, H.;;

Gade, L. H. Chem. Commun. 2016, 52, 202-­205.

51

Poster 25

Page 50: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Expanding the Scope: A Frustrated LEWIS Pair in the Catalytic Hydrogenation of Enones

Christian Wölke, Benedikt Nowak, Constantin G. Daniliuc, Birgit Wibbeling, Gerhard Erker*

Organisch-­Chemisches Institut, Westfälische Wilhelms-­Universität, Münster,

Germany

e-­mail: erker@uni-­muenster.de

Numerous reports show the applicability of Frustrated LEWIS Pairs (FLPs) in the catalytic hydrogenation of imines, enamines and silylenolethers1 while reports on the hydrogenation of α,β-­unsaturated ketones2 are quite rare. Following a new synthetic pathway to 2-­phosphinylnorbornenes, a novel norbornane based FLP was developed. It shows unprecedented efficiency in the catalytic hydrogenation of a number of α,β-­unsaturated ketones. Quantitative conversion as well as selective hydrogenation of the C=C bond could be observed for a variety of substrates, while the ketone moiety remained unchanged in all cases. 1 Review: Stephan, D. W.;; Erker, G. Angew. Chem. Int. Ed. 2015, 54,

6400-­6441;; Stephan, D. W.;; Erker, G. Angew. Chem. 2015, 127, 6498 –6541. 2 a) Erős, G.;; Mehdi, H.;; Pápai, I.;; Rokob, T. A.;; Király, P.;; Tárkányi, G.;; Soós, T.

Angew. Chem. Int. Ed. 2010, 49, 6559-­6563. b) Reddy, J. S.;; Xu, B.-­H.;; Mahdi,

T.;; Fröhlich, R.;; Kehr, G.;; Stephan, D. W.;; Erker, G. Organometallics, 2012, 31,

5638-­5649.

52

Poster 26

Page 51: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Highly Efficient Process for Production of Biofuel from Ethanol Catalyzed by Ruthenium-­Pincer Complexes

Yinjun Xie, David Milstein*

Departments of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel

e-­mail: [email protected]

Ethanol, obtained from biomass has been used as a renewable replacement of gasoline. Longer-­chain alcohols have larger energy densities than ethanol and presenting fewer storage problems. However, large-­scale production of longer-­chain alcohols from biomass is still a great challenge. We developed a highly efficient pincer-­ruthenium catalyzed process for producing biofuel with highest TON and conversion of ethanol for a Guerbet-­type reaction.1

1 Xie, Y.;; Ben-­David, Y.;; Shimon, L. J. W.;; Milstein, David. J. Am. Chem. Soc. 2016, 138, 9077-­9080.

53

Poster 27

Page 52: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

New Phenol-­Functionalized Gold Carbene Complexes David Zahner,a A. Stephen K. Hashmi*a

aOrganisch-­Chemisches Institut, Ruprecht-­Karls-­Universität Heidelberg,

Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

e-­mail: [email protected]

Based on our one pot approach for gold carbene complexes,1 we were able to synthesize new phenol-­functionalized gold complexes. For this synthesis, benzoxazole and its derivatives served as masked isonitriles. We synthesized the new carbene complexes from those isonitriles and from secondary amines. Their applications in catalysis will be addressed.

1 a) A. S. K. Hashmi, Y. Yu, F. Rominger, Organometallics 2012, 31, 895-­904;;

b) D. Riedel, T. Wurm, K. Graf, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv.

Synth. Catal. 2015, 357, 1515-­1523.

54

Poster 28

Page 53: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Mild C−H/C−C Activation by (Z)-­Selective Cobalt Catalysis Daniel Zell, Qingqing Bu, Milica Feldt and Lutz Ackermann*

Institut für Organische und Biomolekulare Chemie, Georg-­August-­Universität, Tammanstraße 2, 37077 Göttingen, Germany

e-­mail: [email protected]­goettingen.de

In recent years, the use of naturally abundant 3d transition

metal catalysts for C−H functionalizations has been identified

as an increasingly powerful tool.1 Herein, we present a cobalt-­

catalyzed (Z)-­selective C−H/C−C activation,2 which is strongly

stereo-­complementary to (E)-­selective rhodium catalysis.2,3 The

challenging C−H/C−C functionalizations were achieved by a

cobalt catalyst under exceedingly mild conditions with high E/Z-­

selectivity, ample scope and excellent functional group

tolerance. Additionally, detailed mechanistic studies including

DFT calculations

provided strong

support for a rate-­

and selectivity

determining C−C-­

cleavage.

1) Recent reviews on cobalt-­catalyzed C–H bond functionalizations: (a) M.Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498‒525;; (b) K. Gao, N. Yoshikai, Acc. Chem. Soc. 2014, 79, 1208‒1219;; (c) L. Ackermann, J. Org. Chem. 2014, 79, 8948‒8954. 2) D. Zell,' Q. Bu,' M. Feldt, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 7408−7412. 3) J. Wu, Z. Qiu, S. Zhang, J. Liu, Y. Lao, L. Gu, Z. Huang, J. Li, H. Wang, Chem. Commun. 2015, 51, 77−80.

E

Z

55

Poster 29

Page 54: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Thorsten BachTechnische Universität MünchenLehrstuhl für Organische Chemie ILichtenbergstraße 485747 Garching, [email protected]

Michael KrischeUniversity of Texas at AustinDepartment of Chemistry and BiochemistryAustin TX, 78712, [email protected]

Carsten BolmRWTH AachenLehrstuhl für organische Chemie IILandoltweg 152074 Aachen, [email protected]

Sylviane Sabo-EtienneLaboratoire de Chimie de coordinationUPC 8241, BP 44099, 205Route de Narbonne31077 Tolouse Cedex 4, [email protected]

Thomas SchaubBASF SECarl-Bosch-Straße 3867056, Ludwigshafen, [email protected]

Nicolai Cramer Ecole polytechnique fédérale de Lausanne Institut des sciences et ingénierie chimiques EPFL SB ISIC LCSA, BCH 4305 (Batochime)1015 Lausanne, [email protected]

Tohru Yamada Keio UniversityDepartment of Chemistry3-1431 Hiyoshi, Kohoku-kuYokohama, 223-8522, [email protected]

A. Stephen K. HashmiRuprecht-Karls-Universität Heidelberg Organisch-Chemisches InstitutIm Neuenheimer Feld 27069120 Heidelberg, Germany [email protected]

Lecturers

56

Page 55: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Aviel AnabyCatalysis Research Laboratory (CaRLa)Im Neuenheimer Feld 58469120 Heidelberg, [email protected]

Antoni Cunillera Centre Tecnològic de la Química de Catalunya Campus Sescelades43007 Tarragona, [email protected]

Moritz BalkenhohlLudwig-Maximilians-Universität MünchenButenandtstr. 5-1381377 München, [email protected]

Henrike EhrhornTechnische Universität BraunschweigHagenring 3038106 Braunschweig, [email protected]

Máté J. BezdekPrinceton UniversityDepartment of ChemistryPrinceton, NJ 08544, [email protected]

Ivan FranzoniUniversity of TorontoDavenport Chemical LaboratoriesDepartment of Chemistry80 St. George St.Toronto, Ontario, [email protected]

Alban CaduCatalysis Research Laboratory (CaRLa)Im Neuenheimer Feld 58469120, Heidelberg, [email protected]

Juan Gallardo-DonaireCatalysis Research Laboratory (CaRLa)Im Neuenheimer Feld 58469120 Heidelberg, [email protected]

Jamie CliftonCatalysis Research Laboratory (CaRLa)Im Neuenheimer Feld 58469120, Heidelberg, [email protected]

Tulika GuptaRuprecht-Karls-Universität HeidelbergAnorganisch-Chemisches InstitutIm Neuenheimer Feld 27069120 Heidelberg, [email protected]

Participants

57

Page 56: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Jessica HamannResearch Laboratory (CaRLa)Im Neuenheimer Feld 58469120, Heidelberg, [email protected]

Tommy OsbergerUniversity of IllinoisDepartment of ChemistryUrbana-Champaign, [email protected]

Marko HermsenBASF SECarl-Bosch-Straße 3867056, Ludwigshafen, [email protected]

Dragos-Adrian RoscaMax-Planck Institut für KohlenforschungKaiser Wilhelm-Platz 145470 Mülheim/Ruhr, [email protected]

Alexander HertlRuprecht-Karls-Universität HeidelbergOrganisch-Chemisches InstitutIm Neuenheimer Feld 27069120 Heidelberg, [email protected]

Tobias SandmeierETH ZürichLaboratorium für Organische Chemie8093 Zürich, [email protected]

Saki IchikawaMassachusetts Institute of TechnologyDepartment of ChemistryCambridge, MA, [email protected]

Sydonie SchimlerThe University of MichiganAnn ArborMI, [email protected]

Istvan MolnarCatalysis Research Laboratory (CaRLa)Im Neuenheimer Feld 58469120 Heidelberg, [email protected]

Jan-Felix ScholtesFakultät für Chemie und PharmazieLudwig-Maximilians-Universität MünchenButenandtstraße 5-13München, [email protected]

58

Page 57: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Daniel ScottImperial College LondonDepartment of ChemistryLondon SW7 2AZ, [email protected]

Alison WendlandtHarvard UniversityDepartment of Chemistry and Chemical Biology12 Oxford StCambridge, MA 02138, [email protected]

Eloisa SerranoInstitute of Chemical Research of Catalonia (ICIQ)Av. Països Catalans 1643007 Tarragona, [email protected]

Timo WendlingRuhr-Universität BochumLehrstuhl für Organische Chemie, Gebäude ZEMOS 2/27Universitätsstraße 15044801 Bochum, [email protected]

