14
IB Math – Standard Level – Calculus Practice 0607 MarkScheme Alei Desert Academy Macintosh HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus201213.doc on 02/27/2013 at 11:54 AM Page 1 of 14 Calculus Practice 0607 (MarkScheme) 1. (a) f(x) = 5e 5x A1A1 N2 (b) g(x) = 2 cos 2x A1A1 N2 (c) h= fg+ gf (M1) = e 5x (2 cos 2x) + sin 2x (5e 5x ) A1 N2 [6] 2. (a) A B E f (x) negative 0 negative A1A1A1N3 (b) A B E f ′′(x) positive positive negative A1A1A1N3 [6] 3. Finding anti-derivative of 4t 3 2t (M1) s = t 4 t 2 + c A1A1 Substituting correctly 8 = 2 4 2 2 + c A1 Note: Exception to the FT rule. Allow full FT on incorrect integration. c = 4 (A1) s = t 4 t 2 4 A1 N3 [6] 4. (a) Interval gg′′ a < x < b positive positive e < x < f negative negative A1A1 A1A1 N4 (b) Conditions Point g(x) = 0, g′′ (x) < 0 C g(x) < 0, g′′ (x) = 0 D A1 N1 A1 N1 [6] 5. (a) Attempting to use the formula V = (M1) Volume = A2 N3 (b) Volume = (A1) = (A1) = or 3.35 (accept 1.07π) A1 N3 [6] 6. (a) f (x) = 6x 5 A1 N1 (b) f (p) = 7 (or 6p 5 = 7) M1

Calculus#Practice#06907#(MarkScheme)#Calculus#Practice#06907#(MarkScheme)# 1. (a) f′ (x) = 5e 5x A1A1 N2 (b) g′ (x) = 2 cos 2x A1A1 N2 (c) h′ = fg′ + gf ′ (M1) = e 5x (2

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  1  of  14  

    Calculus  Practice  06-‐07  (MarkScheme)  

    1. (a) f′ (x) = 5e5x A1A1 N2 (b) g′ (x) = 2 cos 2x A1A1 N2 (c) h′ = fg′ + gf ′ (M1)

    = e5x (2 cos 2x) + sin 2x (5e5x) A1 N2 [6]

    2. (a) A B E

    f ′(x) negative 0 negative A1A1A1N3

    (b) A B E

    f ′′(x) positive positive negative A1A1A1N3

    [6]

    3. Finding anti-derivative of 4t3 − 2t (M1)

    s = t4 − t2 + c A1A1

    Substituting correctly 8 = 24 − 22 + c A1 Note: Exception to the FT rule. Allow full FT on incorrect integration.

    c = −4 (A1)

    s = t4 − t2 − 4 A1 N3 [6]

    4. (a) Interval g′ g′′ a < x < b positive positive e < x < f negative negative A1A1 A1A1 N4

    (b) Conditions Point

    g′ (x) = 0, g′′ (x) < 0 C g′ (x) < 0, g′′ (x) = 0 D

    A1 N1 A1 N1

    [6]

    5. (a) Attempting to use the formula V = (M1)

    Volume = A2 N3

    (b) Volume = (A1)

    = (A1)

    = or 3.35 (accept 1.07π) A1 N3

    [6] 6. (a) f ′(x) = 6x − 5 A1 N1

    (b) f ′(p) = 7 (or 6p −5 = 7) M1

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  2  of  14  

    p = 2 A1 N1 (c) Setting y (2) = f (2) (M1)

    Substituting y (2) = 7 × 2 − 9 (= 5), and f (2) = 3 × 22 − 5 × 2 + k (= k + 2) A1 k + 2 = 5 k = 3 A1 N2

    [6]

    7. (a) f ′ (x) = 2xe−x − x2e−x (= (2x − x2)e−x = x (2 − x)e−x) A1A1 N2 (b) Maximum occurs at x = 2 (A1)

    Exact maximum value = 4e−2 A1 N2

    (c) For inflexion, f ″(x) = 0 M1

    A1 N1

    [6] 8. (a) Smin = 6.05 (accept (1, 6.05)) A1 N1

    (b) A1

    a = (M1)

    a = = − 45 cos 3t + 2 (Exception to FT rule : allow FT

    from ) A1 N2

    (c) EITHER Maximum value of a when cos 3t is minimum ie cos 3t = −1 (A1) OR

    At maximum (135 sin 3t = 0) (A1)

    THEN

    t = (accept 1.05; do not accept 60°) A1 N2

    [6] 9.

