C4 June 2006 Mark Scheme

Embed Size (px)

Citation preview

  • 8/6/2019 C4 June 2006 Mark Scheme

    1/26

    June 2006

    6666 Core Mathematics C4

    Mark Scheme

    QuestionNumber Scheme Marks

    Differentiates implicitly to include either

    dyky

    dx or

    dy3

    dx . (Ignore

    =

    dy

    dx.) M1

    1. 6x 4ydx

    dy+ 2 3

    dx

    dy= 0

    Correct equation. A1

    dy 6x 2

    dx 4y 3

    +=

    + not necessarily required.

    Substituting x= 0 & y= 1 into an

    equationinvolving dydx

    ;

    to give 27or 2

    7

    dM1;A1 cso

    At (0, 1),+

    = =+

    dy 0 2 2

    dx 4 3 7

    Uses m(T) to correctly find m(N). Canbe ft from their tangent gradient.

    A1 oe.

    Hence m(N) = 7

    2or

    27

    1

    y 1 = m(x 0) withtheir tangent or normal gradient;

    or uses y= mx+ 1 with their tangent ornormal gradient ;

    M1;

    Either N: = 72

    y 1 (x 0)

    or N: 72

    y x 1= +

    Correct equation in the form+ + ='ax by c 0 ' ,

    where a, b and c are integers.

    A1 oecso

    N: 7x + 2y 2 = 0 [7]

    7 marks

    Beware:dy 2

    dx 7= does not necessarily imply the award of all the first four marks in this

    question.So please ensure that you check candidates initial differentiation before awarding the first A1mark.

    Beware: The final accuracy mark is for completely correct solutions. If a candidate flukes thefinal line then they must be awarded A0.

  • 8/6/2019 C4 June 2006 Mark Scheme

    2/26

    Beware: A candidate finding an m(T) = 0 can obtain A1ft for m(N) = , but obtains M0 if

    they write y 1 (x 0) = . If they write, however, N: x = 0, then can score M1.

    Beware: A candidate finding an m(T) = can obtain A1ft for m(N) = 0, and also obtains M1

    if they write y 1 0(x 0) = or y = 1.

    Beware: The final cso refers to the whole question.

  • 8/6/2019 C4 June 2006 Mark Scheme

    3/26

    QuestionNumber

    Scheme Ma

    Aliter

    1. d x

    d y

    dx dx6x 4y 2 3 0

    dy dy

    = + =

    Differentiates implicitly to include eitherdx

    kxdy

    ordx

    2dy

    . (Ignoredx

    dy

    =

    .)

    Correct equation.

    M1

    Way 2

    dx 4y 3

    dy 6x 2

    +=

    + not necessarily required.

    At (0, 1),dx 4 3 7

    dy 0 2 2

    += =

    +

    Substituting x = 0 & y = 1 into anequationinvolving dx

    dy;

    to give 72

    dM1

    A1

    Hence m(N) = 7

    2or

    27

    1

    Uses m(T) or dxdy

    to correctly find m(N).

    Can be ft using dxdy

    1. .A1

    Either N: = 72

    y 1 (x 0)

    or N: 72

    y x 1= +

    y 1 m(x 0) = with

    their tangent, dxdy

    or normal gradient;

    or uses y mx 1= + with their tangent,dxdy

    or normal gradient ;

    M1;

    N: 7x + 2y 2 = 0

    Correct equation in the form+ + ='ax by c 0 ' ,

    where a, b and c are integers.

    A1 ocso

    7 m

  • 8/6/2019 C4 June 2006 Mark Scheme

    4/26

    tionNumber

    Scheme arks

    liter

    1. =2

    3y 3x 2x 5 0ay 3

    ) = + +22 9 3x 5

    16 2 2x

    ( )+ + 23x 49 3

    2 16 4x

    ( ) ( )

    + + +

    12 23x 49

    2 16

    1x 3x 1

    2

    Differentiates using the chain rule;

    Correct expression fordy

    dx.

