27
116 CAPITOLO 7: Sicurezza Intrinseca Ex i & EEx i Obbiettivi: Al termine di quest’unità, voi conoscerete “Sicurezza Intrinseca Ex i & EEx i” : a) procedure operative; b) le differenze tra “ib” e “ia” categorie di IS; c) l’importanza degli zener e delle superfici galvaniche; d) requisiti di installazione in relazione alla BS EN60079-14; e) requisiti di installazione in relazione alla BS EN60079-17.

Capitolo 7 - Sicurezza Intrinseca Ex i & EEx i

  • Upload
    aquos78

  • View
    247

  • Download
    1

Embed Size (px)

DESCRIPTION

Atex Course - Intrinsically Safety Ex-i

Citation preview

  • 116

    CAPITOLO 7: Sicurezza Intrinseca Ex i & EEx i

    Obbiettivi:

    Al termine di questunit, voi conoscerete Sicurezza Intrinseca Ex i & EEx i :

    a) procedure operative;

    b) le differenze tra ib e ia categorie di IS;

    c) limportanza degli zener e delle superfici galvaniche;

    d) requisiti di installazione in relazione alla BS EN60079-14;

    e) requisiti di installazione in relazione alla BS EN60079-17.

  • 117

    Sicurezza Intrinseca Ex i o EEx i

    La Sicurezza intrinseca un metodo ampiamente usato per protezione contro le esplosioni. Esso utilizzato solo per applicazioni di potenza molto bassa, e tipicamente sono desempio la strumentazione e i circuiti di controllo.

    Norme

    BS EN50 020: 2002 Sicurezza intrinseca i BS 5501: Parte 7: 1977 (EN50 020) Sicurezza intrinseca i

    BS EN60079-25: 2004 Apparecchi elettrici per atmosfere di gas esplosivo. Sistemi a sicurezza intrinseca BS 5501: Parte 9: 1982 (en50 039) Sistemi elettrici Sicurezza intrinseca i

    BS 1259: 1958 Apparecchi e circuiti elettrici per lutilizzo in atmosfere di gas esplosivo IEC 60079-11: 1999 Apparecchi elettrici per atmosfere di gas esplosivo - Parte 11: sicurezza intrinseca i

    BS EN60079-17: 2003 Apparecchi elettrici per atmosfere di gas esplosive. Parte 14 Installazioni elettriche in aree pericolose. (diverso dalle miniere).

    BS EN60079-17: 2003 Apparecchi elettrici per atmosfere di gas esplosive. Parte 17 ispezione e manutenzione di Installazioni elettriche in aree pericolose. (diverso dalle miniere).

    BS 5345: Parte 4: 1977 (superata)

    Codice di pratica per la scelta, linstallazione e manutenzione di apparecchi pressurizzati.

  • 118

    Definizioni

    BS EN50 020 definisce un circuito a sicurezza intrinseca come:

    Un circuito in cui n scintille n alcun effetto termico nelle condizioni di prova descritte nella norma (BS EN50020), incluso le condizioni di normale funzionamento e di guasto, sono capaci di causare laccensione di una data atmosfera esplosiva.

    Zone di utilizzo: 0,1 & 2 (Ex i a e EEx i a) 1 & 2 (Ex i b e EEx i b)

    Principi base di IS

    Un circuito a Sicurezza Intrinseca realizza la sicurezza mantenendo un livello di energia molto basso incapace di provocare il riscaldamento delle superfici, e scintille elettriche, e se capita, non ha sufficiente energia da accendere la pi facilmente infiammabile concentrazione di una miscela infiammabile. Questo garantito limitando voltaggio e corrente di alimentazione delle apparecchiature di una zona di pericolo. Per mantenere la sicurezza, di fondamentale importanza che questi livelli di tensione e corrente non siano normalmente superati, anche in condizione di guasto.

    I parametri del circuito, cio tensione, corrente, resistenza, induttanza e capacit sono fattori che vanno presi in considerazione nella progettazione di un circuito IS. La consultazione delle curve caratteristiche di accensione data dalla norma costruttiva (visibile nelle pag. 123 126 e 127), e lapplicazione degli appropriati fattori di sicurezza, garantiscono che i valori di sicurezza per questi parametri sono stabiliti durante la fase di progettazione.

    Un sistema IS, che comprende di solito uninterfaccia di sicurezza con larea pericolosa, cavi, scatole di derivazione e apparecchiatura di campo (area pericolosa), deve essere progettato in modo tale da evitare che si verifichi la possibilit di un guasto. In contrasto con altri metodi di protezione contro le esplosioni, La sicurezza intrinseca un concetto di sistema che si applica al complesso di tutto il sistema e non solo a qualsiasi elemento del sistema.