    Graph Diagram (a) f′ (x) I A3 N3 (b) f ″ (x) IV A3 N3

    [6]

    10. (M1)

    A1A1

    Substituting t = 0.5

    c = 9.5 (A1) Substituting t = 1 M1

    s = A1 N3

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  3  of  14  

    [6]

    11. Using V = (M1)

    Correctly integrating A1

    V = π A1

    = (A1)

    Setting up their equation M1

    a2 = 1.69 a = 1.3 A1 N2

    [6] 12. Evidence of integration (M1)

    s = −0.5 e−2t + 6t2 + c A1A1 Substituting t = 0, s = 2 (M1) eg 2 = −0.5 + c c = 2.5 (A1)

    s = −0.5 e−2t + 6t2 + 2.5 A1 N4 [6]

    13. (a) (i) 0 A1 N1

    (ii) A1 N1

    (b)

    A2 N2

    (c)

    A2 N2

    [6]

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  4  of  14  

    14. (a) EITHER Recognizing that tangents parallel to the x-axis mean maximum and minimum (may be seen on sketch) R1 Sketch of graph of f M1

    OR Evidence of using f′ (x) = 0 M1

    Finding f′ (x) = 3x2 − 6x − 24 A1

    3x2 − 6x − 24 = 0 Solutions x = −2 or x = 4 THEN Coordinates are P(−2, 29) and Q(4, −79) A1A1N1N1

    (b)

    (i) (4, 29) A1 N1 (ii) (−2, −79) A1 N1

    [6] 15. (a) 10 A1 N1

    (b)

    (A1)

    = 26 (may be seen later) A1 Splitting the integral (seen anywhere) M1

    Using (M1)

    eg

    A1 N3

    [6]

    16. f (x) = (M1)

    f (x) = 4x3 −2x + c A1A1 Substituting x = −1, y = 1 (M1)

    eg 1 = 4(−1)3 − 2(−1) + c

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  5  of  14  

    c = 3 (A1)

    f (x) = 4x3 − 2x + 3 A1 N4 [6]

    17. (a) Evidence of using (M1)

    eg 3e3t − 2 a(1) = 3e (= 8.15) A1 N2

    (b) Attempt to solve e3t − 2 = 22.3 (M1) eg (3t − 2) (ln e) = ln 22.3, sketch t = 1.70 A1 N2

    (c) Evidence of using s = (limits not required) M1

    A1 N1

    [6] 18. (a) METHOD 1

    f ′(x) = −6 sin 2x + 2 sin x cos x A1A1A1 = −6 sin 2x + sin 2x A1 = −5 sin 2x AG N0 METHOD 2

    (A1)

    f (x) = 3 cos 2x + A1

    f (x) = A1

    f ′(x) = A1

    f ′(x) = − 5 sin 2x AG N0

    (b) k = A2 N2

    [6]

    19. (a) A1 N1

    (b) Area of A = 1 A1 N1 (c) Evidence of attempting to find the area of B (M1)

    eg , − 0.134

    Evidence of recognising that area B is under the curve/integral is negative (M1)

    eg

    Area of B = 0.134 (A1)

    Total Area = 1 + 0.134

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  6  of  14  

    = 1.13 A1 N4

    [6]

    20. f ′(x) = 12x2 + 2 A1A1 When x = 1, f (1) = 6 (seen anywhere) (A1) When x = 1, f ′ (1) = 14 (A1) Evidence of taking the negative reciprocal (M1)

    eg

    Equation is y − 6 = A1 N4

    [6]

    21. (a) A1 N1

    (b) accept x sec2 x + tan x A1A1 N2

    (c) METHOD 1 Evidence of using the quotient rule (M1)

    A1A1

    N3

    METHOD 2

    y = x−1 In x Evidence of using the product rule (M1)

    A1A1

    N3

    [6] 22.

    A1A1A1A1A1A1 N6

    Notes: On interval [− 2,0], award A1 for decreasing, A1 for concave up. On interval [0,1], award A1 for increasing, A1 for concave up. On interval [1,2], award A1 for change of concavity, A1 for concave down.

    [6]

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  7  of  14  

    23. (a) (i) f ′(x) = A1A1 N2

    (ii) For using the derivative to find the gradient of the tangent (M1) f ′(2) = − 2 (A1)

    Using negative reciprocal to find the gradient of the normal M1

    A1 N3

    (iii) Equating (or sketch of graph) M1

    3x2 − 2x − 8 = 0 (A1) (3x + 4)(x − 2) = 0

    x = A1 N2

    (b) (i) Any completely correct expression (accept absence of dx) A2

    eg N2

    (ii) Area = (accept 11.3) A1 N1

    (iii) Attempting to use the formula for the volume (M1)

    eg A2 N3

    (c) A1A1A1

    Note: Award A1 for , A1 for , A1 for 4x.

    Substituting (M1)(A1)

    = A1 N3

    [21] 24. (a) METHOD 1

    Attempting to interchange x and y (M1) Correct expression x = 3y − 5 (A1)

    A1 N3

    METHOD 2 Attempting to solve for x in terms of y (M1)

    Correct expression (A1)

    A1 N3

    (b) For correct composition (g−1◦ f) (x) = (3x − 5) + 2 (A1)

    (g−1◦ f) (x) = 3x − 3 A1 N2 (c) (A1)

    A1 N2

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  8  of  14  

    (d) (i)

    A1A1A1N3

    Note: Award A1 for approximately correct x and y intervals, A1 for two branches of correct shape, A1 for both asymptotes.

    (ii) (Vertical asymptote) x = 2, (Horizontal asymptote) y = 3 A1A1 N2 (Must be equations)

    (e) (i) 3x + ln (x − 2) + C (3x + ln ⎜x − 2⎜ + C) A1A1 N2 (ii) (M1)

    = (15 + ln 3) − (9 + ln1) A1 = 6 + ln 3 A1 N2

    (f) Correct shading (see graph). A1 N1 [18]

    25. (a)

    A1A1A1N3

    Note: Award A1 for the shape of the curve, A1 for correct domain, A1 for labelling both points P and Q in approximately correct positions.

    (b) (i) Correctly finding derivative of 2x + 1 ie 2 (A1)

    Correctly finding derivative of e−x ie −e−x (A1) Evidence of using the product rule (M1)

    f ′ (x) = 2e−x + (2x + 1)(−e−x) A1

    = (1 − 2x)e−x AG N0 (ii) At Q, f ′(x) = 0 (M1)

    x = 0.5, y = 2e−0.5 A1A1

    Q is (0.5, 2e−0.5) N3

    (c) 1 ≤ k < 2e−0.5 A2 N2 (d) Using f ″ (x) = 0 at the point of inflexion M1

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  9  of  14  

    e−x (−3 + 2x) = 0 This equation has only one root. R1 So f has only one point of inflexion. AG N0

    (e) At R, y = 7e−3 (= 0.34850 ...) (A1)

    Gradient of (PR) is (A1)

    Equation of (PR) is g (x) = A1

    Evidence of appropriate method, involving subtraction of integrals or areas M2 Correct limits/endpoints A1

    eg dx, area under curve − area under PR

    Shaded area is

    = 0.529 A1 N4 [21]

    26. (a) (i) p = 1, q = 5 (or p = 5, q = 1) A1A1 N2 (ii) x = 3 (must be an equation) A1 N1

    (b) y = (x − 1)(x − 5)

    = x2 − 6x + 5 (A1)

    = (x − 3)2 − 4 (accept h = 3, k = −4) A1A1 N3

    (c) A1A1 N2

    (d) When x = 0, (A1)

    y − 5 = −6(x − 0) (y = −6x + 5 or equivalent) A1 N2 [10]

    27. (a) π (3.14) (accept (π, 0), (3.14, 0)) A1 N1 (b) (i) For using the product rule (M1)

    f ′(x) = ex cos x + ex sin x = ex(cos x + sin x) A1A1 N3 (ii) At B, f ′(x) = 0 A1 N1

    (c) f ″(x) = ex cos x − ex sin x + ex sin x + ex cos x A1A1

    = 2ex cos x AG N0 (d) (i) At A, f ″(x) = 0 A1 N1

    (ii) Evidence of setting up their equation (may be seen in part (d)(i)) A1

    eg 2ex cos x = 0, cos x = 0

    A1A1

    Coordinates are N2

    (e) (i) A2 N2

    (ii) Area = 12.1 A2 N2 [15]

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  10  of  14  

    28. (a) (i) p = 2 A1 N1 (ii) q = 1 A1 N1

    (b) (i) f (x) = 0 (M1)

    2 − = 0 (2x2 − 3x − 2 = 0) A1

    x = x = 2

    A1 N2

    (ii) Using V = πy2dx (limits not required) (M1)

    V = π A2

    V = 2.52 A1 N2 (c) (i) Evidence of appropriate method M1

    eg Product or quotient rule

    Correct derivatives of 3x and x2 − 1 A1A1 Correct substitution A1

    eg

    f ′ (x) = A1

    f ′ (x) = = AG N0

    (ii) METHOD 1 Evidence of using f ′(x) = 0 at max/min (M1)

    3 (x2 + 1) = 0 (3x2 + 3 = 0) A1 no (real) solution R1 Therefore, no maximum or minimum. AG N0 METHOD 2 Evidence of using f ′(x) = 0 at max/min (M1) Sketch of f ′(x) with good asymptotic behaviour A1 Never crosses the x-axis R1 Therefore, no maximum or minimum. AG N0 METHOD 3 Evidence of using f ′ (x) = 0 at max/min (M1) Evidence of considering the sign of f ′ (x) A1 f ′ (x) is an increasing function (f ′ (x) > 0, always) R1 Therefore, no maximum or minimum. AG N0

    (d) For using integral (M1)

    Area = A1

    Recognizing that A2

    Setting up equation (seen anywhere) (M1) Correct equation A1

    eg dx = 2, − = 2, 2a2 + 3a − 2 = 0

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  11  of  14  

    a = a = − 2

    a = A1 N2

    [24] 29. (a)

    A1A1A1N3

    Notes: Award A1 for both asymptotes shown. The asymptotes need not be labelled. Award A1 for the left branch in approximately correct position, A1 for the right branch in approximately correct position.

    (b) (i) y = 3, x = (must be equations) A1A1 N2

    (ii) x = A1 N1

    (iii) y = A1 N1

    (c) (i)

    A1A1A1

    A1A1 N5

    (ii) Evidence of using V = (M1)

    Correct expression A1

    eg

    Substituting A1

    Setting up an equation (M1)

    Solving gives a = 4 A1 N2 [17]

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  12  of  14  

    30. (a)

    A1A1A1N3

    Note: Award A1 for the left branch asymptotic to the x-axis and crossing the y-axis, A1 for the right branch approximately the correct shape, A1 for a vertical asymptote at

    approximately x = .

    (b) (i) (must be an equation) A1 N1

    (ii) A1 N1

    (iii) Valid reason R1 N1 eg reference to area undefined or discontinuity

    Note: GDC reason not acceptable.

    (c) (i) V = π A2 N2

    (ii) V = 105 (accept 33.3 π) A2 N2

    (d) f ′(x) = 2e2x − 1 − 10(2x − 1)−2 A1A1A1A1 N4

    (e) (i) x = 1.11 (accept (1.11, 7.49)) A1 N1 (ii) p = 0, q = 7.49 (accept 0 ≤ k < 7.49) A1A1 N2

    [17]

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  13  of  14  

    31. Note: Accept exact answers given in terms of π. (a) Evidence of using l = rθ (M1)

    arc AB = 7.85 (m) A1 N2

    (b) Evidence of using (M1)

    Area of sector AOB = 58.9 (m2) A1 N2 (c) METHOD 1

    angle = (A1)

    attempt to find 15 sin M1

    height = 15 + 15 sin

    = 22.5 (m) A1 N2 METHOD 2

    angle = (A1)

    attempt to find 15 cos M1

    height = 15 + 15 cos

    = 22.5 (m) A1 N2

    (d) (i) (M1)

    = 25.6 (m) A1 N2

    (ii) h(0) = 15 − 15 cos (M1)

    = 4.39(m) A1 N2 (iii) METHOD 1

    Highest point when h = 30 R1

    30 = 15 − 15 cos M1

    cos = −1 (A1)

    t = 1.18 A1 N2

  • IB  Math  –  Standard  Level  –  Calculus  Practice  06-‐07  -‐  MarkScheme     Alei  -‐  Desert  Academy  

    Macintosh  HD:Users:balei:Dropbox:Desert:SL:7Calculus:LP_SL2Calculus2012-‐13.doc  on  02/27/2013  at  11:54  AM   Page  14  of  14  

    METHOD 2

    Sketch of graph of h M2 Correct maximum indicated (A1) t = 1.18 A1 N2 METHOD 3 Evidence of setting h′(t) = 0 M1

    sin (A1)

    Justification of maximum R1 eg reasoning from diagram, first derivative test, second

    derivative test

    t = 1.18 A1 N2

    (e) h′(t) = 30 sin (may be seen in part (d)) A1A1 N2

    (f) (i)

    A1A1A1N3

    Notes: Award A1 for range −30 to 30, A1 for two zeros. Award A1 for approximate correct sinusoidal shape.

    (ii) METHOD 1 Maximum on graph of h′ (M1) t = 0.393 A1 N2 METHOD 2 Minimum on graph of h′ (M1) t = 1.96 A1 N2 METHOD 3 Solving h′′(t) = 0 (M1) One or both correct answers A1 t = 0.393, t = 1.96 N2

    [22]