45
The Career of Michael J. Krische Hui-Wen Shih MacMillan Group Meeting June 19, 2010

Career of Mike Krische-full slides

  • Upload
    ngophuc

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Career of Mike Krische-full slides

The Career of Michael J. Krische

Hui-Wen Shih

MacMillan Group Meeting

June 19, 2010

Page 2: Career of Mike Krische-full slides

Career: A Summary

B.S. Chemistry, University of California Berkeley

Fulbright Fellow, Helsinki University

PhD. Chemistry, Stanford University

Postdoctoral Fellow, Universite Louis Pasteur

1989

1990

1996

1999

Henry Rapoport

Ari M. P. Koskinen

Barry M. Trost

Jean-Marie Lehn

University of Texas, Austin

1999Assistant Professor of Chemistry

Professor of Chemistry 2004

Robert A. Welch Chair in Science 2007

Selected Awards: NSF CAREER, Camille Dreyfus Teacher-Scholar, ACS E.J. Corey,

Presidental Green Chemistry Challenge, Tetrahedron Young Investigator...

96 primary literature publications as primary investigator

Page 3: Career of Mike Krische-full slides

Research Areas

Catalytic Conjugate Addition-Electrophilic Trapping Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Nucleophilic Catalysis via Phosphine Conjugate Addn Hydrogen Mediated C-C Bond Formation

Excludes: Supramolecular Chemistry

R

O

Electrophile

n

ER

O

nR'

MR' R

O

O

R'

H H

R

O

R'

O

seminal publication: JACS 2003, 125, 1110. seminal publication: JACS 2001, 123, 6716.

full article: JACS 2004, 126, 9448.

R

O

X

R'O

Bu3PR

O

X

R'O

n n

seminal publication: JACS 2002, 124, 2402.

Transfer Hydrogenation ACIE 2009, 48, 34. (review)

JACS 2000, 122, 5006.; JACS 2002, 124, 5074. (selected publications)

R

O

R'

ORh/Ir

H2

O

R

HO R'

reviews: Acc. Chem. Res. 2004, 37, 653.

Acc. Chem. Res. 2007, 40, 1394.

Page 4: Career of Mike Krische-full slides

Research Areas

Catalytic Conjugate Addition-Electrophilic Trapping Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Nucleophilic Catalysis via Phosphine Conjugate Addn Hydrogen Mediated C-C Bond Formation

Excludes: Supramolecular Chemistry

R

O

Electrophile

n

ER

O

nR'

MR' R

O

O

R'

H H

R

O

R'

O

seminal publication: JACS 2003, 125, 1110. seminal publication: JACS 2001, 123, 6716.

full article: JACS 2004, 126, 9448.

R

O

X

R'O

Bu3PR

O

X

R'O

n n

seminal publication: JACS 2002, 124, 2402.

Transfer Hydrogenation ACIE 2009, 48, 34. (review)

JACS 2000, 122, 5006.; JACS 2002, 124, 5074. (selected publications)

R

O

R'

ORh/Ir

H2

O

R

HO R'

reviews: Acc. Chem. Res. 2004, 37, 653.

Acc. Chem. Res. 2007, 40, 1394.