  • 119

    Gli apparecchi della zona di sicurezza collegati direttamente agli apparecchi della zona pericolosa sono conosciuti come apparecchi associati, e ogni voce marcata del sistema deve avere un certificato di conformit. Gli Apparecchi associati possono essere utilizzati nella zona pericolosa se installati all'interno di un altro metodo di protezione contro le esplosioni, ad esempio a prova di esplosione. In aggiunta, un certificato di sistema globale pu comprendere il sistema. Lalimentazione elettrica dellapparecchiatura, La tensione di alimentazione di apparecchi elettrici, che collegata ai terminali non - IS di relativa apparecchiatura, non deve essere maggiore della tensione Um segnata sulle etichette degli apparecchi associati. Il codice della pratica BS5345 consiglia che questo valore non deve superare 250Vrms. La corrente elettrica di corto circuito non deve essere superiore a 1500A.

    I vantaggi di IS sono:

    a) possibile manutenzione dal vivo; b) conveniente, certificazione dei contenitori non necessaria e possono

    essere utilizzati civetteria ordinaria. c) Sicurezza bassa tensione non pericolosa per il personale; d) Utilizzabile in zona 0.

    Barriere zener

    I difetti che possono compromettere la sicurezza del sistema IS sono la sovratensione o la sovracorrente, e la protezione contro queste condizioni garantita mediante l'uso di un'interfaccia, generalmente una barriera Zener, la cui costruzione sar considerata in termini dei suoi singoli componenti.

    Linterfaccia, che inserita tra gli apparecchi della zona di sicurezza e quelli della zona di pericolo, normalmente posta nella zona di sicurezza il pi vicino al confine con l'area pericolosa, ma pu essere posta in area di pericolo se installata in contenitori antideflagranti.

    Una semplice barriera zener ha tre componenti principali, (1) una resistenza, (2) un diodo zener, e (3) un fusibile, che devono avere tutti propriet infallibili. Infallibilit, della resistenza nel limitare la corrente, significa che in caso di guasto della stessa, il guasto deve dare un valore maggiore o circuito aperto. Chiaramente un guasto a un basso valore di resistenza o corto-circuito significa pi corrente nel circuito IS, che contrario al concetto di questo tipo di protezione. Linfallibilit sar soddisfatta usando un resistore di qualit a filo avvolto o a pellicola di metallo, e la sua potenza di funzionamento, richiesta dalla norma,

  • 120

    non dovrebbe superare il 2/3 del valore massimo quotato per uno specificato ambiente. Il componente seguente da considerare il diodo zener, Lo scopo quello di limitare la tensione disponibile per l'apparecchiatura nella zona pericolosa. Il diodo zener, un componente singolo, non considerato un componente infallibile, anchesso deve funzionare ai 2/3 della sua massima capacit. Per soddisfare linfallibilit, lo zener deve guastarsi in corto-circuito. Un guasto ad alta resistenza o circuito-aperto

    potrebbe consentire livelli di tensione oltre i limiti di sicurezza di "invadere" la zona pericolosa.

    Nota: Prove dei produttori hanno dimostrato che i diodi guastano virtualmente sempre in corto-circuito, ma non lo possono garantire. I diodi possono essere considerati infallibili solo quando due o pi sono messi in parallelo come discusso pi avanti.

    Il terzo componente, il fusibile, si trova allestremit dingresso (sicura) della barriera zener, la sua funzione di proteggere i diodi zener, e non di proteggere, per esempio, un corto-circuito nellapparecchiatura in campo. Linfallibilit del fusibile assicurata dallutilizzo del tipo ceramico a sabbia capace di interrompere un guasto superiore ai 4000. Un fusibile di questo tipo risolve il problema che pu accadere nei fusibili di altro tipo, cio la vaporizzazione con continuit conduttiva a seguito di un corto circuito.

    Come richiesto dalla norma, il fusibile incapsulato insieme agli altri componenti della barriera per scoraggiarne la sostituzione. La riparazione di una barriera zener non permessa, anche dal costruttore.

    Funzionamento della barriera zener

    In caso di un corto-circuito sviluppato nellapparecchio nella zona di pericolo, o nei cablaggi IS, la resistenza in serie alla barriera zener limita la corrente di corto-circuito a un livello sicuro mantenendo cos lintegrit del circuito.

    Se la tensione supera il voltaggio massimo del sistema IS invadendo il circuito allingresso dei terminali della barriera zener, questa innesca il diodo zener, e la corrente di guasto risultante connessa a terra.

  • 121

    Alleccessivo voltaggio , quindi, impedito di raggiungere l'apparecchio in zona pericolosa.

    Tipologie di IS

    Sono disponibili due tipi di categorie di sicurezza intrinseca. ia e ib, il livello di sicurezza fornito da ciascuna di esse dipende dal numero dei componenti di guasto che vengono considerate. La prima categoria, ib, pu mantenere la sicurezza nellavvenimento di un guasto. Alla seconda categoria, ia, richiesto che mantenga la sicurezza con due guasti simultanei. Chiaramente, per fare che una barriera zener (interfaccia) mantenga la sicurezza con due guasti, sono necessari diodi zener addizionali dato che sono componenti facilmente guastabili.