    1),

    = = =

    12dy 1 49 1 4 2

    dx 2 16 2 7 7

    stituting x = 0 into an equationinvolving dydx

    ;

    to give 27

    or 27

    o

    m(N) = 7

    2

    Uses m(T) to correctly find m(N).Can be ft from their tangent gradient.

    N: = 72

    y 1 (x 0)

    :27y x 1= +

    y 1 m(x 0) = with

    their tangent or normal gradient;or uses y mx 1= + with their tangent or normal

    gradient

    + 2y 2 = 0orrect equation in the form + + ='ax by c 0 ' ,

    where a, b and c are integers.

    ark

  • 8/6/2019 C4 June 2006 Mark Scheme

    5/26

    tionNumber

    Scheme arks

    . (a) +1 A(1 2x) B

    nsiders this identityand eithersubstitutes 1

    2x = ,

    equatescoefficients or

    solvessimultaneous

    equations

    lete

    12;= = =3 1

    2 21 B B

    e x terms; 32

    3 2A A= = 3 12 2

    A ; B= =

    orking seen, but A and B correctly stated award all threemarks. If one of A or B correctly stated give two out of thethree marks available for this part.)

    [3]

    (b)

    + 1 23 1

    2 2(1 2x) (1 2x)

    ving powers to top onany one of the two

    expressions

    2 3( 1)( 2) ( 1)( 2)( 3)

    1 ( 1)( 2x); ( 2x) ( 2x) ...2! 3!

    + + + +

    1 2x or 1 4x fromeither first or second

    expansionsrespectively

    2 3( 2)( 3) ( 2)( 3)( 4)( 2)( 2x); ( 2x) ( 2x) ...2! 3!

    + + + +

    Ignoring 32

    and 12,

    any one correct

    }.......... expansion.

    oth }{.......... correct.

    } }{+ + + + + + + + +2 3 2 3121 2x 4x 8x ... 1 4x 12x 32x ...

    2 3x ; 0x 4x+ + 2 31 x ; (0x ) 4x + 1

    [6]

    marks

  • 8/6/2019 C4 June 2006 Mark Scheme

    6/26

    tionNumber

    Scheme arks

    liter

    . (b) 2(3x 1)(1 2x) Moving power to top

    ay 2

    )

    2

    3

    ( 2)( 3)1 ( 2)( 2x) ; ( 2x)

    2!1

    ( 2)( 3)( 4)( 2x) ...

    3!

    + + +

    +

    1 4x ;Ignoring (3x 1) , correct

    ( )........... expansion

    + + + +2 31)(1 4x 12x 32x ...)

    2 3 2 312x 36x 1 4x 12x 32x ...+ + Correct expansion

    2 3x ; 0x 4x+ + 2 31 x ; (0x ) 4x + 1

    liter

    . (b) urin expansionay 3

    +

    1 23 12 2(1 2x) (1 2x)

    Bringing bothpowers to top

    2 33(1 2x) 2(1 2x) +

    Differentiates to give2 3

    a(1 2x) b(1 2x)

    ;2 33(1 2x) 2(1 2x) +

    3 412(1 2x) 12(1 2x) +

    4 572(1 2x) 96(1 2x) + Correct f (x) and f (x)

    1 , f (0) 1 , f (0) 0 and f (0) 24 = = = =

    2 3

    f(x) 1 x; 0x 4x ...= + + +

    2 3

    1 x ; (0x ) 4x +

    1

  • 8/6/2019 C4 June 2006 Mark Scheme

    7/26

    tionNumber

    Scheme arks

    liter

    . (b)1 21

    23(2 4x) (1 2x) + g powers to top on anyone of the two

    expressionsay 4

    1 2 3 2

    4 3

    ( 1)( 2)(2) ( 1)(2) ( 4x); (2) ( 4x)

    2!

    ( 1)( 2)( 3)(2) ( 4x) ...

    3!

