22
Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Arnold Tunick Approved for public release; distribution unlimited.

Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

Calculating the Microstructure ofAtmospheric Optical Turbulence

ARL-MR-419 December 1998

Arnold Tunick

Approved for public release; distribution unlimited.

Page 2: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

The findings in this report are not to be construed as anofficial Department of the Army position unless so designatedby other authorized documents.

Citation of manufacturer’s or trade names does not constitutean official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do notreturn it to the originator.

Page 3: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

Calculating the Microstructureof Atmospheric OpticalTurbulence

ARL-MR-419 December 1998

Army Research LaboratoryAdelphi, MD 20783-1197

Arnold Tunick Information Science and Technology Directorate

Approved for public release; distribution unlimited.

Page 4: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

Turbulent fluctuations in air density can cause significant distortionsof an electromagnetic signal or image. Density fluctuations can bedescribed in terms of air temperature, air pressure, water vapor, andCO2 content. We can calculate the refractive index structure constant,Cn

2, with the fine-scale dynamics of heat, moisture, and momentumdiffusion. This helps us to quantify the intensity ofturbulence-induced refraction. A better understanding ofturbulence-induced refraction can provide a means of evaluatingsensors under various atmospheric conditions or be used in thedevelopment of turbulence-compensation adaptive optic systems.This paper annotates one set of equations for the refractive indexstructure constant, C n

Abstract

2, taken from the literature.

ii

Page 5: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

iii

Contents

1. Introduction ........................................................................................................................................... 1

2. Model Equations ................................................................................................................................... 32.1 Refractive Index Structure Constant .............................................................................................. 32.2 Refractive Index of Air and Its Partial Derivatives ........................................................................ 4

3. A Model of the Microstructure of Atmospheric Optical Turbulence ......................................... 7

4. Summary ................................................................................................................................................ 8

References .................................................................................................................................................. 9

Distribution ............................................................................................................................................. 11

Report Documentation Page ................................................................................................................. 17

Figure

1. CN2 model output compared to scintillometer data taken at 2 m over a horizontalpath of 450 m........................................................................................................................................ 2

Tables

1. Microstructure of atmospheric optical turbulence model physical constants .............................. 72. Microstructure of atmospheric optical turbulence model input and output ................................ 8

Page 6: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

1

1. IntroductionAtmospheric optical turbulence can modify the refractive index in air in away that can significantly alter the transmission and propagation of anelectromagnetic image or signal [1]. Even through weak turbulence, alaser beam can become highly scintillated and exhibit strong intensityfluctuations if propagated over a long distance [2]. Also, optical turbu-lence can reduce the efficiency of laser systems propagated from theground to an object in space [3]. In this regard, Walters [4] presented theresults of an investigation to develop a data-reduction algorithm forsequences of balloon-borne data aimed at providing vertical profiles ofthe refractive index structure constant. Walters asserts that knowledge ofboth turbulence and wind speed profiles could be helpful for the develop-ment of turbulence-compensation adaptive optic systems.

Andreas [5] defines the problem of estimating the refractive index struc-ture constant from meteorological point measurements and raises thequestion of whether or not point measurements can be used to predict apath-averaged assessment of turbulence-induced refraction. He citesDavidson et al [6] for an example of a bulk-layer method applied toestimating overwater optical turbulence. Also, Tunick et al [7] reported onan experiment wherein radiation and energy budget-derived turbulencedata are compared to scintillometer-retrieved data taken over a bare soilpath of 450 m. The semi-empirical models presented in Rachele andTunick [8] and Tunick [9] have also made estimates of the refractive indexstructure constant for comparison to observed turbulence (scintillometer)data. However, these types of first-order difference routines can result insignificant and sometimes extreme errors when point data in space andtime are used to represent area or path averages (see fig. 1), particularlythroughout periods before or after sunrise and sunset.

However, with increasing interest in high-performance computing,modeling the intensity turbulence-induced refraction is beingre-investigated through the use of large eddy simulations [10,11]. Therefractive index structure constant is recast as a variable that can bedetermined locally, given values for the heat and momentum flux andgradients of pressure, temperature, wind speed, and specific humidity. Asa means of illustrating a calculation of atmospheric optical turbulence ofthis type, an algorithm could be derived from equations collated fromdifferent articles in the open literature and tested using field experimentdata. In this report, the algorithm MAOT (Microstructure of AtmosphericOptical Turbulence), derived from equations collated from differentarticles in the open literature, is presented and the calculation is testedusing data generated from observations [12,7].