    Quindi, laggiunta di un secondo diodo zener, collegato in parallelo con il primo, soddisfa la richiesta della sicurezza intrinseca di categoria ib nella quale la sicurezza deve essere garantita con un guasto. Un terzo diodo zener collegato in parallelo agli altri due soddisfa la condizione per la sicurezza intrinseca di categoria ia nella quale la sicurezza deve essere garantita con due guasti.

  • 122

    Tipologie di IS (continuazione)

    Sicurezza intrinseca di categoria ib pu essere utilizzata in Zone 1 e 2, ma non in zona 0, e sicurezza intrinseca di categoria ia permessa in Zone 0, 1 e 2.

    Curve di corrente minima di accensione

    Dato che necessario limitare tensione e corrente in un circuito IS per assicurare il funzionamento in sicurezza, la progettazione del circuito deve basarsi sulla curva della corrente minima di accensione data dalla norma costruttiva e riprodotta a pag.123. Le pagine, 126 e 127 illustrano le curve per determinare rispettivamente linduttanza e la capacita massime del circuito.

    Circuito resistivo

    Per un circuito puramente resistivo, se la tensione nota, la corrente massima del circuito pu essere determinata dal grafico, che abilita la selezione della corretta interfaccia.

    Cos, per un circuito puramente resistivo in una Zona pericolosa IIC, sintende che sar utilizzata una barriera zener da 28V, 300ohm. Un fattore di sicurezza del 10% deve essere applicato alla tensione di questo dispositivo poich un aumento della sua temperatura pu aumentare la tensione dinnesco dei diodi zener. Applicando un fattore di sicurezza del 10% (1.1x28V=30,8V) si ottiene un valore di 30,8 V, che viene poi situato sull'asse orizzontale (tensione) del grafico. Muovendosi verticalmente da questo punto verso la curva IIC, e poi orizzontalmente dal punto di contatto con la curva verso lasse verticale (corrente), otteniamo una corrente di sicurezza di 140mA. Un fattore di sicurezza pari a 1,5 va applicato a questo valore, cio 3/3 di 140mA uguale a 93,33mA. Applicando la legge di ohm, 28V/99,33mA=300ohm, la stessa resistenza della barriera zener, stato verificato che linterfaccia da 28V, 300ohm adatta a mantenere lintegrit del circuito IS in una zona di pericolo IIC.

  • 123

    Curve di corrente minima di accensione. Circuito resistivo

  • 124

    Apparecchio semplice

    Lenergia di una scintilla di un circuito IS, durante il funzionamento normale o un guasto, insufficiente a causare laccensione di un pericolo circostante. Lintroduzione di un interruttore, che nel normale funzionamento produce scintille e non dissipa potenza. Non altera la situazione, e di fatto, ogni dispositivo che resistivo di natura e non immagazzina energia pu essere aggiunto al circuito senza mettere in pericolo l integrit del circuito di sicurezza.

    I dispositivi come questi sono nominati apparecchi semplici e non richiedono certificazione o marcatura. Tali dispositivi passivi includono interruttori, cassette di derivazione, terminali, potenziometri e semplici dispositivi semiconduttori. Apparecchi semplici possono includere anche fonti di energia immagazzinata, per esempio, condensatori a induttanze con parametri ben definiti, il valore di questi va considerato durante la progettazione dellinstallazione di un IS. Sorgenti che generano energia, quali termocoppie e fotocellule, vanno accomunate come apparecchi semplici purch non generino pi di 1,5V, 100mA e 25mW. Ogni capacit e induttanza in questi dispositivi va considerata durante la progettazione dellinstallazione.

    Gli apparecchi semplici sono normalmente inseriti nella classe di temperatura T4, ma le cassette di derivazione e gli interruttori vanno in T6 perch non contengono componenti dissipanti calore.

    Dato che gli apparecchi semplici non richiedono di essere certificati, nella documentazione del sistema va inserita una giustificazione per il loro utilizzo.

    Custodie

    La protezione minima degli ingressi per custodie di circuiti IS IP20, ma le condizioni ambientali possono richiedere una protezione pi elevata.

    Magazzini di energia

    Dispositivi dimmazzinaggio di energia come induttanze o condensatori hanno il potenziale per sconvolgere la sicurezza di un sistema di IS. Lenergia pu essere immagazzinata in questi dispositivi per un certo periodo di tempo e poi rilasciato a un livello maggiore alla, per esempio, rottura di un cavo del IS a causa di un guasto o scollegamento diretto ai morsetti. Ci potrebbe verificarsi Senza riguardo dei vincoli di progettazione di tensione e corrente, e causare l'accensione di un gas infiammabile circostante. All'adozione di misure devono, essere pertanto applicate per contrastare questo problema in fase di progettazione. Apparecchiature di campo che hanno capacit di immagazzinare energia, cio hanno qualche induttanza interna e capacit, sono definitinon semplici" e devono essere certificate.

    Cavi, percorsi particolarmente lunghi tra l'interfaccia e l'apparato nella zona di pericolo, avranno apprezzabile induttanza e capacit che devono essere prese in considerazione nella fase di progettazione. Lenergia sar conservata in condizioni di funzionamento normale, ma sar maggiore in condizioni di guasto. La tensione influenzer quale parametro predominante, cio per una tensione di circa 5V, l'induttanza sar predominante, ma a 28V, sar predominante la capacit.