    + +

    + +

    er 12

    x or 1 4x from

    either first or secondexpansionsrespectively

    2 3( 2)( 3) ( 2)( 3)( 4)( 2)( 2x); ( 2x) ( 2x) ...2! 3!

    + + + +

    Ignoring 3 and 12,

    any one correct}{.......... expansion.

    Both }{.......... correct.

    }{2 3 2 31 12 2x 2x 4x ... 1 4x 12x 32x ...+ + + + + + + + +

    2 3x ; 0x 4x+ + 2 31 x ; (0x ) 4x + 1

  • 8/6/2019 C4 June 2006 Mark Scheme

    8/26

    tionNumber

    Scheme ark

    . (a) Shaded = ( )

    2

    x

    2

    03sin dx

    ( )

    =

    2x2

    12 0

    3cos

    rating ( )x23sin to give ( )x2

    kcos

    with k 1.Ignore limits.

    ( )

    = 2

    x2 0

    6cos ( ) x26cos or ( )12

    3 x2

    cos .

    [ ] [ ]= = + =6( 1) 6(1) 6 6 12 12 o

    er of 12 with no working scores M0A0A0.)

    (b) e ( )( ) ( )2 2

    2 2x x2 2

    0 0

    3sin dx 9 sin dx

    = = Use of 2V y dx= .

    Can be implied. Ignore limits.

    1 cos2x2 2

    2cos2x 1 2sin x gives sin x = =

    ( ) ( ) 1 cosx2 2x x2 2 2cos x 1 2sin gives sin = =

    onsideration of the Half Angle

    Formula for ( )2 x2sin or the

    Double Angle Formula

    for 2sin x

    me

    2

    0

    1 cos x9( ) dx

    2

    =

    orrect expression for Volume

    Ignore limits and .

    ( )2

    0

    9(1 cos x) dx

    2

    =

    ( )[ ]

    2

    0

    9x sin x

    2

    =

    tegrating to give ax bsin x ;

    Correct integrationk k cos x kx k sin x

    1 ;

    [ ]

    = 9

    (2 0) (0 0)2

    = =

    9(2 )

    29 2 or 88.8264

    Use of limits to giveeither 9 2 or awrt 88.8

    o

    Solution must be completely

    correct. No flukes allowed.

  • 8/6/2019 C4 June 2006 Mark Scheme

    9/26

    rks

    tionNumber

    Scheme arks

    . (a) sint , ( )6y sin t= +

    cost , ( )6dy

    cos t

    dt

    = +

    pt to differentiate both x and y wrt tto give two terms in cos

    Correct dxdt and dydt

    n t ,6

    =

    ( )

    ( )

    16 6 2

    36 2

    cosdy 1awrt 0.58

    dx cos 3

    += = = =

    s in correct way and substitutesfor t to give any of the four

    underlined oe:Ignore the double negative ifcandidate has differentiated

    sin cos

    n t ,6

    = 31x , y

    2 2= = he point ( )

    312 2, or ( )

    12 , awrt 0.87

    ( )= 3 1 12 23

    x

    ng an equation of a tangent withtheir point and their tangentgradient or finds c and uses

    y (their gradient)x " c "= + .

    rect EXACT equation of tangentoe.

    ( )3 3 31 1

    2 2 6 33

    c c= + = =

    3 3

    3 3y x = +

    (b) ( )6 6 6t sin t cos cost sin + = + f compound angle formula for sine.

    2 2 2 2in t cos t 1 cos t 1 sin t+

    sint gives ( )2cos t 1 x= Use of trig identity to find cost in

    terms of x or 2cos t in terms of

  • 8/6/2019 C4 June 2006 Mark Scheme

    10/26

    x.