Joel SmithUniversity of CalgaryDepartment of Chemistry2500 University Dr. NW Calgary, Alberta, Canada [email protected]

Jan WenzRuprecht-Karls-Universität HeidelbergAnorganisch-Chemisches InstitutIm Neuenheimer Feld 27069120 Heidelberg, [email protected]

Niels ThiemeAlbert-Ludwigs-Universität FreiburgInstitut für Organische ChemieFakultät für Chemie und PharmazieHebelstraße 2779085 Freiburg, [email protected]

Christian WölkeWestfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut Correnstraβe 4048149 Münster, [email protected]

Adrian Tlahuext-AcaWestfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrenstraβe 4048149 Münster, [email protected]

Jedrzej WysockiCatalysis Research Laboratory (CaRLa)Im Neuenheimer Feld 58469120, Heidelberg, [email protected]

59

Page 58: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

Yinjun XieWeizmann Institute of ScienceDepartment of Organic Chemistry76100 Rehovot, [email protected]

David ZahnerRuprecht-Karls-Universität HeidelbergOrganisch-Chemisches InstitutIm Neuenheimer Feld 27069120 Heidelberg, [email protected]

Daniel ZellGeorg-August-Universität GöttingenInstitut für Organische und Biomolekulare ChemieTammannstrasse 2 37077 Göttingen, [email protected]

60

Page 59: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

VENUE & HOTEL MAP

dai (Deutsch-Amerikanisches Institut)Sofienstraße 1269115 Heidelberg

1Hotel Europäischer HofFriedrich-Ebert-Anlage 169117 Heidelberg

2Boardinghouse Heidelberg Distance: about 450 meters (5 minutes walking distance)Rohrbacher Str. 3269115 Heidelberg

3Exzellenz-HotelRohrbacher Str. 2969115 Heidelberg

61

Page 60: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

LIST OF LUNCH VENUES

1MedocsWeekly changing lunch menu, burgers, steaks and saladsSofienstraße 7b • 69115 Heidelbergwww.medocs-cafe.de

2Galeria KaufhofBakery, kebab, pizza, Segafredo-bar, restaurant and caféBismarckplatz • 69115 Heidelbergwww.galeria-kaufhof.de/Heidelberg

3Café & Restaurant RossiDaily lunch offers in traditional coffee house ambianceRohrbacherstraße 4 • 69115 Heidelbergwww.caferossi.de

4Dean & David Well-priced, fresh salads, curries and soupsPoststraße 4 • 69115 Heidelbergwww.deananddavid.de

62

Page 61: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF

5ThannerTraditional German Dishes, Swabian Pockets, Steaks and more. Bergheimerstraße 71a • 69115 Heidelbergwww.thanner.net

6

SHOPPING MALL • DAS CARRÉ

Tiger & Dragon’s Food CornerChinese dishes, daily lunch menu offersRohrbacherstraße 6-8 • 69115 Heidelbergwww.facebook.com/TigerDragon.HD/

mahlzeitAmerican Burges and traditional German CurrywurstRohrbacherstraße 6-8 • 69115 Heidelbergwww.mahlzeit-hd.de

Rich’n Greens100% Organic Salads, Burritos, Pasta and WrapsRohrbacherstraße 6-8 • 69115 Heidelbergwww.richngreens.de

Exotica Central Kitchen100% Organic Salads, Wraps, Smoothies and Juices Rohrbacherstraße 6-8 • 69115 Heidelbergwww.facebook.com/ECK95/

7RedVegan and vegetarian restaurantPoststraße 42 • 69115 Heidelbergwww.red-diegruenekueche.com/

8Pasta BarPizza, Pasta, Salads and more…Neugasse 21 • 69117 Heidelbergwww.pastabar-hd.de

9Coffee NerdCoffee and moreRohrbacher Straße 9 • 69115 Heidelbergwww.coffeenerd.de

LIST OF LUNCH VENUES

1MedocsWeekly changing lunch menu, burgers, steaks and saladsSofienstraße 7b • 69115 Heidelbergwww.medocs-cafe.de

2Galeria KaufhofBakery, kebab, pizza, Segafredo-bar, restaurant and caféBismarckplatz • 69115 Heidelbergwww.galeria-kaufhof.de/Heidelberg

3Café & Restaurant RossiDaily lunch offers in traditional coffee house ambianceRohrbacherstraße 4 • 69115 Heidelbergwww.caferossi.de

4Dean & David Well-priced, fresh salads, curries and soupsPoststraße 4 • 69115 Heidelbergwww.deananddavid.de

63

Page 62: Carla Winter School 2017 neucarla-hd.de/wp-content/uploads/2018/02/Carla_Winter_School-2017.pdfThomas Schaub*a,b aCatalysis Research Laboratory, Im Neuenheimer Feld 584, D-69120 Heidelberg.bBASF