  • 125

    Dove in campo sono utilizzati solo apparecchi semplici, linduttanza e la capacit presenti saranno dovute al solo cavo, se il percorso breve questi parametri saranno trascurabili. I parametri elettrici Cc, Lc e Lc/Rc per il cavo tipico strumentale con corde adiacenti o tuistate saranno determinati da:

    a) ottenere i parametri peggiori dal produttore di cavi, o b) la misurazione dei parametri utilizzando un campione del cavo, oppure c) l'adozione dei seguenti valori-

    Induttanza, (L) 1microH/m Capacit, (C) 200picoF/m Induttanza/resistenza (L/R) 30microH/m

    Dove gli apparecchi in campo hanno sia induttanza sia induttanza apprezzabili, importante che la combinazione di in/capacit di cavo e apparecchio in campo non superi il valore specificato dal costruttore dellinterfaccia.

    Valutazione dei parametri del cavo

    Induttanza

    Linduttanza massima dei cavi di collegamento pu essere stabilita dalla curva del circuito induttivo dopo la prima valutazione della massima corrente. Assumendo uninterfaccia con unuscita massima di 28V e 300ohm di resistenza, la corrente massima :

    28V / 300ohm = 93,33mA

    Applicando un fattore di sicurezza di 1,5:

    1,5 x 93,33mA = 140mA

    Dal grafico di pag. 126, la massima induttanza di sicurezza per il cavo di collegamento, con un apparecchio semplice in unarea di pericolo, sar approssimativamente di 4,0mH. Questo valore trovato proiettando verticalmente da 140mA dallasse della corrente, e quindi orizzontalmente verso lasse dellinduttanza dal punto di contatto con la curva IIC.

    Capacit

    Per circuiti capacitivi, la procedura la stessa. Il fattore di sicurezza di 1,5 applicato alla tensione della barriera zener di 28V.

    Cio 1,5 x 28V = 42V

    Usando la curva IIC nel grafico di pag. 127, la capacit di sicurezza massima per il cavo di collegamento, con un apparecchio semplice in unarea di pericolo, sar approssimativamente di 0,08microF.

  • 126

    La comparazione tra i valori massimi trovati e i dati prodotti dal costruttore dei cavi stabilisce se il percorso del cavo di collegamento soddisfacente.

    Curve per circuito induttivo per Gruppo II

  • 127

    Curve per circuito induttivo per Gruppo II

  • 128

    Terra

    Una terra di alta-integrit dedicata un fattore vitale al mantenimento della sicurezza in un circuito IS, particolarmente quando sono usate barriere zener. Barriere galvaniche, tuttavia, utilizzano un differente principio (discusso pi avanti nel capitolo) e, quindi, una terra di alta-integrit non necessaria, ma la messa a terra va utilizzata per eliminare le interferenze.

    La barra di terra delle barriere zener montata e isolata dalla carpenteria circostante e collegata direttamente al punto di terra principale attraverso un collegamento di terra separato. Due cavi, ciascun assicurato a un distinto punto alle due estremit, sono normalmente utilizzati per collegare la barra di terra delle barriere al punto di massa principale per facilitare la prova di resistenza, che deve essere periodicamente eseguito. La resistenza tra la barra di terra delle barriere e il punto di terra principale non dovrebbe essere maggiore di 1 ohm. Un valore di 0,1 ohm non irrealistico.

    Il cavo di terra deve essere isolato, e lisolamento integro, lungo la sua intera lunghezza in modo che il contatto con la carpenteria metallica sia evitato: Dove il rischio di danneggiamento elevato, deve essere fornite protezioni meccaniche per i cavi.

    Il conduttore di terra deve avere la capacit di condurre la massima corrente di guasto e avere una sezione appropriata (csa) mediante:

    a) almeno due conduttori di rame separati da 1,5mmq (minimo), o b) almeno un conduttore di rame da 4mmq (minimo).

    Nota: Il circuito IS in unarea di pericolo deve essere in grado per sostenere un isolamento verso terra di 500V.

  • 129

    messa a terra e collegamento

  • 130

    messa a terra e collegamento

  • 131

    Isolamento galvanico

    Anche se le barriere zener sono state, e continuano a essere, ampiamente usate nell'industria, hanno particolari limitazioni che sono:

    a) Una terra dedicata ad alta-integrit necessaria a deviare le correnti di guasto lontano dalla zona di pericolo;

    b) Esiste un collegamento diretto tra zone di pericolo, di sicurezza e terra, che tende ad applicare vincoli sul resto del sistema;

    c) Le apparecchiature per aree pericolose devono essere in grado di sostenere un isolamento verso terra di 500V.

    I dispositivi che superano queste difficolt sono le interfacce disolamento in genere rel, opto isolatori e trasformatori.