    3 12 2

    y sin t cos t = +

    ( )3 212 2y x 1 x= + AGSubstitutes for

    6 6sin t, cos , cos t and sin to

    give y in terms of x.

    o

    rks

  • 8/6/2019 C4 June 2006 Mark Scheme

    11/26

    tionNumber

    Scheme arks

    liter

    . (a) sint , ( )6 6 6y sin t sin t cos cos t sin = + = + (Do not give this for part (b))

    ay 2

    cost ,6 6

    dycos t cos sin t sin

    dt =

    mpt to differentiate x and y wrt t to

    give dxdt

    in terms of cos anddy

    dtin

    the form a cos t b sin t

    Correct dxdt

    anddy

    dt

    n t ,6

    =

    ( )6 6 6 6

    6

    cos cos sin sindy

    dx cos

    =

    3 1 14 4 2

    3 3

    2 2

    1awrt 0.58

    3

    = = = =

    Divides in correct way andsubstitutes for t to give any of

    the four underlined oe:

    n t ,6

    =

    31x , y

    2 2= = e point ( )312 2, or ( )12 , awrt 0.87

    ( )= 3 1 12 23

    x

    inding an equation of a tangentwith their point and their

    tangent gradient or finds cand uses

    y (their gradient)x " c "= + .

    ect EXACT equation of tangentoe.

    ( )3 3 31 1

    2 2 6 33c c= + = =

    3 3

    3 3y x = +

  • 8/6/2019 C4 June 2006 Mark Scheme

    12/26

    tionNumber

    Scheme arks

    liter

    . (a) ( )3 21

    2 2x 1 x+

    ay 3

    ( ) ( )1223 1 1 1 x 2x

    2 2 2

    +

    mpt to differentiate two terms usingthe chain rule for the second

    term.

    Correctdy

    dx

    ( ) ( )1223 1 1 11 (0.5) 2(0.5)

    2 2 2 3

    + =

    Correct substitution of 12

    x =

    into a correctdy

    dx

    n t ,6

    =

    31x , y

    2 2= = he point ( )312 2, or ( )12 , awrt 0.87

    ( )= 3 1 12 23

    x

    ng an equation of a tangent withtheir point and their tangentgradient or finds c and uses

    y (their gradient)x " c "= + .

    rect EXACT equation of tangentoe.

    ( ) 3 3 31 12 2 6 33 c c= + = =

    3 3

    3 3y x = +

    liter

    . (b) t gives ( )3 212 2y sin t 1 sin t= + ubstitutes x sint= into the equation

    give in y.

    ay 22 2 2 2in t cos t 1 cos t 1 sin t+

    ( )21 sin t= se of trig identity to deduce that

    ( )2cos t 1 sin t= .

    3 12 2

    s y sin t cos t= +

    6 6y sin t cos cos t sin = + = ( )6sin t

    + the compound angle formula to

    prove y = ( )6sin t+ o

    rks

  • 8/6/2019 C4 June 2006 Mark Scheme

    13/26

    tionNumber

    Scheme arks

    . (a) ing i ; 0 6= + 6 = 6 = d

    Can be implied6 = and

    ing j ; a = 19 4( 6) 5+ =

    For inserting their stated intoeither a correct j or k

    componentCan be implied.

    d

    ng k ; b = 1 2( 6) 11 = a 5 and b 11= =

    o workingly one of a or b stated correctly gains the first 2marks.

    th a and b stated correctly gains 3 marks.

    (b) ( ) ( ) ( )6 19 4 1 2+ + + + i j k

    ion vector or l1 4 2= = + d i j k

    1l OP 0 =

    d

    uuur

    Allow this statement for M1

    if OP and d

    uuur

    are defined asabove.

    6 1

    19 4 4 0

    1 2 2

    +

    + =

    ( )or x 4y 2z 0+ = w either of these two underlinedstatements

    4(19 4 ) 2( 1 2 ) 0 + + = Correct equation76 16 2 4 0 + + + + = tempt to solve the equation in

    84 0 4 + = = 4 =

    ( ) ( ) ( )6 4 19 4( 4) 1 2( 4) + + + i j k titutes their into an expression

    for OPuuur

    2 3 7+ +i j k 2 3 7+ +i j k or P(2, 3, 7)

  • 8/6/2019 C4 June 2006 Mark Scheme

    14/26

    tionNumber

    Scheme arks

    liter

    (b) ( ) ( ) ( )6 19 4 1 2+ + + + i j k

    ay 2( ) ( ) ( )6 0 19 4 5 1 2 11+ + + + + i j k

    ion vector or l1 4 2= = + d i j k

    OP AP OP 0 =uuur uuur uuur

    this statement for

    M1 if AP and OPuuur uuur

    are defined asabove.