Page 7: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

2

–12 –8 –4 0 4 8 12 16 2010–23

10–22

10–21

10–20

10–19

10–18

10–17

10–16

10–15

10–14

10–13

10–12

10–11

Cn

(m–2

/3)

Local time

2

Scintillometer dataCN2 model (input data: 1 and 4 m)CN2 model (input data: 2 and 4 m)CN2 model (input data: 4 and 8 m)

Source: A. Tunick, The Refractive Index Structure Parameter/Atmospheric Optical Turbulence Model: CN2, U.S. Army Research Laboratory, ARL-TR-1615 (1998).

Figure 1. CN2 modeloutput compared toscintillometer datataken at 2 m over ahorizontal path of450 m.

Page 8: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

3

2. Model Equations

2.1 Refractive Index Structure Constant

Hill [13] gives an expression for the refractive index structure constant as

Cn

2 =n(x) – n(x + r) 2

r2 32 3=

Dn(r)r2 32 3

, (1)

where n is the refractive index in air, (x) and (x + r) denote position inspace, and the ensemble mean variance n(x) – n(x + r) 2 is the scalarstructure function. Batchelor [14] gives a connection between the function,Dn(r), in r space, and the spectrum for the scalar, Γn(k), in k space as

Dn(r) = 2 1 – sin (rk)

rkΓn(k) dk ,

0

∞(2)

where k is the wave number. Through dimensional analysis, the scalarstructure function and the scalar spectrum can be expressed in terms ofthe dissipation rate of turbulent kinetic energy, ε, and the diffusive dissi-pation rate of the scalar variance, χn. Hill [13] gives χn as

χn = 2 dn ∇n 2 , (3)

where, dn ≈ dh, assuming that the diffusion coefficients for the scalarsrefractive index and potential temperature are effectively the same [15].Then

dn = dh = w′ θ′ / ∂θ/∂z . (4)

The variable ε can be expressed as

ε = g/θ w′ θ′ – u′ w′ ∂U/∂z , (5)

where g is the acceleration due to gravity, u′ w′ is the ensemble meaneddy transport of horizontal momentum, w′ θ′ is the ensemble meankinetic heat flux, ∂θ/∂z is the vertical gradient of potential temperature,and ∂U/∂z is the vertical gradient of the total horizontal wind [16].

The resulting expressions for the scalar structure function and the scalarspectrum are

Dn(r) = b n χn ε– 1 3– 1 3 r2 32 3 , (6)

and

Γn(k) = β n χn ε– 1 3– 1 3 k– 5 3– 5 3 , (7)

Page 9: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

4

given the Kolmogorov 2/3- and –5/3-dependencies for r and k, respec-tively, where bn and βn are constants (Hill [17,18] gives βn = 0.72). Whenequations (6) and (7) are substituted into equation (2), bn is given as

bn = – 65 βn

cos (x)(x)

5 35 3dx = 9

10 Γ(1/3) β n . (8)

Relationships among the gamma functions, Γ(p) , for 0 < p < 1 are givenby Weast et al [19]. Finally, the expression for the structure constant inequation (1) can be rewritten as

Cn2 = 2 bn dh ε– 1 3– 1 3 ∂n/∂z 2 , (9)

where bn = 1.736.

2.2 Refractive Index of Air and Its Partial Derivatives

The refractive index of air for the visible and near-infrared (3650 to6328 Å) region of the electromagnetic spectrum is expressed [20,21] interms of wavelength (in micrometers), barometric pressure (P, in milli-bars), temperature (T, in degrees Kelvin), and vapor pressure (e, thepartial pressure of the atmosphere due to water vapor content, also inmillibars) in the form presented by Andreas [5]:

nvi = 1.0 + m1PT + m1 + m2

eT × 10– 6 , (10)

where temperature, T, is defined as T = θ (P/Ps)(2⁄7); Ps is normally de-fined as sea level barometric pressure,

m1 = 23.7134 + 6839.397130.0 – σ 2 + 45.473

38.9 – σ 2 , (11)

and

m2 = 64.8731 + 0.58058 σ2 – 0.007115 σ 4 + 0.0008851 σ 6 , (12)

where σ = 1.0/λ (µm–1).

In the infrared region of the electomagnetic spectrum from 78,000 to190,000 Å [20,22], the refractive index is expressed in the form

nir = 1.0 + m1P – e

T + nirw × 10– 6 , (13)

where the refractive index of water vapor is given as

nirw = Q

957.0 – 928.0 T/To0.4 (X – 1.0)

1.03 T/To0.17 – 19.8X2 + 8.2X4 – 1.7X8 + 3.747 × 106

12,449.0 –X2 , (14)

Page 10: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

5

where Q = 0.2166847 e⁄T, absolute humidity is in kg/m3, and

X =10.0 (µm)

λ (µm). (15)

In equations (10) and (13), vapor pressure, e, in millibars, can beexpressed [23] in terms of specific humidity, q, in units of grams of watervapor content per kilogram of moist air (dry air and water vapor com-bined) in the following form:

e =P q

mw/ma + 1 – mw/ma q, (16)

where specific humidity is defined [24] as

q =es m w/m a

PRH

100.0exp

m wL v

R*1.0T o

– 1.0T

, (17)

where es = 6.1078 mbar is the saturation vapor pressure at 0.0 °C; mw andma are the molecular weights of water vapor and of dry air, respectively;Lv = 2.5008 × 106 + 2.3 × 103 T (T in degrees Celsius) is the latent heat ofvaporization; R* = 8314.32 J °K–1kmol–1 is the universal gas constant; andRH is relative humidity in percent.

The derivatives of the refractive index given by equations (10) and (13)take the form

∂n∂z = ∂n

∂T∂T∂z + ∂n

∂e∂e∂z , (18)

so that

∂nvi∂T = – m1

PT2 – m2 – m1

eT2

∂e∂T × 10– 6 , (19)

where

∂e∂T = – 1.0

T2L v

R*/mwexp

L vR*/mw

1.0To

– 1.0T × e2 – e

P q . (20)

The partial derivative of n with respect to vapor pressure takes the form

∂nvi∂e

=m 2 – m 1

T× 10– 6 . (21)

The partial derivative of vapor pressure takes the form

∂e∂z

= ∂e∂q

∂q∂z , (22)

Page 11: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

6

where

∂e∂q

=m w/m a P

m w/m a + 1.0 – m w/m a q 2. (23)

The partial derivative of T in terms of the scalar potential temperaturetakes the form

∂T∂z

=

∂θ∂z

+ 2.07.0

TP s

P 2

P s

P

– 57

– 57 ∂P

∂z

P s

P

2 72 7.

(24)

Equations (13) and (14) can be rewritten as

nir = 1 + m1PT + 0.21668 f (T,X) – m1

eT × 10– 6 , (25)

where

[A] =

957.0 – 928.0 T/To0.4 (X – 1.0)

1.03 T/To0.17 – 19.8X2 + 8.2X4 – 1.7X8 + 3.747 × 106

12449.0 – X2 . (26)

The partial derivative of nir with respect to temperature can now take theform

∂nir∂T = – m1

PT2 – e

T2 0.21668[A] – m1∂[A]∂T × 10– 6 , (27)

where

∂[A]∂T

= –

0.1751T o

TT o

– 0.83957.0 – 928.0 T

T o

0.4(X – 1.0)

1.03 TT o

0.17– 19.8X 2 + 8.2X 4 – 1.7X 8

2

371.2273.15

TT o

0.6

1.03 TT o

0.17– 19.8X 2 + 8.2X 4 – 1.7X 8

.

(28)

Lastly, the partial derivative of nir with respect to vapor pressure takes theform

∂nir∂e =

0.21668[A] – m1T × 10– 6 . (29)

Page 12: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

7

3. A Model of the Microstructure of Atmospheric OpticalTurbulence

The equations presented in sections 2.1 and 2.2 were programmed inFORTRAN to produce a computer model called MAOT. The MAOTmodel computes the refractive index structure constant, given values forthe heat and momentum flux and gradients of pressure, temperature,wind speed, and specific humidity as input. Table 1 gives values for themodel’s physical constants. Table 2 gives the results of testing the MAOTcalculation for different conditions of atmospheric stability. The modelinput is generated from observed surface layer data that were reported byTunick et al [7] except for the last column, which was derived from themicrometeorological data reported by Stenmark and Drury [12].

Values of Cn2 have been generally observed to range from about 10–12 to

10–16 m–2/3. The values of Cn2 for the column labeled Unstable (approxi-

mately 10–12 m–2/3) imply that the turbulence is intense, and considerableimage blurring or signal distortion could occur (similar to that seen whenone looks over an open field or a paved lot on a hot day). In contrast,the values of Cn

2 for the column labeled Weakly stable (approximately10–16 m–2/3 ) imply that the intensity of the optical turbulence might beconsidered negligible, except for where a light beam is transmitted over along distance. Higher values of Cn

2 given in table 1 correlate with higher(absolute) values of kinematic heat flux and potential temperature gradi-ent. The lower values of Cn

2 given in table 1 correlate with higher valuesof momentum flux and wind speed gradient. This observation makes thepoint that surface layer stability and turbulence are generally lessened bythe effects of wind shear and surface stress.

Parameter Symbol Unit Amount

Kolmogorov or Corrsin constant bn — 1.736Acceleration due to gravity g m/s2 9.8Temperature scaling To °K 273.15Molecular weight of water vapor mw g/mol 18.016Molecular weight of dry air ma g/mol 28.966Universal gas constant R* J °K–1 kmol–1 8314.32Saturation vapor pressure at 0.0 °C es mbar 6.1078Reference level pressure Ps mbar 1013.25

Table 1.Microstructure ofatmospheric opticalturbulence modelphysical constants.

Page 13: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

8

Table 2. Microstructure of atmospheric optical turbulence model input and output.*

Condition of atmospheric stability

Parameter Unit Unstable Weakly unstable Weakly stable Stable

Kinematic heat flux °K m/s –0.470 –0.055 0.014 0.073Momentum flux m2/s2 –0.164 –0.217 –0.042 –0.191Potential temperature gradient °K/m –0.670 –0.124 0.010 0.310

Wind speed gradient ms /m 0.330 0.510 0.303 0.812

Specific humidity gradient gg /m –1.133 × 10–4 –6.667 × 10–6 1.000 × 10–4 –2.500 × 10–4

Pressure gradient mbar/m –0.10 –0.10 –0.10 –0.10

Model outputCn

2 visible m–2/3 1.633 × 10–12 3.382 × 10–14 8.590 × 10–16 1.176 × 10–13

Cn2 IR m–2/3 1.763 × 10–12 3.479 × 10–14 5.283 × 10–15 1.154 × 10–13

*Electromagnetic wavelength—visible 0.94 µmElectromagnetic wavelength—IR 10.6 µm

4. SummaryThe propagation of a light beam through the atmosphere is affected byrandom fluctuations in the refractive index of air [24] and it is thesefluctuations or discontinuities that cause optical turbulence. The refrac-tive index structure parameter is the quantitative measure for such turbu-lence. In this report, I have presented the algorithm MAOT, derived fromequations collated from different articles in the open literature. TheMAOT calculation was tested using kinematic heat flux and momentumflux data generated from observations. MAOT was regarded as a steptaken toward enhancing calculations of refractivity in the surface layerthrough the diurnal cycle.

Page 14: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

9

References1. Burk, S. D., and W. T. Thompson, “Mesoscale modeling of summertime

refractive conditions in the southern California Light,” J. Appl. Meteor. 36(1997), pp 22–31.

2. Primmerman, C. A., T. R. Price, R. A. Humphreys, B. G. Zollars, H. T.Barclay, and J. Herrmann, “Atmospheric-compensation experiments instrong-scintillation conditions,” Appl. Opt. 34 (1995), pp 2081–2088.

3. Fouche, D. G., C. H. Higgs, and C. F. Pearson, “Scaled AtmosphericBlooming Experiments (SABLE),” Lincoln Laboratory Journal 5 (2) (1992),pp 273–293.

4. Walters, D. L., “Measurements of optical turbulence with higher-orderstructure functions,” Appl. Opt. 34 (1995), pp 1591–1597.

5. Andreas, E. L., “Estimating Cn2 over snow and sea ice from meteorological

data,” J. Opt. Soc. Am. 5 (1988), pp 481–495.

6. Davidson, K. L, G. E. Schacher, C. W. Fairall, and A. K. Goroch, “Verifica-tion of the bulk layer method for calculating overwater optical turbu-lence,” Appl. Opt. 20 (1981), pp 2919–2924.

7. Tunick, A., H. Rachele, F. V. Hansen, T. A. Howell, J. L. Steiner, A.D.Schneider, and S. R. Evett, “REBAL ’92—A Cooperative Radiation andEnergy Balance Field Study for Imagery and EM Propagation,” Bull. Am.Meteorol. Soc. 75 (1994), pp 421–430.

8. Rachele, H., and A. Tunick, “Energy balance model for imagery andelectromagnetic propagation,” J. Appl. Meteor. 33 (1994), pp 964–976.

9. Tunick, A., The Refractive Index Structure Parameter/Atmospheric OpticalTurbulence Model: CN2, U.S. Army Research Laboratory, ARL-TR-1615,(1998).

10. Peltier, L. J., and J. C. Wyngaard, “Structure-function parameters in theconvective boundary layer from large-eddy simulation,” J. Atmos. Sci. 52(1995), pp 3641–3660.

11. Wyngaard, J. C., N. Seaman, K. Gilbert, and M. Otte, The refractivitystructure of the lower atmosphere: connecting turbulence and meterology, to bepublished in Proceedings of the 1998 Battlespace Atmospheric and CloudImpacts on Military Operations (BACIMO) Conference, Hanscom AirForce Base, MA (1–3 December 1998).

12. Stenmark, E. B., and L. D. Drury, Micrometeorological field data from Davis,California: 1966–1967 runs under non-advective conditions, U.S. Army Tech-nical Report, ECOM-6051 (1970), p 604 (available from U.S. Army Re-search Laboratory, Adelphi, MD).

Page 15: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

10

13. Hill, R. J., “Structure functions and spectra of scalar quantities in theinertial-convective and viscous-convective ranges of turbulence,” J.Atmos. Sci. 46 (1989), pp 2245–2251.

14. Batchelor, G. K., “Small-scale variation of convective quantities liketemperature in a turbulent fluid, Part 1: General discussion and the caseof small conductivity,” J. Fluid Mech. 5 (1959), pp 113–133.

15. Tatarski, V. I., The Effects of the Turbulent Atmosphere on Wave Propagation,Israel Program for Scientific Translations, Jerusalem (1971), p 472, (avail-able as NTIS Technical Translation 68-50464).

16. Wyngaard, J. C., “On surface layer turbulence,” Workshop on Micrometeo-rology, D.A. Haugen, ed., Amer. Meteor. Soc. (1973), p 392.

17. Hill, R. J., “Models of the scalar spectrum for turbulent advection,” J.Fluid Mech. 88 (1978), pp 541–562.

18. Hill, R. J., “Spectra of fluctuations in refractivity, temperature, humidity,and the temperature-humidity cospectrum in the inertial and dissipationranges,” Radio Sci. 13 (1978), pp 953–961.

19. Weast, R. C., S. M. Selby, and C. D. Hodgman, eds., Handbook of Chemistryand Physics, 45th Edition, The Chemical Rubber Co., Cleveland, OH (1964),p A-142.

20. Owens, J. C., “Optical refractive index of air: dependence on pressure,temperature and composition,” Appl. Opt. 6 (1967), pp 51–59.

21. Ciddor, P. E., “Refractive index of air: new equations for the visible andnear infrared,” Appl. Opt. 35 (1996), pp 1566–1573.

22. Hill, R. J., and R. S. Lawrence, “Refractive index of water vapor in infra-red windows,” Infrared Phys. 26 (1986), pp 371–376.

23. Gill, A., Atmosphere-Ocean Dynamics, Academic Press (1982), p 662.

24. Kunkel, K. E., D. L. Walters, and G. A. Ely, “Behavior of the TemperatureStructure Parameter in a Desert Basin,” J. Appl. Meteorol. 20 (1981), pp130–136.

Page 16: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

11

Distribution

AdmnstrDefns Techl Info CtrAttn DTIC-OCP8725 John J Kingman Rd Ste 0944FT Belvoir VA 22060-6218

Mil Asst for Env SciOfc of the Undersec of Defns for Rsrch &

Engrg R&AT E LSPentagon Rm 3D129Washington DC 20301-3080

Ofc of the Dir Rsrch and EngrgAttn R MenzPentagon Rm 3E1089Washington DC 20301-3080

Ofc of the Secy of DefnsAttn ODDRE (R&AT)Attn ODDRE (R&AT) S GontarekThe PentagonWashington DC 20301-3080

OSDAttn OUSD(A&T)/ODDDR&E(R) R J TrewWashington DC 20301-7100

ARL Chemical Biology Nuc Effects DivAttn AMSRL-SL-COAberdeen Proving Ground MD 21005-5423

Army Corps of Engrs Engr Topographics LabAttn CETEC-TR-G P F Krause7701 Telegraph RdAlexandria VA 22315-3864

Army Dugway Proving GroundAttn STEDP 3Attn STEDP-MT-DA-L-3Attn STEDP-MT-M BiltoftAttn STEDP-MT-M BowersDugway UT 84022-5000

Army Field Artillery SchoolAttn ATSF-TSM-TAFT Sill OK 73503-5000

Army Foreign Sci Tech CtrAttn CM220 7th Stret NECharlottesville VA 22901-5396

Army InfantryAttn ATSH-CD-CS-OR E DutoitFT Benning GA 30905-5090

Army Materiel Sys Analysis ActivityAttn AMXSY-AT CampbellAttn AMXSY-CS BradleyAberdeen Proving Ground MD 21005-5071

Army Rsrch OfcAttn AMXRO-GS BachPO Box 12211Research Triangle Park NC 27709

Army Strat Defns CmndAttn CSSD-SL-L LillyPO Box 1500Huntsville AL 35807-3801

Army TACOM-ARDECAttn AMSTA-AR-WEL-TLBldg 59 Phillips RdPicatinny Arsenal NJ 07806-5000

CECOMAttn PM GPS COL S YoungFT Monmouth NJ 07703

Hdqtrs Dept of the ArmyAttn DAMO-FDT D Schmidt400 Army Pentagon Rm 3C514Washington DC 20301-0460

Kwajalein Missile RangeAttn Meteorologist in ChargePO Box 57APO San Francisco CA 96555

Natl Security AgencyAttn W21 Longbothum9800 Savage RdFT George G Meade MD 20755-6000

Pac Mis Test CtrGeophysics DivAttn Code 3250 BattalinoPoint Mugu CA 93042-5000

Science & Technology101 Research DrHampton VA 23666-1340

Page 17: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

Distribution (cont’d)

12

US Army Aviation and Missile CommandAttn AMSMI-RD-WS-PL G Lill JrBldg 7804Redstone Arsenal AL 35898-5000

US Army CECRLAttn CECRL-RG Boyne72 Lyme RdHanover NH 03755-1290

US Army Combined Arms CombatAttn ATZL-CAWFT Leavenworth KS 66027-5300

US Army CRRELAttn CEREL-GP R Detsch72 Lyme RdHanover NH 03755-1290

US Army Field Artillery SchlAttn ATSF-TSM-TA TaylorFT Sill OK 73503-5600

US Army Intel Ctr and FT HuachucaAttn ATSI-CDC-C ColantoFT Huachuca AZ 85613-7000

US Army Nuclear & Chem AgencyAttn MONA-ZBBldg 2073Springfield VA 22150-3198

US Army OECAttn CSTE-EFSPark Center IV 4501 Ford AveAlexandria VA 22302-1458

US Army Spc Technology Rsrch OfcAttn Brathwaite5321 Riggs RdGaithersburg MD 20882

US Army Topo Engrg CtrAttn CETEC-ZCFT Belvoir VA 22060-5546

US Army TRADOC Anlys Cmnd—WSMRAttn ATRC-WSS-RWhite Sands Missile Range NM 88002

US Army White Sands Missile RangeAttn STEWS-IM-IT Techl Lib BrWhite Sands Missile Range NM 88002-5501

US Military AcademyMathematical Sci Ctr of ExcellenceAttn MDN-A MAJ M D PhillipsDept of Mathematical Sci Thayer HallWest Point NY 10996-1786

USATRADOCAttn ATCD-FAFT Monroe VA 23651-5170

Nav Air War Cen Wpn DivAttn CMD 420000D C0245 A Shlanta1 Admin CirChina Lake CA 93555-6001

Nav Ocean Sys CtrAttn Code 54 RichterSan Diego CA 92152-5000

Nav Rsrch LabAttn Code 4110 RuhnkeWashington DC 20375-5000

Nav Surface Warfare CtrAttn Code B07 J Pennella17320 Dahlgren Rd Bldg 1470 Rm 1101Dahlgren VA 22448-5100

Naval Surface Weapons CtrAttn Code G63Dahlgren VA 22448-5000

AFCCC/DOCAttn Glauber151 Patton Ave Rm 120Asheville NC 28801-5002

Air ForceAttn Weather Techl LibAsheville NC 28801-5002

Hdqtrs AFWA/DNX106 Peacekeeper Dr Ste 2N3Offutt AFB NE 68113-4039

Phillips Lab Atmos Sci DivGeophsics DirctrtAttn McClatcheyHanscom AFB MA 01731-5000

Phillips Lab Atmospheric Sci DivGeophysics DirctrtKirtland AFB NM 87118-6008

Page 18: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

13

Distribution (cont’d)

Phillips LaboratoryAttn AFRL-VSBE ChisholmAttn PL/LYP 3Attn PL/WE29 Randolph RdKirtland AFB NM 87118-6008

TAC/DOWPLangley AFB VA 23665-5524

USAF Rome Lab TechAttn Corridor W Ste 262 RL SUL26 Electr Pkwy Bldg 106Griffiss AFB NY 13441-4514

DARPAAttn B Kaspar3701 N Fairfax DrArlington VA 22203-1714

NASA Marshal Space Flt CtrAtmospheric Sciences DivAttn E501 FichtlHuntsville AL 35802

NASA Spct Flt CtrAtmospheric Sciences DivAttn Code ED 41 1Huntsville AL 35812

NASA/Marshall Spc Flight CtrAtmos Sci DivAttn Code ED-41Huntsville AL 35812

Colorado State UnivDept of Atmospheric SciAttn R A PielkeFT Collins CO 80523

Cornell UnivSchool of Civil & EnvAttn W H BrutsaertHollister HallIthica NY 14853-3501

Florida State UnivDept of MeteorologyAttn E A SmithTallahassee FL 32306

Iowa State UnivAttn E S TakleAttn R Arritt312 Curtiss HallAmes IA 50011

Iowa State UnivAttn M SegalAttn S E Taylor2104 Agronomy HallAmes IA 50011-1010

Michigan State UnivDept of Crop & Soil SciAttn J Ritchie8570 Plant & Soil Sciences BldgEast Lansing MI 48824-1325

Penn State UnivDept of MeteorologyAttn D Thompsom503 Walker BldgUniversity Park PA 16802

Rutgers Univ-Cook CampusEnvir & Natl Resources BldgAttn R AvissarNew Brunswick NJ 08903

Univ of Alabama at HuntsvilleRsrch InstitAttn R T McniderHuntsville AL 35899

Univ of California at DavisDept of Air, Land, & Water ResourcesAttn R H ShawDavis CA 95616

Univ of ConnecticutDept of Renewable Natural ResourcesAttn D R Miller1376 Storrs RdStorrs CT 06269-4087

Univ of NebraskaDept of Agrcltl MeteorologyAttn S B VermaLincoln NE 68583-0728

Page 19: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

Distribution (cont’d)

14

University of KansasDept of Physics & AstronomyAttn J R EaglemanLawrence KS 66045

Washington State UnivDept of Agronomy & SoilsAttn G S CampbellPullman WA 99163

Agrclt Rsrch SvcConserve & Prodn Rsrch LabAttn A D SchneiderAttn S R EvettAttn T A HowellPO Drawer 10Bushland TX 79012

Dean RMDAttn GomezWashington DC 20314

Dept of Commerce CtrMountain AdministrationAttn Spprt Ctr Library R51325 S BroadwayBoulder CO 80303

Hicks & Associates, IncAttn G Singley III1710 Goodrich Dr Ste 1300McLean VA 22102

Natl Ctr for Atmospheric ResearchAttn NCAR Library SerialsPO Box 3000Boulder CO 80307-3000

NCARAttn T W HorstBoulder CO 80307-3000

NCAR/SSSFAttn S P OncleyBoulder CO 80307-3000

NCSUAttn J DavisPO Box 8208Raleigh NC 27650-8208

NTIA ITS S3Attn H J Liebe325 S BroadwayBoulder CO 80303

Pacific Missile Test CtrGeophysics DivAttn Code 3250Point Mugu CA 93042-5000

Raytheon CompanyEquip DivAttn Sonnenschein528 Boston Post Rd MS 1K9Sudbury MA 01776

Sigma Rsrch CorpAttn S R Hanna544 Hill RdBoxborough MA 01719

USDA Agrcltl Rsrch SvcAttn W P KustasBARC0WEST Bldg 265Beltsville MD 20705

USDA Agrcltl Rsrch SvcAttn R D JacksonAttn S B Idso4331 E Broadway RdPhoenix AZ 85040

USDA Forest Svc Rocky Mtn Frst & RangeExprmnt Sta

Attn K F Zeller240 W Prospect StretFT Collins CO 80526

US Army Rsrch LabAttn AMSRL-IS-EA J HarrisAttn AMSRL-IS-EW D HoockBattlefield Envir DirWhite Sands Missile Range NM 88002-5001

US Army Rsrch LabAttn AMSRL-D J LyonsAttn AMSRL-DD J RocchioAttn AMSRL-CI-LL Techl Lib (3 copies)Attn AMSRL-CS-AS Mail & Records Mgmt

Page 20: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

15

Distribution (cont’d)

US Army Rsrch Lab (cont’d)Attn AMSRL-CS-EA-TP Techl Pub (3 copies)Attn AMSRL-IS J D GanttAttn AMSRL-IS-E BrownAttn AMSRL-IS-EE A D Tunick (15 copies)Attn AMSRL-IS-EE D GarveyAttn AMSRL-IS-EE R MeyersAttn AMSRL-SE-EE Z G SztankayAdelphi MD 20783-1197

Page 21: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

1. AGENCY USE ONLY

8. PERFORMING ORGANIZATION REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

12a. DISTRIBUTION/AVAILABILITY STATEMENT

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

5. FUNDING NUMBERS4. TITLE AND SUBTITLE

6. AUTHOR(S)

REPORT DOCUMENTATION PAGE

3. REPORT TYPE AND DATES COVERED2. REPORT DATE

11. SUPPLEMENTARY NOTES

14. SUBJECT TERMS

13. ABSTRACT (Maximum 200 words)

Form ApprovedOMB No. 0704-0188

(Leave blank)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thiscollection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 JeffersonDavis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

12b. DISTRIBUTION CODE

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

18. SECURITY CLASSIFICATION OF THIS PAGE

19. SECURITY CLASSIFICATION OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)Prescribed by ANSI Std. Z39-18298-102

Calculating the Microstructure of Atmospheric OpticalTurbulence

December 1998 March 1998 to August 1998

Turbulent fluctuations in air density can cause significant distortions of an electromagnetic signal or image.Density fluctuations can be described in terms of air temperature, air pressure, water vapor, and CO2 content.We can calculate the refractive index structure constant, Cn

2, with the fine-scale dynamics of heat, moisture, andmomentum diffusion. This helps us to quantify the intensity of turbulence-induced refraction. A betterunderstanding of turbulence-induced refraction can provide a means of evaluating sensors under variousatmospheric conditions or be used in the development of turbulence-compensation adaptive optic systems. Thispaper annotates one set of equations for the refractive index structure constant, Cn

2, taken from the literature.

Refractive index, heat flux

Unclassified

ARL-MR-419

7FEJ706110253A11

B53A61102A

ARL PR:AMS code:

DA PR:PE:

Approved for public release; distributionunlimited.

22

Unclassified Unclassified UL

2800 Powder Mill RoadAdelphi, MD 20783-1197

U.S. Army Research LaboratoryAttn: AMSRL-IS-EE [email protected]

U.S. Army Research Laboratory

17

Arnold Tunick

email:2800 Powder Mill RoadAdelphi, MD 20783-1197

Page 22: Calculating the Microstructure of Atmospheric …Calculating the Microstructure of Atmospheric Optical Turbulence ARL-MR-419 December 1998 Army Research Laboratory Adelphi, MD 20783-1197

DEP

AR

TMEN

T O

F TH

E A

RM

YU

.S.

Arm

y R

esea

rch

Labo

rato

ry28

00 P

owde

r M

ill R

oad

Ade

lphi

, M

D

2078

3-11

97

An

E qua

l O

ppor

tuni

ty E

mpl

oyer