    Rel/trasformatori disolamento

    Nellesempio sottoesposto, lisolamento tra zona di pericolo e zona di sicurezza ottenuto con trasformatori e rel approvati ad alta-integrit. La progettazione di questi dispositivi assicura un isolamento tale che un alto voltaggio nei circuiti IS non possa raggiungere le apparecchiature della zona pericolosa.

    Opto - accoppiatore/trasformatore disolamento

    Questo metodo comprende da un opto-isolatore certificato e da un trasformatore certificato. La luce (o infrarosso) emessa dal LED quando polarizzato cade sul foto transistor che schermato dalla luce esterna.

  • 132

    Installazione di questi apparati

    Gli apparecchi che costituiscono l'installazione di tipo IS, vale a dire apparecchi in campo, apparecchi associati e le unit di interfaccia, devono essere elementi certificati che sono stati fabbricati in conformit delle norme in materia (vedi pagina 117). Tali apparecchi, compresi i cavi di collegamento, devono essere installati in accordo con listruzione del costruttore, la documentazione di progetto e le raccomandazioni della BS EN60079-14. Installazioni esistenti, tuttavia, devono essere state installate secondo il codice di pratica BS5345.

    Requisiti dinstallazione per i cavi

    I conduttori dei cavi dei circuiti IS devono essere isolati con isolante elastomerico o termoplastico con uno spessore minimo di 0,3mm. I cavi devono avere un isolamento verso terra, schermo e terra, conduttori e schermo di 500Va.c. o 750Vd.c.. In alternativa possono essere utilizzati cavi a isolamento minerale. I conduttori dei cavi nella zona pericolosa, e questo include i singoli fili dei cavi, devono avere un diametro minimo di 0,1mm. La separazione dei singoli fili di cavi deve essere evitata, per esempio, con l'uso di capocorda terminali. Sebbene non sia un requisito obbligatorio, il colore del cavo (e dei terminali) lazzurro.

    Sezione minima dei conduttori

    Sebbene il codice di pratica BS5345 sia stato ritirarlo ancora rilevante per gli impianti esistenti installati in conformit con le sue raccomandazioni. La tabella seguente, presa dalle BS5345, specifica la corrente massima e la sezione minima per i conduttori di rame in base alle classi di temperatura T1 T5 in modo che i cavi possono funzionare all'interno della classe di temperatura stabilita per il sistema IS quando conducono la massima corrente di guasto.

    Protezione meccanica

    I cavi di collegamento dei circuiti IS devono avere una guaina isolante addizionale in modo da mantenere lintegrit del sistema, cio per pervenire il contatto con i cavi di altri circuiti, o la terra, conseguentemente a un danneggiamento, e assicurare che i parametri dinduttanza e capacit non superino i limiti del circuito. La protezione meccanica con cavi schermati o armati non richiesta a eccezione che per circuiti IS multi conduttori in Zona 0.

  • 133

    Segregazione tra circuiti IS e non IS

    La segregazione tra circuiti IS e non IS sia in zona di sicurezza che in zona di pericolo importante per evitare la possibilit di trasmissione di tensioni elevate da circuiti non IS a circuiti IS. Questo deve essere realizzato con uno dei seguenti metodi.

    a) Adeguata separazione tra cavi di circuiti IS e non IS; o b) Posizionare i circuiti IS in modo da evitare il rischio di danneggiamenti meccanici; o c) Luso di armatura, guaina metallica, o cavi schermati per entrambi i circuiti IS e non

    IS.

    In aggiunta a queste richieste, i cavi non devono contenere conduttori sia di circuiti IS sia di circuiti non IS.

    Dove i cavi dei circuiti IS e i cavi di altri circuiti utilizzano lo stesso condotto, fascio o passerella, entrambe i circuiti devono essere separati tramite un separatore metallico, collegato a terra. La separazione non necessaria se i cavi IS o i cavi degli altri circuiti sono armati, schermati o protetti da guaina metallica.

    Larmatura dei cavi va sicuramente collegata alla terra.

    Conduttori del cavo non utilizzati

    Dove cavi multi conduttore hanno uno o pi conduttori inutilizzati, va utilizzato, per mantenere lintegrit dellinstallazione, uno dei seguenti metodi .

    a) collegato a terminali separati a entrambe le estremit in modo che le anime siano isolate uno dall'altra e dalla terra, o

    b) Collegare allo stesso punto di terra della barra di terra IS, se applicabile, i conduttori inutilizzati ad una estremit del cavo, tuttavia, bisogna isolarli dagli altri e dalla terra tramite lutilizzo di terminali adatti.

    Schermi dei cavi

    Dove i cavi dinterconnessione di circuiti IS hanno schermi complessivi, o gruppi di conduttori con schermi individuali, gli schermi devono essere messi a terra in un solo punto, come specificato nello schema di circuito per l'installazione, che di solito la bara di terra delle barriere zener. Se, tuttavia, il circuito IS isolato da terra, il collegamento degli schermi al sistema equipotenziale deve essere fatto in un solo punto.