    6 6

    24 4 19 4 0

    12 2 1 2

    + +

    + + =

    derlined statement

    )(6 ) (24 4 )(19 4 ) ( 12 2 )( 1 2 ) 0 + + + + + = Correct equation2 2 212 456 96 76 16 12 24 2 4 0+ + + + + + + + + + = ttempt to solve the

    equation in

    210 504 0 + =

    ( )0 24 0 6 4 + = = = 4 =

    ( ) ( ) ( )6 4 19 4( 4) 1 2( 4) + + + i j k titutes their into

    an expression

    for OPuuur

    2 3 7+ +i j k 2 3 7+ +i j k or

    P(2, 3, 7)

  • 8/6/2019 C4 June 2006 Mark Scheme

    15/26

    tionNumber

    Scheme arks

    . (c) 2 3 7+ +i j k

    0 5 11 +i j k and OB 5 15= + +i j kuuur

    ( )2 8 4+ i j k , ( )PB 3 12 6= + i j kuuur

    ( )5 20 10 + i j k

    racting vectors to find any two of

    APuuur

    , PBuuur

    or ABuuur

    ; and both arecorrectly ft using candidates

    OAuuur

    and OPuuur

    found in parts (a)and (b) respectively.

    1

    ( )2 23 33 12 6 PB= + =i j kr uuur

    ( )5 52 22 8 4 AP= + =i j kr uuur

    ( )5 53 33 12 6 PB= + =i j kr uuur

    ( )3 32 22 8 4 AP= + =i j kuuur

    ( )2 25 55 20 10 AB= + =i j kr uuur

    ( )3 35 55 20 10 AB= + =i j kuuur

    etc

    atively candidates could say for example that

    ( )2 4 2+ i j k ( )PB 3 4 2= + i j kuuur

    he points A, P and B are collinear.

    23

    AP PB=uuur uuur

    or 52

    AB AP=uuur uuur

    or 53

    AB PB=uuur uuur

    or 32

    PB AP=uuur uuur

    or 25

    AP AB=uuur uuur

    or 35

    PB AB=uuur uuur

    A, P and B are collinearCompletely correct proof.

    : PB 2 : 3=uuur

    2:3 or 321: or 84 : 189 aef

    allow SC 23

    liter

    . (c)5 6 , 15 19 4 or 1 1 2= + = + =

    ; 1 = g down any of the three underlined

    equations.

    ay 21 = for all three equations.

    en 1 = , this gives =r 5 15+ +i j k

    1 = for all three equations

    or 1 = gives =r 5 15+ +i j k

    B lies on l1. As stated in the question both Aand P lie on l1. A, P and B are collinear.

    Must state B lies on l1

    A, P and B are collinear

    : PB 2 : 3=uuur

    2:3 or aef

  • 8/6/2019 C4 June 2006 Mark Scheme

    16/26

    mar

  • 8/6/2019 C4 June 2006 Mark Scheme

    17/26

    tionNumber

    Scheme arks

    . (a)

    x 1 1.5 2 2.5 3y 0 0.5 ln 1.5 ln 2 1.5 ln 2.5 2 ln 3

    or y 00.2027325541

    ln21.374436098

    2 ln 3

    Either 0.5 ln 1.5 and 1.5 ln 2.5or awrt 0.20 and 1.37

    mixture of decimals and lns)

    b)(i) ( ) }{1 0 2 ln2 2ln3 + + For structure of trapezium

    rule{ }............. ;

    3.583518938... 1.791759... = = 1.792 (4sf) 1.792 o

    (ii)

    ( ) }{0.5 ; 0 2 0.5ln1.5 ln2 1.5 ln2.5 2ln3 + + + + Outside brackets

    10.5

    2

    For structure of trapezium

    rule{ }............. ;

    6.737856242... 1.684464... = awrt 1.684

    (c)ncreasing ordinates, the line segments at the topof the trapezia are closer to the curve.

    ason or an appropriate diagramelaborating the correct reason.

