83
Calculus I - Lecture 12 - Implicit Differentiation Lecture Notes: http://www.math.ksu.edu/˜gerald/math220d/ Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html Gerald Hoehn (based on notes by T. Cochran) March 3, 2014

Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Calculus I - Lecture 12 - Implicit Differentiation

Lecture Notes:http://www.math.ksu.edu/˜gerald/math220d/

Course Syllabus:http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

March 3, 2014

Page 2: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Implicit Differentiation

Implicit differentiation is a method for finding the slope of a curve,when the equation of the curve is not given in “explicit” formy = f (x), but in “implicit” form by an equation g(x , y) = 0.

Page 3: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Examples

1) Circle x2 + y2 = r

2) Ellipsex2

a2+

y2

b2= 1

3) 4-leaf clover (x2 + y2)3 = (x2 − y2)2

Page 4: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Examples

1) Circle x2 + y2 = r

2) Ellipsex2

a2+

y2

b2= 1

3) 4-leaf clover (x2 + y2)3 = (x2 − y2)2

Page 5: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Examples

1) Circle x2 + y2 = r

2) Ellipsex2

a2+

y2

b2= 1

3) 4-leaf clover (x2 + y2)3 = (x2 − y2)2

Page 6: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 7: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 8: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 9: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 10: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 11: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 12: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 13: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 14: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: a) Find dydx by implicit differentiation given that

x2 + y2 = 25.

General Procedure

1. Takeddx

of both sides of the equation.

2. Write y ′ = dydx and solve for y ′.

Solution:Step 1

ddx

(x2 + y2

)=

ddx

25

ddx

x2 +ddx

y2 = 0

Use:ddx

y2 =ddx

(f (x)

)2= 2f (x) · f ′(x) = 2y · y ′

2x + 2y · y ′ = 0

Step 2

2y · y ′ = −2x

y ′ = −2x

2y= −x

y

Page 15: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example:

b) What is the slope of the circle at (3, 4)?

c) What is the slope at (5, 0)

Solution:

b) The slope is y ′∣∣∣∣(3,4)

= −34

c) The slope is y ′∣∣∣∣(5,0)

= −50 (undefined)

The curve has a vertical tangent at (5, 0).

Page 16: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example:

b) What is the slope of the circle at (3, 4)?

c) What is the slope at (5, 0)

Solution:

b) The slope is y ′∣∣∣∣(3,4)

= −34

c) The slope is y ′∣∣∣∣(5,0)

= −50 (undefined)

The curve has a vertical tangent at (5, 0).

Page 17: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example:

b) What is the slope of the circle at (3, 4)?

c) What is the slope at (5, 0)

Solution:

b) The slope is y ′∣∣∣∣(3,4)

= −34

c) The slope is y ′∣∣∣∣(5,0)

= −50 (undefined)

The curve has a vertical tangent at (5, 0).

Page 18: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example:

b) What is the slope of the circle at (3, 4)?

c) What is the slope at (5, 0)

Solution:

b) The slope is y ′∣∣∣∣(3,4)

= −34

c) The slope is y ′∣∣∣∣(5,0)

= −50 (undefined)

The curve has a vertical tangent at (5, 0).

Page 19: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example:

b) What is the slope of the circle at (3, 4)?

c) What is the slope at (5, 0)

Solution:

b) The slope is y ′∣∣∣∣(3,4)

= −34

c) The slope is y ′∣∣∣∣(5,0)

= −50 (undefined)

The curve has a vertical tangent at (5, 0).

Page 20: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Ruleddx

yn = nyn−1 · y ′

Chain Ruleddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 21: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Ruleddx

yn = nyn−1 · y ′

Chain Ruleddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 22: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Rule

ddx

yn = nyn−1 · y ′

Chain Ruleddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 23: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Ruleddx

yn = nyn−1 · y ′

Chain Ruleddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 24: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Ruleddx

yn = nyn−1 · y ′

Chain Rule

ddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 25: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Ruleddx

yn = nyn−1 · y ′

Chain Ruleddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 26: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Ruleddx

yn = nyn−1 · y ′

Chain Ruleddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 27: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Ruleddx

yn = nyn−1 · y ′

Chain Ruleddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 28: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Restated derivative rules using y , y ′ notation

Let y = f (x) and y ′ = f ′(x) = dydx .

General Power Ruleddx

yn = nyn−1 · y ′

Chain Ruleddx

g(y) = g ′(y) · y ′

Product Ruleddx

h(x) · g(y) = h′(x) · g(y) + h(x) · g ′(y) · y ′

ddx

h(y) · g(y) = h′(y) · y ′ · g(y) + h(y) · g ′(y) · y ′

Exponential Ruleddx

eg(y) = eg(y) · g ′(y) · y ′

Page 29: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 30: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 31: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 32: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 33: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 34: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 35: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2

(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 36: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 37: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 38: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find dydx by implicit differentiation for the curve

xy2 = sin(y3)

Solution: Two steps.

Step 1 (takeddx

of both sides)

ddx

(xy2) =ddx

sin(y3)

product rule chain rule

(ddx

x) · y2 + x · (ddx

y2) = cos(y3) · ddx

y3

1 · y2 + x · 2y · y ′ = cos(y3) · 3y2 · y ′

Step 2 (solve for y’)

2xyy ′ − 3 cos(y3)y2y ′ = −y2(2xy − 3 cos(y3)y2

)y ′ = −y2

y ′ =−y2

2xy − 3 cos(y3)y2=

y

3y cos(y3) − 2x

Make sure that there is no y ′ left on right-hand side.

Page 39: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 40: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 41: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 42: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 43: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1

Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 44: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 45: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 46: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 47: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 48: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the equation of the tangent line to the curvex2y − y3 = x − 7 at (1, 2).

Solution: We first find y ′.

Step 1ddx

(x2y − y3) =ddx

(x − 7)

ddx

(x2) · y + x2 · ddx

y − ddx

(y3) = 1 − 0

2xy + x2 · y ′ − 3y2 · y ′ = 1Step 2

(x2 − 3y2) · y ′ = 1 − 2xy

y ′ =1 − 2xy

x2 − 3y2

y ′∣∣∣∣(1,2)

=1 − 2 · 1 · 2

12 − 3 · 22=

−3

−11=

3

11

Point slope form of tangent line: y = m(x − x1) + y1

y = 311(x − 1) + 2 = 3

11x + 1911

Page 49: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 50: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 51: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 52: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 53: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 54: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 55: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 56: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 57: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Does this work for every implicit given curve g(x , y) = 0?

Note that every equation in x and y can be written in this form bybringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1ddx

g(x , y) =ddx

0

gx(x , y) + gy (x , y) · y ′ = 0

Here, gx and gy are the “partial derivatives” of g(x , y) withrespect to the first variable x resp. the second variable y (ignoringhere that y depends on x). That is, one differentiates g(x , y) for xand keeps y fixed and vice versa.

Step 2

y ′ = −gx(x , y)

gy (x , y).

Page 58: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 59: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.

ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 60: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 61: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 62: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 63: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 64: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 65: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 66: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 67: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 68: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 69: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the coordinates of the four points on thelemniscate curve (x2 + y2)2 = 4(x2 − y2) on which the tangentline is horizontal.

Solution: We compute y ′ by implicit differentiation.ddx

(x2 + y2)2 =ddx

(4(x2 − y2))

2(x2 + y2) · ddx

(x2 + y2) = 8x − 4ddx

(y2)

2(x2 + y2)(2x + 2y · y ′) = 8x − 8y · y ′

4x(x2 + y2) − 8x = −8y · y ′ − 4(x2 + y2)yy ′

y ′ =4x(x2 + y2) − 8x

−8y − 4(x2 + y2)y= −x(x2 + y2) − 2x

y(x2 + y2) + 2y

We have to solve for y ′ = 0 which requires:

x(x2 + y2) − 2x = 0, i.e. x = 0 or x2 + y2 = 2.

For x = 0 one needs y4 = −4y2, i.e. y = 0 is only solution.

For x2 + y2 = 2 one has 22 = 4(x2 − y2) which gives 2x2 = 3 orx = ±

√3/2 and y = ±

√1/2.

Only the four points (±√

3/2,±√

1/2) but not (0, 0) are solutions.

Page 70: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure
Page 71: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 72: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 73: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 74: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 75: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 76: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x=

ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 77: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 78: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) =

xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 79: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 80: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)

y ′′ =ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 81: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 82: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)

Page 83: Calculus I - Lecture 12 - Implicit Di erentiationgerald/math220d/lec12.pdf · 2014-03-03 · Example: a) Find dy dx by implicit di erentiation given that x2 + y2 = 25. General Procedure

Example: Find the first and second derivative of y = f (x) = xx .

Solution: Note that f (x) is not of the form bx or xb and thus thecorresponding rules don’t apply.

a) We use logarithmic differentation:

ln y = ln(xx) = x ln x

ddx

ln y = ln(xx) =ddx

(x ln x)

1

y· y ′ = 1 · ln x + x · 1

x= ln x + 1

y ′ = y · (ln x + 1) = xx(ln x + 1)

b) y ′′ =ddx

y ′ =ddx

(xx(ln x + 1)

)y ′′ =

ddx

(xx) · (ln x + 1) + xx · ddx

(ln x + 1)

y ′′ = xx(ln x + 1) · (ln x + 1) + xx · 1

x(using a) again)

y ′′ = xx((ln x + 1)2 +

1

x

)