    Il codice di pratica BS5345 specifica che, prima della connessione degli schermi della barra di terra barriera, una prova della resistenza di isolamento (IR) deve essere effettuata tra ogni coppia di schermi. La lettura della prova non deve essere inferiore a 1Mohm/Km con misura a 500V e 20 C per 1 minuto.

    Tutti gli schermi devono essere isolati dalle masse metalliche esterne, cio canaline, etc..

  • 134

    Tensione indotta

    I circuiti IS vanno installati con metodi che escludano interferenze elettriche o magnetiche esterne. Generalmente, tensioni indotte nei cavi dinterconnessione IS non sono probabili si possono verificare se cavi IS sono posizionati paralleli e vicino a cavi unipolari che trasportano forti correnti o in sovraccarico. Un'adeguata separazione tra circuiti differenti pu superare questa difficolt cos come l'uso di schermi e / o conduttori intrecciati.

    Marcatura dei cavi

    L'isolamento della guaina o conduttore di cavi dei circuiti IS pu essere colorato in blu chiaro in modo che possano essere facilmente identificati come parte di un circuito IS. Quindi, per evitare confusione, cavi blu chiaro non devono essere utilizzati per altri tipi di circuiti.

    Marcatura di cavi IS non necessaria se sia i cavi IS che non IS sono armati, schermati, o di guaina metallica.

    Dove circuiti IS e non IS si dividono lo stesso contenitore, ad esempio quadri di controllo e misura, quadri, apparecchi di distribuzione, etc., vanno implementate misura appropriate per distinguere i due tipi di circuiti ed evitare confusione laddove sia presente il cavo blu del neutro. Queste misure sono:

    a) Contenere i cavi IS in canale blu chiaro; b) Identificazione; c) Sistemazione chiara e separazione fisica.

    Cavi multipolari

    Pi di un circuito IS pu percorrere un cavo multipolare ma, circuiti IS e non IS non possono percorrere lo stesso cavo multipolare. Lisolamento dei conduttori deve avere un adeguato spessore radiale ma non inferiore a 0,2mm e capace di sopportare una prova a tensione a.c. rms uguale al doppio della tensione nominale del circuito IS ma non inferiore a 500V.

    Prove richieste

    I cavi multipolari devono superare le seguenti prove dielettriche.

    a) 500Vr.m.s. (o 750Vd.c.) applicati a tutti i conduttori collegati insieme e agli schermi e/o armatura del cavo collegati assieme.

    b) Per cavi multipolari senza schermi individuali per ogni circuito, 1000Vr.m.s. (o 1500Vd.c.) applicati a met dei conduttori collegati assieme e ai rimanenti sempre collegati assieme.

  • 135

    I metodi utilizzati per i test di cui sopra devono essere eseguiti come specificato nella pertinente norma cavi, ma dove nessun metodo specificato, la prova deve essere conforme al punto 10.6 della IEC 60079-11.

    Condizioni di guasto (cavi multipolari) Il tipo di cavo multipolare utilizzato nellinstallazione IS avr un'influenza sulle eventuali anomalie, che pu essere presa in considerazione.

    Cavo tipo A: Se i circuiti IS sono schermati singolarmente con una superficie minima di copertura del 60%, nessun guasto tra circuiti viene preso in considerazione.

    Cavo tipo B: Se il cavo fissato e protetto contro danneggiamenti meccanici e nessuno dei suoi circuiti ha una tensione superiore a 60V, nessun guasto tra circuiti viene preso in considerazione.

    Cavo tipo C: Per questo tipo di cavo, ma senza le specifiche richieste per i cavi di tipo A e B, due corto circuiti tra conduttori e pi di quattro circuiti aperti simultanei dei conduttori deve essere preso in considerazione. Nessun guasto deve essere considerato se tutti i circuiti del cavo sono identici e hanno un fattore di sicurezza quattro volte quello richiesto per le categorie ia o ib.

    Dove i cavi multipolari non rispondono ai requisiti specificati a pag. 134, il numero dei corti circuiti tra conduttori e circuiti aperti simultanei dei conduttori non ha limiti.

    Come in precedenza affermato, la BS5345 stata ritirata, ma ancora rilevante sugli impianti e installazioni esistenti, e include le seguenti raccomandazioni per i cavi multipolari.

    Dove un cavo multipolare, posato in Zona 0, con pi di un circuito IS, essenziale che nessuna combinazione di guasti tra circuiti IS allinterno del cavo causi una condizione di insicurezza. Una deroga a tale requisito si applica se:

    a) Il rischio di danneggiamenti meccanici al cavo minimo o, dove il rischio di danneggiamento alto, sia adottata una protezione addizionale; e

    b) I cavi siano sicuramente fissati su tutta la lunghezza; e

    c) Ogni circuito IS utilizza un cavo con conduttori adiacenti per tutta la sua lunghezza; e

    d) Nessuno dei circuiti IS sia a pi di 60V di picco durante sia il normale funzionamento sia in condizioni di guasto.

    e) I conduttori di ogni circuito IS siano allinterno di uno schermo isolato e messo a terra come in precedenza discusso.