  • 8/6/2019 C4 June 2006 Mark Scheme

    18/26

    tionNumber

    Scheme arks

    . (d) 2

    du 1dx x

    x2

    n x

    x 1 v x

    =

    =

    se of integration by parts

    formula in the correctdirection

    2 21 xx lnx x dx

    x 2

    Correct expression

    2 xx ln x 1 dx

    2 2

    ttempt to multiply at least

    one term through by 1x

    and an attempt to ...

    2 2xx ln x x2 4

    (+c) integrate;

    correct integration

    32 2

    1

    x xx ln x x

    2 4

    +

    ( ) ( )3 9 1 12 4 2 4ln3 3 ln1 1 + + stitutes limits of 3 and 1 and

    subtracts.

    3 3 32 4 4ln3 0+ +

    32 ln3= AG 32 ln3 o

    liter

    . (d) 1)ln x dx x ln x dx ln x dx= ay 2

    2 2x x 1dx ln x . dx

    2 2 x

    =

    ct application of by parts

    =

    2 2x xln x

    2 4 (+ c) Correct integration

    1dx xln x x. dx

    x

    =

    ct application of by parts

    = x ln x x (+ c) Correct integration

    ) ( ) ( )

    9

    21 ln x dx ln3 2 3ln3 2 = 3

    2 ln3=

    AG

    stitutes limits of 3 and 1 into

    both integrands andsubtracts.

  • 8/6/2019 C4 June 2006 Mark Scheme

    19/26

    32ln3 o

  • 8/6/2019 C4 June 2006 Mark Scheme

    20/26

    tionNumber

    Scheme arks

    liter

    . (d)) ( )

    2

    du 1dx x

    x 1

    2

    nx

    x 1 v

    = =

    se of integration by partsformula in the correctdirection

    ay 3

    ) ( )2 2

    1 x 1ln x dx

    2 2x

    Correct expression

    )2 21 x 2x 1

    lnx dx2 2x

    +

    Candidate multiplies outnumerator to obtain

    three terms

    )2

    1 1 1lnx x 1 dx

    2 2 2x

    +

    ultiplies at least one term

    through by 1x

    and then

    attempts to ...

    )2 21 x 1

    lnx x ln x2 4 2

    +

    (+c)

    integrate the result;

    correct integration

    ( )32 2

    1

    x 1 x 1ln x x lnx

    2 4 2

    +

    ( ) ( )9 1 14 2 42ln3 3 ln3 0 1 0 + + stitutes limits of 3 and 1 and

    subtracts.

    31 12 4 4

    2ln3 ln3 1 + + 32ln3= AG 3

    2ln3 o

    .

  • 8/6/2019 C4 June 2006 Mark Scheme

    21/26

    tionNumber

    Scheme arks

    liter bstitution

    . (d) du 1dx xx =

    ay 4

    )u ue 1 .ue du Correct expression

    ( )2u uu e e du se of integration by parts

    formula in the correctdirection

    2u u 2u u1 1e e e e dx2 2

    Correct expression

    2u u 2u u1 1e e e e2 4

    (+c)

    Attempt to integrate;

    correct integration

    ln3

    2u u 2u u

    ln1

    1 1ue ue e e

    2 4

    +

    ( ) ( )9 9 12 4 4ln3 3ln3 3 0 0 1 + + stitutes limits of ln3 and ln1

    and subtracts.

    3 3 12 4 4ln3 1+ + 3

    2 ln3= AG32ln3 o

    ar

  • 8/6/2019 C4 June 2006 Mark Scheme

    22/26

    tionNumber

    Scheme ark

    . (a) question,dS

    8dt

    = dS

    8dt

    =

    2 dS 12xdx

    = dS

    12xdx

    =

    23dS dS 8 ;

    dt dx 12x x = = ( )23k = Candidates

    dS dS

    dt dx ;

    8

    12x 1o

    (b) 2dV 3xdx = 2dV 3x

    dx=

    2dV dx 23x . ; 2xdx dt 3x

    = =

    Candidates

    dV dx

    dx dt ; x 1

    13V , then

    13

    dV2V

    dt= AG Use of

    13x V= , to give

    13

    dV2V

    dt=

    (c) = 2 dt arates the variables with 13

    dV

    Vor

    13V dV

    on one side and2 dt on the other side.

    integral signs not necessary.

    = dV 2 dt Attempts to integrate and

    2t (+c) must see23V and 2t;

    orrect equation with/without + c.

    2(0) c c 6= + = e of V = 8 and t = 0 in a changed

    equation containing c ; c 6= A1

    :233

    2V 2t 6= +

    aving found their c candidate

    )23

    2 2t 6= + 12 2t 6= + substitutes V 16 2= into anequation involving V, t and c.

    1

    t = 3. t = 3 o

  • 8/6/2019 C4 June 2006 Mark Scheme

    23/26

    ar

  • 8/6/2019 C4 June 2006 Mark Scheme

    24/26

    tionNumber

    Scheme ark

    liter

    . (b)1 2

    32& S 6x S 6V= = 23S 6V=

    ay 2134V

    or

    13

    dV 1V

    dS 4=

    13

    dS4V

    dV

    = or

    13

    dV 1V

    dS 4=

    13

    1 13 3

    dS dV 1 28. ; 2V

    dt dS 4V V

    = = =

    AG Candidates

    dS dV

    dt dS ;

    132V 1

    In ePEN, award Marks for2 in the order they appear on

    this mark scheme.

    liter

    . (c) 1 dt= Separates the variables with

    13

    dV

    2V or13

    1V dV

    2

    oe on one

    side and 1 dt on the otherside.

    ay 2 integral signs not necessary.1

    3 dV 1 dt=

    Attempts to integrate and 23V t= (+c) must see

    23V and t;

    orrect equation with/without + c.

    (0) c c 3= + = of V = 8 and t = 0 in a changed

    equation containing c ; c 3= A1

    :233

    4V t 3= +

    Having found their ccandidate

    )23

    2 t 3= + 6 t 3= + substitutes V 16 2= into anequation involving V, t and c.

    1

    t = 3. t = 3 o

    .

  • 8/6/2019 C4 June 2006 Mark Scheme

    25/26

    tionNumber

    Scheme ark

    liter r to way 1.

    (b) 2dV 3xdx

    = 2dV 3xdx

    =

    ay 3

    2dV dS dx 13x .8. ; 2xdx dt dS 12x

    = =

    Candidates

    dV dS dx

    dx dt dS ; x 1

    13V , then

    13

    dV2V

    dt= AG Use of

    13x V= , to give

    13

    dV2V

    dt=

    liter

    (c) = 2 dt arates the variables with 13

    dV

    Vor

    13V dV

    on one side and2 dt on the other side.

    ay 3 integral signs not necessary.

    = dV 2 dt Attempts to integrate and

    4

    3

    t (+c) must see

    23V and 4

    3t;

    orrect equation with/without + c.

    43(0) c c 4+ =

    e of V = 8 and t = 0 in a changedequation containing c ; c 4=

    A1

    :23 4

    3V t 4= +

    aving found their c candidate

    )23 4

    3t 6= + 4

    38 t 4= + substitutes V 16 2= into an

    equation involving V, t and c.1

    t = 3. t = 3 o

  • 8/6/2019 C4 June 2006 Mark Scheme

    26/26