Page 5: Career of Mike Krische-full slides

Catalytic Conjugate Addition-Electrophilic Trapping

Seminal Publication

Rh-catalyzed tandem conjugate addition-aldol cyclization

Ph

O O

Me

2.5 mol% [Rh(COD)Cl]27.5 mol% dppb ligand

2 equiv PhB(OH)2, KOH

H2O, dioxane, 95 C

Ph

O Me OH

87% IY, single diastereomer

Ph

Me

O Me OH

Ph

Ph

O Me OH

Nap

Ph

O

N

Me OH

Ph2- Ts

Ph

O

Ph

MeOH

73% Y 84% Y70% Y45% Y

BINAP ligand induces enantioselectivity

Ph

O O

Me

2.5 mol% [Rh(COD)Cl]27.5 mol% (R)-BINAP

2 equiv PhB(OH)2, KOH

H2O, dioxane, 95 C

Ph

O Me OH

Ph

88% IY, 88% ee

Scope: Aliphatic , -unsaturated ketones; 5 & 6 membered rings

J. Am. Chem. Soc. 2003, 125, 1110.

Page 6: Career of Mike Krische-full slides

Catalytic Conjugate Addition-Electrophilic Trapping

Mechanism

Catalytic cycle

Ph

O O

Me

J. Am. Chem. Soc. 2003, 125, 1110.

LnRhICl LnRhIOH

LnRhIAr

Ph

OH O

Me

Ar

Ph

O

Ar

ORhILnMe

RhILn

ArB(OH)2

B(OH)3

Ph

O Me OH

Ar

Zimmerman-Traxler transition state via Z-enolate

O

RhIO

MePh

ArH

Ph

OH O

Me

Ar

RhILn

OOH

Me

ArH

Ph Me OH

Ph

O

Page 7: Career of Mike Krische-full slides

Catalytic Conjugate Addition-Electrophilic Trapping

Improvements and Extensions

Rh-catalyzed tandem conjugate addition-aldol cyclization

Proc. Nat. Acad. Sci. U.S.A. 2004, 101, 5421

R

O 2.5 mol% [Rh(COD)OMe]27.5 mol% (S)-BINAP

2 equiv ArB(OH)2, KOH

H2O, dioxane, 95 C

65-87% Y, >99:1 de, 85-94% ee

O R''

R'

OMe

R'

R''

Ar

Me

OH

O

OR

nn

Improvements and extension of scope

Electron rich and electron poor aryl boronic acids

Acyclic, cyclic 5- and 6-membered diones

Applied to dione desymmetrization via kinetic resolution

Me

O

Me

O

O

Me

Me

2.5 mol% [Rh(COD)OMe]27.5 mol% (S)-BINAP

2 equiv ArB(OH)2, KOH

H2O, dioxane, 95 C

Ph

Me

OH

OMe

O

Me

MePh

Me

OH

OMe

O

MeMe

43% Y, >99:1 de>99% ee

41% Y, >99:1 de87% ee

[Rh(COD)OMe]2 is more stable to oxidation

Page 8: Career of Mike Krische-full slides

Catalytic Conjugate Addition-Electrophilic Trapping

Improvements and Extensions

Cu-catalyzed tandem conjugate addition-aldol cyclization

J. Am. Chem. Soc. 2004, 126, 4528.

R

O

E+

2.5 mol% Cu(OTf)2

5 mol% P(OEt)3

1.5 equiv Zn(Et)2, CH2Cl2

73-99% Y, 2:1 to >95:1 dr

n

Electrophiles

Enantioselective using Feringa phosphoramidite ligand

R

O

E

nEt

R

O

nEt

R

O

nEt

R

O

nEt

OH

Me

O NH2

E+ = ketone E+ = ester E+ = nitrile

n=1,2

2.5 mol% Cu(OTf)2

5 mol% Feringa Ligand

1.5 equiv Zn(Et)2

Me

Ph O

O

O PhMe, 40 COMe

OHEt

Ph O

OMe

OHEt

Ph O

99% Y, 2.3:1 dr 80% ee 98% ee

O

OP N

Me

Ph

Ph

Me

Feringa ligand

Page 9: Career of Mike Krische-full slides

Research Areas

Catalytic Conjugate Addition-Electrophilic Trapping Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Nucleophilic Catalysis via Phosphine Conjugate Addn Hydrogen Mediated C-C Bond Formation

Excludes: Supramolecular Chemistry

R

O

Electrophile

n

ER

O

nR'

MR' R

O

O

R'

H H

R

O

R'

O

seminal publication: JACS 2003, 125, 1110. seminal publication: JACS 2001, 123, 6716.

full article: JACS 2004, 126, 9448.

R

O

X

R'O

Bu3PR

O

X

R'O

n n

seminal publication: JACS 2002, 124, 2402.

Transfer Hydrogenation ACIE 2009, 48, 34. (review)

JACS 2000, 122, 5006.; JACS 2002, 124, 5074. (selected publications)

R

O

R'

ORh/Ir

H2

O

R

HO R'

reviews: Acc. Chem. Res. 2004, 37, 653.

Acc. Chem. Res. 2007, 40, 1394.

Page 10: Career of Mike Krische-full slides

Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Seminal Publication

Colbalt-mediated diastereoselective [2+2] cycloaddition

Ph

O10 mol% Co(dpm)2

PhMeSiH2, DCE, 50 C

72% IY, single diastereomer

Scope

J. Am. Chem. Soc. 2001, 123, 6716p.

O

Ph H H

O

Ph

O

Ph

O

H H

O

Ph

O

Ph

NTs

H H

O

Ph

O

Ph

H H

O

Ph

O

Ph

OTBS

H H

O

Ph

O

Me

H H

O O

OO

69% Y 73% Y 65% Y 63% Y 65% Y

Page 11: Career of Mike Krische-full slides

Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Mechanism

CoI is the active catalyst

J. Am. Chem. Soc. 2002, 124, 9448.

O

O

Co

O

O

t-Bu

t-Bu t-Bu

t-Bu

CoII(dpm)2

disproportionate

CoIII(dpm)3CoI(dpm)

CoII(dpm)2

Ph

O

O

Ph

Ph

O

O

PhCoIIILnCoIII

Ln

H H

O

Ph

O

Ph

H H

O

Ph

O

Ph

Ph

O

O

PhCoI

SET

Page 12: Career of Mike Krische-full slides

Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Some Observations

Kinetic product is formed

H H

O

Ph

O

Ph HA

H H

O

Ph

O

Ph

E/Z isomers form same product

H H

O

Ph

O

Ph

Co-cordination is involved

Ph

O

O

Ph

Ph

O Ph

O

CoIII-enolates: rapid -facial interconversion

SET cyclopropane probe does not open

Ph

O

O

H H

O

Ph

O

42% Y

Page 13: Career of Mike Krische-full slides

Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Some Observations in Support of Radical Anion

Cathodic reduction

H H

O

Ph

O

Ph0.9 V

Ph

O

O

Ph

MeCN, LiClO4H H

O

Ph

O

Ph

Org. Lett. 2002, 4, 611.

E1/2 = 1.2 V electron chain transfer 1:1.2

Benzoyl is crucial for radical anion stabilization

O

O

MeO

OMe

1.0 V

MeCN, LiClO4

E1/2 = 1.3 V

dimer and oligomer products

O

MeO

NO2

E1/2 = 1.0 V

0.8 V

MeCN, LiClO4

dimer and oligomer products only

H H

O

Ar

O

Ar

radical anion unstable

radical anion too stable = unreactive

O

Page 14: Career of Mike Krische-full slides

Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Further Observations in Support of Radical Anion

Chemical SET reduction

H H

O

Ph

O

Ph

Ph

O

O

Ph

H H

O

Ph

O

Ph

J. Am. Chem. Soc. 2004, 126, 1634.

THF, 78 C

32% Y 9% Y

Increasing radical delocalization improves desired reaction

H H

O

Ph

O

Ph

Nap

O

O

Nap

H H

O

Ph

O

Ph

THF, 78 C

62% Y 0% Y

Electrostatic interactions between Na and C=O result in cis-product

Not catalytic radical chain process

Na+

Na+

Page 15: Career of Mike Krische-full slides

Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Using Products to Probe Mechanism

Towards a mechanistic understanding of the Gilman Reagent

J. Org. Chem. 2004, 69, 7979.

(CH3)2CuLi-LiI

Cu complex followed bySET enone reduction

OLi X

Cu Me

Me

Li

reductive elimination

O

R R

O O

(CH3)2CuLi-LiI

THF, 0 CMe

O

R

R

O

H H

O

R

O

R

radical anion

productconjugate addition

electrophile trappingproduct

Page 16: Career of Mike Krische-full slides

Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Using Products to Probe Mechanism

It is possible to form both products

J. Org. Chem. 2004, 69, 7979.

R R

O O(CH3)2CuLi-LiI

THF, 0 C Me

O

R

R

O

H H

O

R

O

R

radical anion

product

conjugate addition

electrophile trappingproduct

mol% (CH3)2CuLi

100 64 13

200 85 0

25 13 84

25, slow addition 0 91

R=4-biphenyl

Kinetic studies show dependence on concentration

Me

O

R

R

O

H H

O

R

O

R

alkylating reagent

cyclic dimer monomer

ET reagent

(CH3)2CuLiMe Cu Me

Li Li

Me Cu Me

Page 17: Career of Mike Krische-full slides

Research Areas

Catalytic Conjugate Addition-Electrophilic Trapping Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Nucleophilic Catalysis via Phosphine Conjugate Addn Hydrogen Mediated C-C Bond Formation

Excludes: Supramolecular Chemistry

R

O

Electrophile

n

ER

O

nR'

MR' R

O

O

R'

H H

R

O

R'

O

seminal publication: JACS 2003, 125, 1110. seminal publication: JACS 2001, 123, 6716.

full article: JACS 2004, 126, 9448.

R

O

X

R'O

Bu3PR

O

X

R'O

n n

seminal publication: JACS 2002, 124, 2402.

Transfer Hydrogenation ACIE 2009, 48, 34. (review)

JACS 2000, 122, 5006.; JACS 2002, 124, 5074. (selected publications)

R

O

R'

ORh/Ir

H2

O

R

HO R'

reviews: Acc. Chem. Res. 2004, 37, 653.

Acc. Chem. Res. 2007, 40, 1394.

Page 18: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Seminal Publication

Intramolecular Rauhut-Currier Reaction

Ph

O 10 mol% Bu3P

EtOAc, 50 C

86% Y

Mechanism

J. Am. Chem. Soc. 2003, 125, 2402.

PhO

O

Ph

Ph

O

PBu3

Ph

OPhO

Ph

OPhO

Bu3P

O

Ph

Ph

O

Bu3P

O

Ph

Ph

O

Reaction is dependent on

Substrate electronics

Substrate sterics

Solvent polarity

more electrophilic enone preferred

less hindered enone preferred

more polar solvent improves reactivity

may lead to polymer products

Page 19: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Seminal Publication

Steric effects

Ph

O 10 mol% Bu3P

EtOAc, 50 C

J. Am. Chem. Soc. 2003, 125, 2402.

MeO

O

Ph

Me

O

n

O

Me

Ph

O

O

Ph

Me

O

O

Me

Ph

O

1:1

rapidcyclization

7:1

slower cyclization allows for

preequilibrium

Me

OPhO

Me

Me

10 mol% Bu3P

EtOAc, 76 C

O

Me

Ph

O

O

Ph

Me

O

>95:5

rapidcyclization

Me

Me

MeMe

Electronic effects

Page 20: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Summary

EWG

RR3P

EWGR

NO O

X X

R

O R'

O O

X

R

OSO2Ar

O

Ar

O

R O

O

EtO

R

R'

R

OH

H

O R'

O

R

R

O

EWG

R

PR3

catalyst

JOC 2006, 71, 7892.

JACS 2003, 125, 3682.

JACS 2004, 1256 5350.

JACS 2003, 125, 7758.JACS 2004, 126, 4118.

OL 2004, 6, 1337.

Synthesis 2004, 2579.

ACIE, 2004, 43, 6689.

JACS 2003, 125, 7758.

Page 21: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Extensions

20 mol% Bu3P

CH2Cl2/tBuOH (9:1)

J. Am. Chem. Soc. 2004, 126, 5350.

-Arylation using hypervalent bismuth reagents

1 equiv BiPh3Cl2

93% Y

O

1 equiv iPrEtN

O

Ph

OBiAr3Cl

PBu3Cl

Substrates must be -substituted

Acyclic enones perform poorly

Page 22: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Extensions

J. Am. Chem. Soc. 2004, 126, 5350.

-Arylation using hypervalent bismuth reagents

Enones and Enals

93% Y

OBr

OF

O

OMe

66% Y 71% Y

O

Ph

70% Y

O

Me

HPh

O

Me

H

MeO

Me

H

F

61% Y 49% Y 70% Y

O

Me

71% Y

F

20 mol% Bu3P

CH2Cl2/tBuOH (9:1)

1 equiv BiPh3Cl2

93% Y

O

1 equiv iPrEtN

O

Ph

Page 23: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Extensions

Org. Lett. 2004, 6, 1337.

Reductive condensation of -acyloxy butynoates

Allylic amination

120 mol% Ph3P

EtOAc, 110 C

60-91% Y

O OEt

R O

O

R'sealed tube

OEtO

O OR'

Ph3PR

EtO

O

R'

O

Ph3PO

R

O

O

EtO

R'

R

EtO

O

R'

O

R

EtO

O

O

R'

Ph3P

R

Ph3P=O

Ph3P

Ph3P

R

O OAc

R'

20 mol% PPh3

R

O

R'

Ph3P

4,5-dichlorophthalimide

R

N

Cl Cl

R

O OO

THF

J. Am. Chem. Soc. 2004, 126, 4118.

Page 24: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Extensions

Ph

O 100 mol% Bu3P

tBuOH, 60 C

J. Am. Chem. Soc. 2003, 125, 7758.

The merger of phosphine and Pd-allyl catalysis

1 mol% Pd(PPh3)4

OPh

O

92% Y

O

OMe

Ph

O O

O

OMe

Bu3P

PBu3

LnPd0

CO2

MeO

Ph

O

Bu3P

LnPdII

Ph

O

Bu3P

LnPd

OMestrong base facilitates -elimination

polar solvent extends enolate lifetime

Page 25: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Extensions

Ph

O 100 mol% Bu3P

tBuOH, 60 C

J. Am. Chem. Soc. 2003, 125, 7758.

The merger of phosphine and Pd-allyl catalysis

1 mol% Pd(PPh3)4

OPh

O

92% Y

O

OMe

Ph

O

64% Y

O

76% Y

O

81% Y

EtX

O

X= O

BzO

< 5% Y

S 73% Y

Scope

Page 26: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Applications to Total Synthesis

Enyne [3+2] forms useful [3.3.0] bicycles

10 mol% Bu3P

EtOAc, 110 C

71-86% Ysealed tube

R

OO R'

R

OH

H

O R'

O R'

Bu3P

R

O

O R'

Bu3P

R

O

R

OH

H

O R'

Bu3P

H

Bu3P

Scope

MeO

OH

H

O Ph

MeO

OH

H

O Me

MeO

OH

H

O

MeO

O

O

H

H

O

J. Am. Chem. Soc. 2003, 125, 3683.

76% Y 77% Y 86% Y 75% Y

Page 27: Career of Mike Krische-full slides

Nucleophilic Catalysis via Phosphine Conjugate Addition

Applications to Total Synthesis

Angew. Chem. Int. Ed. 2003, 42, 5855.

Formal synthesis of racemic hirsutene

H

H

H

Me

hirsutene

HO

Me Me

5 steps

21% overall yield

Me Me

MeO

OMe O

Me

E/Z 5.5:1

Me Me

MeO

OMe O

Me

10 mol% Bu3PEtOAc, 110 C

sealed tube

Me

Me

PBu3

CO2MeCOMe

Me

R

OH

H

O MeMe

88% Y

R

OH

H

O MeMe H

H

Me

H

O

HO

H

H

MeMe

HO

1. H2, Pd/C

2. LiAlH4

86% Y

1. Swern

2. KOH, Bu4NOH

74% Y

2 steps to hirsutene

Page 28: Career of Mike Krische-full slides

Research Areas

Catalytic Conjugate Addition-Electrophilic Trapping Metal-Catalyzed/Anion Radical [2+2] Cycloaddition

Nucleophilic Catalysis via Phosphine Conjugate Addn Hydrogen Mediated C-C Bond Formation

Excludes: Supramolecular Chemistry

R

O

Electrophile

n

ER

O

nR'

MR' R

O

O

R'

H H

R

O

R'

O

seminal publication: JACS 2003, 125, 1110. seminal publication: JACS 2001, 123, 6716.

full article: JACS 2004, 126, 9448.

R

O

X

R'O

Bu3PR

O

X

R'O

n n

seminal publication: JACS 2002, 124, 2402.

Transfer Hydrogenation ACIE 2009, 48, 34. (review)

JACS 2000, 122, 5006.; JACS 2002, 124, 5074. (selected publications)

R

O

R'

ORh/Ir

H2

O

R

HO R'

reviews: Acc. Chem. Res. 2004, 37, 653.

Acc. Chem. Res. 2007, 40, 1394.

Page 29: Career of Mike Krische-full slides

"...More than half of the chiral compounds produced industrially from

- OL 2006, 8, 519

the focus of research in our laboratory..."

Inspired by this prospect, hydrogen-mediated C-C bond formation has become

This suggests an equally powerful approach to reductive C-C bond formation...

prochiral substrates are made via asymmetric hydrogenation.

Page 30: Career of Mike Krische-full slides

Hydrogenation

Background

J. Am. Chem. Soc. 2002, 124, 15156.

Rhodium(I) Iridium(I)

heterolytic hydrogen activation

5s04d8 6s04f145d8

LnM X

H2

LnM X

H

H

baseLnM H

Motivation

H2 is completely atom economical

No waste is generated

On rhodium and iridium

weak -donor stronger -donor due to relativisitic effects

Page 31: Career of Mike Krische-full slides

Hydrogenation

Seminal Publication

Reductive aldol

Ph

O10 mol% Rh(COD)2OTf

24 mol% (p-CF3Ph)P ligand

1 atm H2, 30 mol% KOAc

DCE, 25 C

Ph

O

71% Y, syn:anti 24:1

J. Am. Chem. Soc. 2002, 124, 15156.

O H OH

Ph

O5 mol% Rh(COD)2OTf

12 mol% (p-CF3Ph)P ligand

1 atm H2, 50 mol% KOAc

DCE, 25 C

Ph

O

Me

92% Y, syn:anti 1.8:1

H

O

NO2

OH

NO2

Scope

Ph

O

OHPh

O

Me

OH

OMe

Ph

O

Me

OH

Me

75% Y, syn:anti 1.7:1 44% Y, syn:anti 2:189% Y, syn:anti 10:1

Me

O

Me

OH

NO2

70% Y, syn:anti 2:1

Page 32: Career of Mike Krische-full slides

Hydrogenation

Mechanism

Proposed mechanism

J. Am. Chem. Soc. 2002, 124, 15156.

Ph

O

O

LnRhI

LnRhI(H)2

Ph

OH

O

H

Ph

O

H

RhILn

H2

H

H

O

RhIII

Ln H

H

Ph

O

OH

adding base slows

down conjugate reduction

Phosphine ligand affects reactivity

Ln yield

PPh3 59%

P(p-CF3Ph)3 89%

Increasing Lewis acidity of Rhimproves aldehyde coordination

Triaryl phosphines do not add to substrate

Baylis-Hillman cyclization-conjugatereduction is not observed

Page 33: Career of Mike Krische-full slides

Hydrogenation

Improvements

syn-Selectivity improved for intermolecular reaction

J. Am. Chem. Soc. 2002, 124, 15156.

Me

O5 mol% Rh(COD)2OTf

12 mol% ligand

1 atm H2, Li2CO3

CH2Cl2, 25 C

Me

O

Me

92% Y, syn:anti 1.8:1

H

O

NO2

OH

NO2

ligand yield dr

(p-CF3Ph)3P 70 2:1 *from prev work

Ph3P 31 3:1

(2-Fur)Ph2P 24 6:1

(2-Fur)2PhP 52 15:1

(2-Fur)3P 74 19:1

increasing

-acidity

OO

Stereochemical rational for anti-Felkin model

MeRhLn

Me

R

H

Z-enolate is kinetic Zimmerman-Traxler TS

enolization and aldolization are irreversible

ORhLn

MeMe

Org. Lett., 2006, 8, 519.

Page 34: Career of Mike Krische-full slides

Hydrogenation

Enantioselective Reductive Aldol

Development of a chiral ligand

J. Am. Chem. Soc. 2008, 130, 2746.

Me

O5 mol% Rh(COD)2OTf

12 mol% ligand

1 atm H2, Li2CO3

CH2Cl2, 25 C

O

MeH

OOH

MeN

O

O

N

O

O

Commercially available chiral ligands are too -acidic: only trace amount of product observed

Catalyst development based on TADDOL scaffold

O

P

OO

O

R

R

R R

R R

Ar

monodentate ligand

independent modification sites

Page 35: Career of Mike Krische-full slides

Hydrogenation

Enantioselective Reductive Aldol

TADDOL-like phosphonite ligand evolution

J. Am. Chem. Soc. 2008, 130, 2746.

O

P

OO

O

Me

Me

Me Me

Me Me

Ar

O

P

OO

O

R

R

Me Me

Me Me

Ar

O

P

OO

O

Me

Me

R R

R R

Arketal aryl carbinol

O

O

S

O

O

Me

Me

O

O

Et

Et

O

O

i-Pr

i-Pr

O

Me Me

O

Et Et

O

Ph Ph

64% Y, 66% ee

75% Y, 75% ee

76% Y, 69% ee

90% Y, 59% ee

64% Y, 66% ee

65% Y, 86% ee

64% Y, 66% ee

32% Y, 66% ee

15% Y, 30% ee

Page 36: Career of Mike Krische-full slides

Hydrogenation

Enantioselective Reductive Aldol

TADDOL-like phosphonite ligand: optimized structure

J. Am. Chem. Soc. 2008, 130, 2746.

O

P

OO

O

Et

Et

Me Me

Me Me

S

90% Y, 92% ee

optimized

ligand

Enantioinduction results from C2-symmetric catalyst: Rh(COD)Ln2OTf: crystal structure

top front side

Page 37: Career of Mike Krische-full slides

Hydrogenation

Reductive Rh-Alkyne Coupling

Reductive 1,3-diyne coupling to carbonyls

5 mol% Rh(COD)2OTf

10 mol% Ph3P

1 atm H2, DCE, 25 C

79% Y

J. Am. Chem. Soc. 2003, 125, 11488.

Ph

Ph

Ph

O

O

H

Ph Ph

OH

O

Ph

Enantioselective with chiral ligand

5 mol% Rh(COD)2OTf

10 mol% (R)-Cl-OMe-BIPHEP

1 atm H2, DCE, 25 C

74% Y, 91% ee

Ph

Ph

Ph

O

O

H

Ph Ph

OH

O

Ph

MeO

Cl

MeO

Cl

PPh2

PPh2

(R)-Cl-OMe-BIPHEP

Page 38: Career of Mike Krische-full slides

Hydrogenation

Reductive Rh-Alkyne Coupling

Selectivity

J. Am. Chem. Soc. 2003, 125, 11488.

5 mol% Rh(COD)2OTf

10 mol% (R)-Cl-OMe-BIPHEP

1 atm H2, DCE, 25 C

R

R'

Ph

O

O

H

R R'

OH

O

Ph

Org. Lett. 2006, 8, 3873.

Me Ph

OH

O

Ph

Ph Me

OH

O

Ph

t-Bu Ph

OH

O

Ph

n-Pr Ph

OH

O

Ph

Ph n-Pr

OH

O

Ph

Ph t-Bu

OH

O

Ph

80% Y, 5.2:1 64% Y, 4:1 57% Y, >99:1

Page 39: Career of Mike Krische-full slides

Hydrogenation

Reductive Rh-Alkyne Coupling

Reductive acetylene coupling: the effect of counterions

5 mol% Rh(COD)2SbF6

5 mol% BIPHEP

1 atm H2, DCE, 25 C

J. Am. Chem. Soc. 2006, 128, 16041.

O(CH2)2Ph

O

O

H

OH

O

O(CH2)2PhHC CHPh3COOH, Na2SO4

counterion yield

0

OTf 32

41

51

noncoordinating

ligands

Cl

BF4

SbF6

Enantioselective using chiral ligand5 mol% Rh(COD)2SbF6

5 mol% (R)-OMe-BIPHEP

1 atm H2, DCE, 25 CO

H

OH

OTBDPSHC CHPh3COOH, Na2SO4

OTBDPS

77% Y, 89% ee

RhIIILnRhIIILn

O

OR

Page 40: Career of Mike Krische-full slides

Hydrogenation

Reductive Rh-Alkyne Coupling

Enyne coupling

J. Am. Chem. Soc. 2003, 125, 11488.

2 mol% Rh(COD)2OTf

2 mol% (R)-Xylyl-WALPHOS

1 atm H2, DCE, 60 oC

R

OR"

O

O

R'

R O

OR'

Org. Lett. 2006, 8, 3873.

R' OH1 mol% PH3CCO2H

FeH

PAr2

Me

PAr2Ar = 3,5-xylyl

WALPHOS

Ph O

OMe

Me OH

O

OMe

Me OH

BocHNO

Me OH

O

O

OMe

Me OH

Scope

n-C4H9

O

OMe

Et OH

AcOO

OMe

OH

AcOO

OMe

Ph OH

AcO

92% Y, 92% ee 88% Y, 90% ee 80% Y, 91% ee 96% Y, 91% ee

97% Y, 86% ee 85% Y, 88% ee 73% Y, 91% ee

Page 41: Career of Mike Krische-full slides

Hydrogenation

Reductive Rh-Alkyne Coupling

How are over-addition and over-reduction avoided?

J. Am. Chem. Soc. 2004, 126, 4664.

5 mol% Rh(COD)2OTf

5 mol% BIPHEP

1 atm H2, DCE, 25 C

Ph

Ph

Ph

O

O

H

R R'

OH

O

Ph

RhIR'

OH

O

Ph

R

RhIIIR O

Ph

R' OH

RhIR O

OR'

R' OH

R

R

RhIII

Competition experiments

pre-equilibrium/exchange of -unsaturated substrates prior to C-C bond formation

1 equiv1 equiv

Ph

1 equiv

Ph

Ph Ph

OH

O

Ph

Ph O

PhPh

OH

not formed

59% Y

5 mol% Rh(COD)2OTf

5 mol% BIPHEP

1 atm H2, DCE, 25 C

Ph

O

O

H

1 equiv1 equiv

Ph

1 equiv

Ph

Ph O

PhPh

OH

not formed

46% Y

PhPh

Ph O

PhPh

OH

Page 42: Career of Mike Krische-full slides

Hydrogenation

Reductive Rh-Alkyne Coupling Mechanism

LnRhI LnRhIHBH R

R'

R

R'

HLnRhI

R'

R

RhIIILnH

R'

R

RhIIILn

H

O

O

R"

O

R''

O

H

R'

R

RhIIILn O

O

R"

H

O

O

H

R

R'

R

RhIIILn OH

O

R"

O

OH

H

R

HO R

O

R'

R

RhIIILn OH

O

R"

H2

H

R'

R

RhIIILn OH

O

R"

O

OR

H2

acid

slow

catalyzed

protonolysis

hydrogenolyticcleavage

R'

R

H OH

O

R"

Page 43: Career of Mike Krische-full slides

Hydrogenation

Reductive Rh-Alkyne Coupling

Reductive acetylene coupling

5 mol% Rh(COD)2SbF6

5 mol% BIPHEP

1 atm H2, DCE, 25 C

J. Am. Chem. Soc. 2006, 128, 16041.

O(CH2)2Ph

O

O

H

OH

O

O(CH2)2PhHC CHPh3COOH, Na2SO4

RhIIILn

RhIIILn

O

ESI-MS

O OR

Page 44: Career of Mike Krische-full slides

Hydrogenation

Reductive Ir-Alkyne Coupling

Iridium catalyzed reductive coupling of alkyl-substituted alkynes

2 mol% Ir(COD)2BARF

2 mol% DPPF

1 atm H2, PhMe, 60 C

J. Am. Chem. Soc. 2007, 129, 280.

OR'

O

O

R Et

O

OR'Et Et

2 mol% Ph3CCOOH

Et

HO R

PPh2

PPh2

Fe

DPPF

Stronger backbonding due to relativistic effects allows Ir to coordinate to less reactive substrates

Reaction is regioselective

82-93% Y

5 mol% Ir(COD)2BARF

5 mol% BIPHEP

1 atm H2, DCE, 80 C

OR'

O

O

R Ph

O

OR'R Me

5 mol% Ph3CCOOH

Me

HO R

78-97% Y

Ph

O

OEt

Me

HO R

93% Y

O

OEt

Me

HO p-OMePh

78% Y, 15:1

Me

MePh

O

OEt

Me

HO p-NO2Ph

78% Y, 15:1

Scope

Page 45: Career of Mike Krische-full slides

A Sneak Peek at Transfer Hydrogenation

Seminal Publication

Strategy

5 mol% RuBr(CO)3( 3-C3H5)

15 mol% t-BuPPh2

4 equiv i-PrOH

PhMe, 75 C 61-87% Y

Org. Lett, 2008, 10, 2705.

R

R'

O

HH

MLnOH

R'''R"H OH

H

R R'H2 source

The formation of homoallylic alcohols

R

R'

(CHO)n

or RCHO

OH

R

R R'

For more, read on...

Review article: "Catalytic Carbonyl Addition through Transfer Hydrogenation" ACIE 2009, 48, 34.