  • 136

    Distanza di gioco

    Il gioco tra i conduttori nudi dei cavi, collegati ai terminali, e la terra o altre parti conduttive non deve essere inferiore a 3mm.

    Il gioco tra i conduttori nudi dei cavi di separati circuiti IS, collegati ai terminali, non deve essere inferiore a 6mm.

    Quando circuiti IS e non IS occupano la stessa custodia ci deve essere unadeguata separazione tra i due tipi di circuito. Ci pu essere ottenuto da ciascuna delle posizioni seguenti:

    a) Un gioco di 50mm tra le morsettiere IS e non IS. I terminali e il cablaggio vanno posti in modo tale che il contatto tra i circuiti non sia probabile, devono staccarsi un filo da entrambi circuiti.

    b) Una partizione isolata o una partizione in metallo messa a terra situata tra i terminali la IS e non IS. Le pareti divisorie devono raggiungere le pareti della custodia entro 1,5 mm, o mantenere almeno 50 millimetri di fuga tra i terminali in tutte le direzioni intorno alla partizione.

    Per quanto riguarda gli impianti o installazioni esistenti, la distanza di gioco pu essere in accordo con il codice di condotta BS 5345 come illustrato nella tabella sottostante.

    Tensione di picco (V)

    Distanza in aria minima tra terminali di circuiti separati

    (mm) Distanza in aria minima tra

    terminali e terra (mm)

    0 90 6 4

    90 375 6 6

    Strumenti di prova

    Strumentazione elettrica di prova IS disponibile per verificare le installazioni in presenza di gas infiammabile. Tali strumenti hanno parametri in uscita non superiori a 1,2V, 0,1, 0,25mW e incapaci di immagazzinare pi di 20microJ di energia. Va ricordato, tuttavia, che esiste la possibilit che i parametri, induttanza e capacit, dei circuiti in prova sia abbastanza grande da modificare lenergia della scintilla prodotta nei puntali degli strumenti e causare laccensione del gas infiammabile circostante. Prove in presenza di gas infiammabile, tuttavia, richiede attente considerazioni del circuito da provare.

  • 137

    BS EN60079-17: Tavola 2: Schede Ispettive per installazioni EX i

    Controllare che: Grado dispezione

    Dettagliato Semplice Visivo A APPARECCHI

    1 La documentazione dei circuiti e/o apparecchi appropriata allarea di classificazione * * *

    2 Apparecchiature installate sono quello previsto nella documentazione - Solo apparecchi fissi * *

    3 Corretti categoria e gruppo di appartenenza del circuito e/o apparecchi * * 4 Corretta classe di temperatura delle apparecchiature * * 5 Limpianto chiaramente identificato * * 6 Non ci sono modifiche non autorizzate * 7 Non ci sono modifiche non autorizzate visibili * *

    8 Barriere di sicurezza, rel e altri dispositivi di limitazione dellenergia sono di tipo approvato, impianto in accordo con i requisiti di certificazione e messi sicuramente a terra dove richiesto

    * * *

    9 I collegamenti elettrici sono serrati * 10 I circuiti stampati sono puliti e non danneggiati *

    B INSTALLAZIONE

    1 I cavi sono istallati in accordo con la documentazione * 2 La schermatura dei cavi messa a terra in accordo con la documentazione * 3 Non ci sono ovvi danneggiamenti nei cavi * * * 4 Le tenute della canalizzazione, condotti tubi e/o conduit soddisfacente * * * 5 Le connessioni punto a punto sono tutti corrette *

    6 La continuit di terra soddisfacente (esempio i collegamenti sono serrati e i conduttori sono di sezione adeguata) *

    7 Il collegamento di terra mantiene lintegrit del tipo di protezione * * *

    8 Il circuito a Sicurezza Intrinseca isolato dalla terra o collegate a terra in un solo punto (fare riferimento alla documentazione) * 9 In cassette di distribuzione comuni o cubicoli rel la separazione tra circuiti a

    sicurezza intrinseca e non mantenuta *

    10 Dove applicabile, la protezione dellalimentazione elettrica dai corto-circuiti in accordo con la documentazione *

    11 Particolari condizioni di utilizzo (se applicabile) sono soddisfatte * 12 I cavi inutilizzati sono correttamente terminati * * *

    C AMBIENTE

    1 Le apparecchiature sono adeguatamente protette dalla corrosione, condizioni climatiche, vibrazioni e altri fattori avversi * * *

    2 Nessun accumulo eccessivo di polvere e sporcizia * * *

  • 138

    A

    ppa

    recc

    hi A

    rea

    Sicu

    ra

    A

    Sche

    da d

    ispe

    zio

    ne

    IS

    Nr

    .

    Posi

    zione app

    are

    cchi

    o

    Sche

    ma co

    llega

    mento

    ca

    vo N

    r.

    Cass

    etta

    de

    rivazi

    one JB

    N

    r.

    Sche

    ma ci

    rcuito

    st

    rum

    en

    to N

    r.

    Num

    ero

    d

    ide

    ntif

    ica

    zione Co

    rretta

    mente

    identif

    icato

    Ne

    ssu

    n

    dann

    egg

    iam

    ento

    Monta

    ggio

    si

    curo

    su

    lla

    barr

    a di

    te

    rra

    Corr

    etta

    mente

    identif

    icato

    Colle

    gam

    enti

    alla

    co

    r-re

    tta unit

    e

    te

    rmin

    ali

    Corr

    etta

    mente

    cr

    impa

    ti e se

    rra

    ti ai t

    erm

    inali

    Ne

    ssu

    n

    dann

    egg

    iam

    ento

    Dis

    tanze

    O

    K

    Data

    Ispe

    ttore

    in

    izia

    le

    Barr

    iere

    o

    re

    l o ap-

    pare

    cchi

    di

    are

    a si

    -

    cura

    Con

    dutto

    ri ca

    vi

    Mors

    etti

    ere

    Com

    menti:

  • 139

    Cav

    i IS

    B

    Sche

    da d

    ispe

    zio

    ne

    IS

    Nr

    .

    Posi

    zione

    Cass

    etta

    de

    rivazi

    one JB

    N

    r.

    Sche

    ma di

    ca

    blagg

    io ca

    ssetta

    de

    rivazi

    one N

    r.

    Sche

    ma ci

    rcuito

    st

    rum

    en

    to N

    r.

    Cavo

    N

    r.

    Segr

    ega

    to da

    ca

    vi n

    on -

    IS

    Ne

    ssu

    n

    dann

    egg

    iam

    ento

    Propr

    iam

    ente

    supp

    orta

    to

    Data

    Ispe

    ttore

    in

    izia

    le

    Corr

    etta

    mente

    identif

    icato

    Ne

    ssu

    n

    dann

    egg

    iam

    ento

    Segr

    ega

    to da

    ca

    vi n

    on -

    IS

    Data

    Ispe

    ttore

    in

    izia

    le

    Cavo

    IS

    in

    are

    a pe

    ri-co

    losa

    Cavo

    IS

    in

    are

    a si

    -

    cura

    Com

    menti:

  • 140

    Scheda di ispezione IS C JB in area pericolosa

    Posizione

    Cassetta derivazione JB Nr.

    Schema di cablaggio cassetta derivazione Nr.

    Schema circuito strumento Nr.

    Cassetta e coperchio

    Correttamente identificati

    Nessun danno

    Tenute OK

    Pulito e secco internamente

    Fori inutilizzati chiusi

    Pressa cavo Cavo serrato correttamente

    Cavo

    Correttamente identificati

    Nessun danno Schermo collegato co-rrettamente

    essun cavo non specifica-to

    Conduttori

    Correttamente identificati Collegati cor-rettamente ai terminali Crimpaggio e serraggio cor-retti

    Morsettiera Nessun danno

    Distanze OK

    Data

    Ispettore iniziale

    Commenti:

  • 141

    Scheda di ispezione IS D Apparecchi in area pericolosa

    Posizione

    Cassetta derivazione JB Nr.

    Schema di cablaggio cassetta derivazione Nr.

    Schema circuito strumento Nr.

    Cavo Nr.

    Apparecchi (esterni)

    Correttamente identificati

    Montaggio corretto

    Nessun danno

    Apparecchi (interni) Tenute OK Pulito e secco internamente

    Pressa cavo Cavo serrato correttamente

    Cavo

    Correttamente identificati

    Nessun danno Schermo isolato da terra

    Conduttori

    Correttamente identificati Collegati cor-rettamente ai terminali

    Crimpaggio e serraggio cor-retti

    Morsettiera Nessun danno

    Distanze OK

    Data

    Ispettore iniziale

    Commenti:

  • 142

    Ispezione della terra di un sistema IS

    IS scheda dispezione Nr.

    1 Verifica che la barra di terra IS sia correttamente montata sui blocchi isolanti

    2 Verifica che la barra di terra IS sia adeguatamente supportata

    3 Verifica che la barra di terra IS sia protetta da accidentali contatti con terra non IS (esempio rack di supporto o cubicolo)

    4 Verifica che la barra di terra IS sia identificata TERRA IS

    5 Verifica che le barre di terra IS siano collegate assieme in accordo con i disegni approvati

    6 Verifica che i cavi di collegamento delle barre di terra IS siano della sezione adeguata e che lisolante non sia danneggiato

    7 Verifica che le connessioni dei cavi di terra IS siano pulite e serrate

    8 Verifica che barra gi terra IS generale sia collegata alla terra di sotto-stazione o della sala quadri in accordo con i disegni approvati

    9

    Verifica che i cavi (devono essere due) che collegano la barra generale di terra IS alla terra della sotto-stazione o della sala quadri abbiano la giusta sezione (come da disegno), che lisolante non sia danneggiato per tutta la lunghezza e che non sia in contatto con cavi armati. Questi cavi vanno ispezionati lungo tutto il percorso

    10 Verifica che le connessioni dei cavi della terra IS principale e della barra di terra generale siano pulite e serrate

    Data:

    Ispettore iniziale:

    Commenti: