52
Page Application and technical reference data MCB and fuse fault current limiter coordination chart MCB 12 - 2 Selectivity and cascade applications MCB 12 - 3 to 12 - 6 Selectivity and cascade applications MCB/MCCB 12 - 6 to 12 - 10 Selectivity MCCB/ACB 12 - 11 Socomec and MCCB back-up coordination charts MCCB 12 - 12 Motor starting methods MCB/MCCB 12 - 13 to 12 - 15 Motor currents chart - 12 - 16 Motor circuit application table for DOL starting MCB/MCCB 12 - 17 Motor circuit application table for reduced voltage starting MCB/MCCB 12 - 18 Motor circuit application table for DOL fire pump starting MCB/MCCB 12 - 19 Motor starting table for DOL starting at 1000 V MCB/MCCB 12 - 20 Type 2 motor starting coordination tables MCB/MCCB/KTA7 12 - 21 to 12 - 33 MCCBs for power factor correction MCCB 12 - 34 MCCBs for use in high frequency applications – 400 Hz MCCB 12 - 35 Circuit breaker selection for DC applications MCB/MCCB 12 - 36 to 12 - 37 Selection of MCCBs for use in welder circuits MCCB 12 - 38 to 12 - 39 Primary LV/LV transformer protection MCCB 12 - 40 MCB selection for high pressure sodium lamps MCB 12 - 41 MCB selection for fluorescent lighting loads MCB 12 - 42 Cable 3 phase current ratings - 12 - 43 Downstream short circuit current calculator - 12 - 44 Transformers in parallel - 12 - 45 IP ratings table - 12 - 46 Useful formulae and conversion factors - 12 - 47 Derived units of the international system - 12 - 48 Codes, testing institutes and approval symbols - 12 - 49 to 12 - 50 NHP technical news publications - 12 - 51 Terasaki MCCB Old versus New cross reference MCCB 12 - 52 Section 12 12 - 1 Innovators in Protection Technology 12

C12 Application Reference Data

Embed Size (px)

Citation preview

Page 1: C12 Application Reference Data

Page

Application and technical reference data

MCB and fuse fault current limiter coordination chart MCB 12 - 2Selectivity and cascade applications MCB 12 - 3 to 12 - 6Selectivity and cascade applications MCB/MCCB 12 - 6 to 12 - 10Selectivity MCCB/ACB 12 - 11Socomec and MCCB back-up coordination charts MCCB 12 - 12Motor starting methods MCB/MCCB 12 - 13 to 12 - 15Motor currents chart - 12 - 16Motor circuit application table for DOL starting MCB/MCCB 12 - 17Motor circuit application table for reduced voltage starting MCB/MCCB 12 - 18Motor circuit application table for DOL fire pump starting MCB/MCCB 12 - 19Motor starting table for DOL starting at 1000 V MCB/MCCB 12 - 20Type 2 motor starting coordination tables MCB/MCCB/KTA7 12 - 21 to 12 - 33MCCBs for power factor correction MCCB 12 - 34MCCBs for use in high frequency applications – 400 Hz MCCB 12 - 35Circuit breaker selection for DC applications MCB/MCCB 12 - 36 to 12 - 37Selection of MCCBs for use in welder circuits MCCB 12 - 38 to 12 - 39Primary LV/LV transformer protection MCCB 12 - 40MCB selection for high pressure sodium lamps MCB 12 - 41MCB selection for fluorescent lighting loads MCB 12 - 42Cable 3 phase current ratings - 12 - 43Downstream short circuit current calculator - 12 - 44Transformers in parallel - 12 - 45IP ratings table - 12 - 46Useful formulae and conversion factors - 12 - 47Derived units of the international system - 12 - 48Codes, testing institutes and approval symbols - 12 - 49 to 12 - 50NHP technical news publications - 12 - 51Terasaki MCCB Old versus New cross reference MCCB 12 - 52

Section 12

12 - 1

Innovators in Protection Technology

12

Page 2: C12 Application Reference Data

12 - 2

Innovators in Protection Technology

12

Technical reference MCBMiniature circuit breakers and fuse-fault current limiters co-ordination chart

Notes: 1) Minimum fuse size is based on grading under overload of one MCB with oneset of fuses. Where a single set of fuses protects more than one MCB, theminimum fuse size shall be increased to allow for load biasing effects.

2) Maximum fuse size based on testing to AS/NZS 3439.1 clause 8.2.3.3) For specific kA ratings applicable to MCBs, refer page 1 - 21 ratings chart.

Tables based on the following maximum pre-arcing I2t for both BS 88 and DIN fuses:125 A - 0.4 x 105, 160 A - 0.62 x 105, 200 A - 1.2 x 105, 250 A - 2.1 x 105.Suitable fuses include NHP, GEC, Siemens and Bovara-Crady.

Fuses with higher current ratings may be used provided I2t values are equal to, or less than, the levels above.Semi-conductor fuses have very low I2t values and may suit some applications.

Attention is also drawn to AS/NZS 3000 clause 7.10.4.4, regarding the use of fault current limiters ininstallations containing fire and smoke control equipment, evacuation equipment and lifts.

Maximum fuse – Amps50 kA 63 kA

CircuitbreakerType BS 88 DIN

Safe-T

SRCB

Din-T

DTCB6

DTCB10 &

DTCB15 3)

DSRCB &

DSRCBH

(RCBO)

Din-T10H

E125, S125

6-10

16-25

32

40-50

63-100

10

16-20

2-25

32-63

0.5-6

10

16

20-32

40-63

10

16

20-32

80

100

125

16-125

50

63

80

100

160

50

63

20-63

100

20

25

35

63

100

25

35

63

160

200

250

250

160 2)

200 2)

200 2)

200 2)

200 2)

160

200

200

200

250

250

250

250

250

250

250

250

200

200

250

400

160

200

200

200

200

160

200

200

200

250

250

250

250

250

250

250

250

200

200

250

400

BS 88 DIN

125 2)

160 2)

160 2)

160 2)

160 2)

125

160

160

160

200

200

200

200

200

200

200

200

160

160

355

125

160

160

160

160

125

160

160

160

200

200

200

200

200

200

200

200

160

160

355

Rating(A)

6

6

6

6

6

6

6

6

6

10, 15

10, 25

10, 25

10, 20, 25

10, 15, 20

10

10

10

10

10

10

18/30

Breaker(kA)

Minimumfuse Amps 1)

Selection guide – MCB/Fuse ratings

Page 3: C12 Application Reference Data

12 - 3

Innovators in Protection Technology

12

Application dataSelectivity and Cascading applications

Cascading (Back-up)

Cascading is achieved by using an upstream device to assist(back-up) a downstream device in clearing a fault current thathappens to be greater than the breaking capacity of thedownstream device.

In Cascading applications, the upstream device may have to trip(unlatch) in order to give sufficient protection to thedownstream device, thus interrupting supply of power to alldevices downstream. Therefore, Cascading is generally used inapplications involving the supply of non-essential loads, such asbasic lighting. The main benefit of Cascading is that in certaincircumstances circuit breakers with breaking capacities lowerthan the prospective fault level, hence lower in cost, can besafely used downstream provided it is backed-up by the relevantupstream breaker.

Cascade / Selectivity tables

The Selectivity and Cascade tables shown in the following pagesare structured as follows.

Selectivity: The Selectivity limit of the two nominated devices in series. Up to this level of fault currentthe downstream device will trip (unlatch) beforethe upstream device. Above this level, theupstream may also trip.

Cascade: The maximum downstream fault current that canbe safely interrupted when both breakers areinstalled in series. Both breakers may trip(unlatch).

The Selectivity and Cascade levels stated by NHP comply fullywith the requirements of the applicable standards. Selection ofbreakers should be in accordance with the selection tableslocated in this section.

The figures stated in NHP tables are for nominated Terasakidevices only and should not be used as a guide to usingalternative brands of circuit breakers.

Introduction

A higher reliance on electrical supply and safety in commerceand industry has increased awareness in circuit breakertechnology and applications. Additionally, while maximisingsystem safety and reliability, efficient economy of overall costsis also of great importance.The combination of these factors has given rise to more precisemethods of circuit breaker application.

Two common terminologies relating to general power back-upand system protection are: Selectivity (Discrimination) andCascading (Back-up). In general terms, Selectivity is used toimprove system reliability and to ensure a continuous supply ofpower to as high a degree as possible. Cascading on the otherhand is where an upstream breaker is used to “back-up” a lowerspecification breaker installed downstream to clear a faultcurrent, and is generally used where economics plays asignificant part in system design.

Selectivity

Also known as “Discrimination”, the most basic form ofSelectivity is where two circuit breakers are connected in series.A higher amperage breaker is installed upstream, and a loweramperage breaker downstream. Should an overload or shortcircuit occur downstream, the downstream breaker will trip, butthe upstream breaker will not, hence feeding parts of the systemwhich are fault-free. This is the concept of Selectivity.

Selectivity is generally used, for example in critical applications,feeding essential loads. It is important to ensure totalinstallation power is not lost due to a small or minor fault in asub part of the overall electrical system, for example in a localdistribution board. Total power loss could affect vital systemssuch as in Hospitals or Computer Centres etc.

The principle of Selectivity is based on an analysis of severaltypes of circuit breaker characteristics. These include trippingcharacteristics (time-current curves), Peak Let-through current(Ipeak) and Energy let-through (I2T).

Selectivity can be “enhanced” beyond the breaking capacity ofthe downstream device provided it is backed up by anappropriately selected upstream device, which should not trip(unlatch) under stated conditions.

2 5 / 5 0

Selectivity Cascade

Page 4: C12 Application Reference Data

12 - 4

Innovators in Protection Technology

Application dataSelectivity and Cascade – Miniature circuit breakers

DownstreamB curve

Din-T 6, 10, 15 Din-T 10H

Upstream C curve

MCBs 10 A 16 A 20 A 25 A 32 A 40 A 50 A 63 A 80 A 100 A 125 A

MCBs

Din-T 10

In (A)

6

10

16

20

25

32

40

50

63

0.07

0.10

0.15

0.15

0.18

0.18

0.23

0.23

0.23

0.23

0.27

0.27

0.27

0.27

0.27

0.27

0.35

0.35

0.35

0.35

0.35

0.35

0.45

0.45

0.45

0.45

0.45

0.45

1.5

1

1

1

0.9

0.9

1.6

1.1

1.1

1.1

1.1

1

0.9

1.7

1.2

1.2

1.2

1.1

1

0.9

(kA below)

C Curve

Selectivity MCB to MCB: Thermal magnetic – ‘B’ Curve/’C’ Curve

Selectivity MCB to MCB: Thermal Magnetic ‘C’ Curve

DownstreamC curve

Din-T 6, 10, 15 Din-T 10H

Upstream C curve

MCBs 10 A 16 A 20 A 25 A 32 A 40 A 50 A 63 A 80 A 100 A 125 A

MCBs

Din-T 6

Din-T 10

Din-T 15

In (A)

6

10

16

20

25

32

40

50

63

0.07

0.10

0.15

0.15

0.18

0.18

0.23

0.23

0.27

0.27

0.27

0.27

0.27

0.35

0.35

0.35

0.35

0.35

0.35

0.45

0.45

0.45

0.45

0.45

0.45

0.45

1

1

1

1

0.9

0.9

1.1

1.1

1.1

1.1

1

0.9

1.2

1.2

1.2

1.1

1.1

1

0.9

(kA below)

C Curve

12

Page 5: C12 Application Reference Data

12 - 5

Innovators in Protection Technology

Application dataSelectivity and Cascade – Miniature circuit breakers

Back-up protection with MCBs (DSRCD)Din-T6 Din-T10 Din-T15 Din-T10H

(A) (kA) (kA) (kA) (kA)RCCB 16 20 20 20 102 Poles 25 20 20 20 10240V 40 20 20 20 10(DSRCD) 63 20 20 20 10

80 - - - 10100 - - - 10

RCCB 25 10 10 10 104 Poles 40 10 10 10 10415V 63 10 10 10 10(DSRCD) 80 - - - 10

100 - - - 10

Back-up protection with FUSES gG (DSRCD)16 A 25 A 32 A 40 A 50 A 63 A 80 A 100 A

(A) (kA) (kA) (kA) (kA) (kA) (kA) (kA) (kA)RCCB 16 100 100 80 50 40 25 16 102 Poles 25 100 100 80 50 40 25 16 10240V 40 100 100 80 50 40 25 16 10(DSRCD) 63 100 100 80 50 40 25 16 10

80 100 100 80 50 40 25 16 10100 100 100 80 50 40 25 16 10

RCCB 25 100 100 80 50 40 25 16 104 Poles 40 100 100 80 50 40 25 16 10415V 63 100 100 80 50 40 25 16 10(DSRCD) 80 100 100 80 50 40 25 16 10

100 100 100 80 50 40 25 16 10

Series In

Upstream: MCBsDownstream: MCBs

Voltage 400/415 V, Icc max. in kA

Cascade – MCB back-up applications

Upstream: MCB / Downstream: MCB

(A)

Din-T 10

0.5 … 63 A

Din-T 15

< 40 A

Din-T 15

50 … 63 A

Din-T 6

Din-T 10

0.5…63

0.5…63

10

20

20

15

15

MCB to MCB

Cascade &

selectivity

Series In

Upstream: MCBsDownstream: MCBs

Voltage 220/240 V, Icc max. in kA

(A)

Din-T 10

0.5 … 63 A

Din-T 15

0.5 … 63 A

Din-T 10H

80 … 125 A

Din-T 6

Din-T 10

Din-T 15

0.5…63

≤ 32

≥ 40

20

22

50

35

16

12

Page 6: C12 Application Reference Data

12 - 6

Application dataSelectivity and Cascade tables @ 400 / 415 VMCCBs and MCBs

Innovators in Protection Technology

Guide

Selectivity Cascade

XX / YY

Note: Refer to section 13 for TemBreak 1 selectivity and cascade values.

12

25 kA

E125NJ

Upstream MCCBs

kA (RMS)

CurrentRange (A)

≤20

25 & 32

40

50 & 63

≤32

40

50 & 63

80

100

125

≤32

40

50 & 63

≤63

Downstream MCB

DTCB6

DINT10H,DSRCBH& DSRCB

DIN-T10H

DIN-T15

SAFE-T & SRCB

6

10

10

15

6

63 80 125100 63 80 12510063 80 12510063 80 12510063 80 125100

25/25

20/25

- /25

- /25

25/25

- /25

- /25

25/25

-/25

-/25

-/10

25/25

20/25

20/25

-/25

25/25

20/25

-/25

25/25

20/25

-/25

3/10

25/25

20/25

20/25

20/25

25/25

20/25

20/25

4/25

25/25

20/25

20/25

3/10

25/25

20/25

20/25

20/25

25/25

20/25

20/25

4/25

4/25

25/25

20/25

20/25

3 /10

36 kA

S125NJ

65 kA

S125GJ-ZS125GJ

36 kA

S160NJ

25 kA

E125NJ

25/25

20/25

-/25

-/25

30/36

-/25

-/25

30/36

-/25

-/25

-/10

25/25

20/25

20/25

-/25

30/36

20/25

-/25

30/36

20/25

-/25

3/10

25/25

20/25

20/25

20/25

30/36

20/25

20/25

4/25

30/36

20/25

20/25

3/10

25/25

20/25

20/25

20/25

30/36

20/25

20/25

4/25

4/25

30/36

20/25

20/25

3/10

35/35

20/25

-/25

-/25

30/50

-/25

-/25

30 /50

-/25

-/25

-/10

35/35

20/25

20/25

-/25

30/50

20/25

-/25

30/50

20/25

- /25

3/10

35/35

20/25

20/25

20/25

30/50

25/25

25/25

4/25

30/50

25/25

25/25

3/10

35/35

20/25

20/25

20/25

30/50

25/25

25/25

4/25

4/25

30/50

25/25

25/25

3/10

125 kA

H125NJ

36/36

30/30

-/30

-/30

36/36

-/30

-/30

30/36

-/30

-/30

36/36

30/30

30/30

-/30

36/36

30/30

-/30

30/36

30/30

- /30

36/36

30/30

30/30

30/30

36/36

30/30

30/30

15/15

30/36

30/30

30/30

36/36

30/30

30/30

30/30

36/36

30/30

30/30

15/15

15/15

30/36

30/30

30/30

160 160

36/36

30/30

30/30

30/30

36/36

30/30

30/30

15/15

15/15

15/15

30/36

30/30

30/30

36/36

30/30

-/30

-/30

40/36

- /30

- /30

40/65

- /30

- /30

36/36

30/30

30/30

-/30

40/36

30/30

- /30

40/65

30/30

- /30

36/36

30/30

30/30

30/30

4/36

30/30

30/30

15/15

40/65

30/30

30/30

36/36

30/30

30/30

30/30

40/36

30 /30

30 /30

15/15

15/15

40/65

30/30

30/30

36/36

30/30

30/30

30/30

40/36

30/30

30/30

15/15

15/15

15/15

40/65

30/30

30/30

25 kA

E250NJ

Upstream MCCBs

kA (RMS)

CurrentRange (A)

≤20

25 & 32

40

50 & 63

≤32

40

50 & 63

80

100

125

≤32

40

50 & 63

Downstream MCB

DTCB6

DINT10H,DSRCBH& DSRCB

DIN-T10H

DIN-T15

6

10

10

15

63 80 160100 63 80250 160 250200200 250 200160

25/25

25/25

-/25

-/25

25/25

-/25

-/25

25/25

-/25

-/25

25/25

25/25

20/25

-/25

25/25

20/25

-/25

25/25

25/25

-/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

15/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

15/25

15/25

-/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

15/25

15/25

15/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

25/25

15/25

15/25

15/25

25/25

25/25

25/25

36/36

30/30

30/30

30/30

36/36

30/30

30/30

15/25

15/25

- /25

36/36

20/25

30/30

36/36

30/30

30/30

30/30

36/36

30/30

30/30

15/25

15/25

15/25

36/36

20/25

30/30

36/36

30/30

30/30

30/30

36/36

30/30

30/30

15/25

15/25

15/25

36/36

-/25

30/30

36/36

30/30

-/30

-/30

40/65

-/30

-/30

40/65

-/30

-/30

36/36

30/30

30/30

-/30

40/65

30/30

-/30

40/65

30/30

-/30

36/36

30/30

30/30

30/30

40/65

30/30

30/30

15/25

15/25

- /25

40/65

30/30

-/65

36/36

30/30

30/30

30/30

40/65

30/30

30/30

15/25

15/25

15/25

40/65

30/30

-/65

36/36

30/30

30/30

30/30

40/65

30/30

30/30

15/25

15/25

15/25

40/65

30/30

30/30

36 kA

S250NJ

70 kA

S250PE

65 kA

S250GJ - ZS250GJ

Cat. No.

Cat. No.

Page 7: C12 Application Reference Data

12 - 7

Innovators in Protection Technology

Cascade The resultant cascade level with the S250GJ (250 A, 65 kA MCCB) and DTCB10 (32 A, 10 kA MCB) is 65 kA.This means that the S250GJ will back-up the DTCB10 MCB to 65 kA, which is beyond the normal breakingcapacity of 10 kA.

SelectivityFrom the tables, the selectivity level between the same two breakers, S250GJ and DTCB10 connected inseries will be 40 kA. This means that for fault levels up to and including 40 kA, the DTCB10 will trip beforethe S250GJ.

ConclusionFor short circuit currents up to and including 40 kA, the DTCB10 will trip before the S250GJ, thereforeensuring selectivity. For fault levels above 40 kA, both breakers will trip, however the S250GJ will back upthe DTCB10 to 65 kA.

12

200 250 200100125100

36/36

30/30

30/30

30/30

40/65

30/30

30/30

15/15

40/65

40/65

40/65

36/36

30/30

30/30

30/30

40/65

30/30

30/30

15/15

15/15

40/65

40/65

40/65

160 250

36/36

30/30

30/30

30/30

40/65

30/30

30/30

15/15

15/15

40/65

40/65

40/65

36/36

30/30

30/30

30/30

40/65

30/30

30/30

15/15

15/15

40/65

40/65

40/65

36/36

30/30

30/30

30/30

40/65

30/30

30/30

15/15

15/15

40/65

40/65

40/65

36/36

30/30

30/30

10/10

10/10

-/10

36/36

30/30

30/30

36/36

30/30

30/30

10/10

10/10

10/10

36/36

30/30

30/30

36/36

30/30

30/30

10/10

10/10

10/10

36/36

30/30

30/30

400

36/36

30/30

30/30

10/10

10/10

10 /10

36/36

30/30

30/30

40/50

30/30

30/30

10/10

10/10

-/10

40/50

30/30

30/30

40/50

30/30

30/30

10/10

10/10

10/10

40/50

30/30

30/30

40/50

30/30

30/30

10/10

10/10

10/10

40/50

30/30

30/30

40/50

30/30

30/30

10/10

10/10

10/10

40/50

30/30

30/30

40/65

30/30

30/30

10/10

10/10

-/10

40/65

30/30

30/30

40/65

30/30

30/30

10/10

10/10

10/10

40/65

30/30

30/30

40/65

30/30

30/30

10/10

10/10

10/10

40/65

30/30

30/30

40/65

30/30

30/30

10/10

10/10

10/10

40/65

30/30

30/30

200100 250 400 200100 250 400

Application dataSelectivity and Cascade tables @ 400 / 415 VMCCBs and MCBs

125 kA

H250NJ-H250NE

36 kA

S400CJ

50 kA

S400NJ - S400NE

70 kA

S400GE

Page 8: C12 Application Reference Data

E125NJ

S125NJ

S125GJ

ZS125GJ

H125NJ

S160NJ

S160GJ

H160NJ

E250NJ

S250NJ

S250GJ

ZS250GJ

S250PE

H250NJ

H250NE

E400NJ

S400CJ

S400NE

S400NJ

S400GJ

H400NJ

H400NE

E630NE

E630CE

S630GE

XS630CJ

XS630NJ

XS630PJ

XS630SE

XH630SE

XH630PE

XS800NJ

XS800SE

XJ800PJ

XH800SE

XH800PE

XS1250SE

XS1600SE

12 - 8

Innovators in Protection Technology

12

Application dataSelectivity and Cascade tables @ 400 / 415 V MCCBsElectronic MCCBs upstream

25

36

65

70

-

-

-

-

-

-

DownstreamMCCBs

UpstreamMCCBs

kA(RMS)

E125NJ

S125NJ

S125GJ

ZS125GJ

H125NJ

S160NJ

S160GJ

H160NJ

E250NJ

S250NJ

S250GJ

ZS250GJ

S250PE

H250NJ

H250NE

E400NJ

S400CJ

S400NE

S400NJ

S400GJ

H400NJ

H400NE

E630NE

E630CE

S630GE

XS630CJ

XS630NJ

XS630PJ

XS630SE

XH630SE

XH630PE

XS800NJ

XS800SE

XJ800PJ

XH800SE

XH800PE

XS1250SE

XS1600SE

25

36

65

125

36

65

125

25

36

65

70

125

125

25

36

50

50

70

125

125

36

50

70

45

65

85

50

65

65

65

50

85

65

65

65

85

70 125 50 70 85 125 200 36 50S2

50PE

H25

0NE

S400

NE

S400

GE

S400

PE

H40

0NE

L400

NE

E630

NE

S630

CE

XX / YY

Selectivity / Cascade

Note: Refer to section 13 for TemBreak 1 selectivity and cascade values.

/50

/65

/70

/70

/65

/70

/70

/50

/65

/70

25

36

65

125

-

-

-

-

-

-

-

65

85

125

125

85

125

125

85

85

125

125

25

36

50

50

36

50

-

25

36

50

-

-

-

-

-

/36

/50

/50

/50

/50

/50

/50

/36

/50

/50

/50

/50

/50

/36

/50

25

36

65

70

36

65

-

25

36

65

-

-

-

-

-

-

-

/50

/65

/70

/70

/65

/70

/70

/50

/65

/70

/70

/70

/70

/50

/65

/50

/70

25

36

65

85

36

65

-

25

36

65

-

-

-

-

-

-

-

-

-

-

/50

/65

/85

/85

/65

/85

/85

/50

/65

/85

/85

/85

/85

/50

/65

/70

/70

/85

/85

/85

25

36

65

125

36

65

125

25

36

65

70

125

125

-

-

-

-

-

-

/65

/85

/125

/125

/85

/125

/125

/65

/85

/125

/125

/125

/125

/65

/70

/50

/85

/125

/125

25

36

65

125

36

65

125

25

36

65

70

125

125

-

-

-

-

-

-

/85

/125

/150

/200

/125

/150

/200

/85

/125

/150

/150

/200

/200

/85

/100

/50

/125

/150

/150

25

36

36

36

36

36

36

25

36

36

36

36

36

10

10

10

10

10

10

10

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

/36

25

36

50

50

36

50

50

25

36

50

50

50

50

10

10

10

10

10

10

10

/36

/50

/50

/50

/50

/50

/50

/36

/50

/50

/50

/50

/50

/36

/50

/50

/50

/50

/50

/50

Page 9: C12 Application Reference Data

E125NJ

S125NJ

S125GJ

ZS125GJ

H125NJ

S160NJ

S160GJ

H160NJ

E250NJ

S250NJ

S250GJ

S250PE

H250NJ

H250NE

E400NJ

S400CJ

S400NE

S400NJ

S400GJ

H400NJ

H400NE

E630NE

E630CE

S630GE

XS630CJ

XS630NJ

XS630PJ

XS630SE

XH630SE

XH630PE

XS800NJ

XS800SE

XJ800PJ

XH800SE

XH800PE

XS1250SE

XS1600SE

12 - 9

Innovators in Protection Technology

XX / YY

Selectivity / CascadeXS

630S

E

XH63

0SE

S630

GE

TL63

0NE

XS80

0SE

XH80

0SE

TL80

0NE

XS12

50SE

TL12

50N

E

XS16

00SE

XS20

00N

EXS

2500

NE

XS32

00N

E

50 65 70 125 50 65 125 85 125 100 85

Application dataSelectivity and Cascade tables @ 400 / 415 V MCCBs

DownstreamMCCBs

UpstreamMCCBs

kA(RMS)

25

36

65

125

36

65

125

25

36

65

70

125

125

25

36

50

50

70

125

125

36

50

70

45

65

85

50

65

65

65

50

85

65

65

65

85

25

36

50

50

36

50

50

25

36

50

50

50

50

10

10

10

10

10

10

10

/36

/50

/50

/50

/50

/50

/50

/36

/50

/50

/50

/50

/50

/36

/50

/50

/50

/50

/50

/50

25

36

65

50

36

50

50

25

36

50

50

50

50

10

10

10

10

10

10

10

/50

/65

/65

/65

/50

/65

/65

/50

/65

/65

/65

/65

/65

/50

/65

/50

/65

/65

/65

/65

25

36

65

70

36

65

70

25

36

65

70

70

70

10

10

10

10

10

10

10

/50

/65

/70

/70

/50

/70

/70

/50

/65

/70

/70

/70

/70

/50

/65

/50

/70

/70

/70

/70

25

36

65

70

36

65

70

25

36

65

70

70

70

10

10

10

10

10

10

10

/25

/36

/65

/125

/36

/65

/125

/25

/36

/65

/70

/125

/125

/36

/50

/50

/65

/70

/85

/125

25

36

50

50

36

50

50

25

36

50

50

50

50

25

25

25

25

25

25

25

25

25

/36

/50

/50

/50

/50

/50

/50

/36

/50

/50

/50

/50

/50

/36

/50

/50

/50

/50

/50

/50

/36

/50

25

36

65

65

36

50

50

25

36

50

65

50

65

25

25

25

25

25

25

25

25

25

/36

/36

/65

/65

/65

/65

/65

/50

/65

/65

/65

/65

/65

/50

/65

/50

/65

/65

/65

/65

/36

/50

25

36

65

65

36

50

50

25

36

50

50

50

50

25

25

25

25

25

25

25

25

25

/36

/36

/65

/125

/36

/65

/125

/50

/65

/65

/70

/125

/125

/36

/50

/50

/65

/70

/85

/125

/36

/50

25

36

65

85

36

65

85

25

36

65

70

85

85

25

36

50

50

70

70

85

36

50

70

30

30

30

30

30

30

15

15

15

15

15

/25

/36

/65

/85

/36

/65

/85

/25

/36

/65

/70

/85

/85

/36

/50

/50

/65

/70

/85

/85

/36

/50

/70

/42

/65

/85

/65

/65

/65

/65

/50

/85

/65

/65

25

36

65

85

36

65

85

25

36

65

70

85

85

25

36

50

50

70

85

85

36

50

70

30

30

30

30

30

30

15

15

15

15

15

/25

/36

/65

/125

/36

/65

/125

/25

/36

/65

/70

/125

/125

/36

/50

/50

/65

/70

/85

/125

/36

/50

/70

/42

/65

/85

/65

/65

/65

/65

/50

/85

/65

/65

25

36

65

100

36

65

100

25

36

65

70

100

100

25

36

50

50

70

85

85

36

50

70

30

30

30

30

30

30

20

20

20

20

20

20

/25

/36

/65

/100

/36

/65

/100

/25

/36

/65

/70

/100

/100

/36

/50

/50

/65

/85

/85

/100

/36

/50

/70

/42

/65

/85

/85

/85

/85

/65

/50

/85

/65

/65

/65

25

36

65

85

36

65

85

25

36

65

70

85

85

25

36

50

50

70

85

85

36

50

70

35

35

35

30

30

30

35

35

35

35

35

35

35

/25

/36

/65

/85

/36

/65

/85

/25

36

65

70

85

85

25

36

50

50

70

85

85

36

50

70

42

65

85

85

85

85

65

50

85

65

65

65

85

12

Page 10: C12 Application Reference Data

12 - 10

Innovators in Protection Technology

12

Application dataCascade / back-up application tables @ 380 - 415 V ACUpstream-Downstream MCCBs (Thermal magnetic upstream)

kA (RMS)

DownstreamMCCBs

25

36

65

125

36

65

125

25

36

65

70

125

25

36

50

70

125

25

36

36

50

65

65

65

65

65

85

125

125

36

85

125

150

200

36

36

36

36

36

36

50

65

65

65

65

65

65

25

65

65

85

125

125

85

125

125

25

36

85

125

150

200

125

150

200

25

36

E125NJ

S125NJ

S125GJ

H125NJ

S160NJ

S160GJ

H160NJ

E250NJ

S250NJ

S250GJ

S250PE

H250NJ

E400NJ

S400CJ

S400NJ

S400GJ

H400NJ

E125

NJ

S125

NJ

S125

GJ

H12

5NJ

L125

NJ

S160

NJ

S160

GJ

H16

0NJ

L160

NJ

25 36 65 125 200 36 65 125 200

Cascade@ 380 – 415 V AC 1)

Upstream MCCBs

Note: 1) Ratings have not been verified where a dash “–” is shown.All pick-up and time delay settings are to be set at a maximum for upstream MCCBsRefer to section 13 for TemBreak 1 selectivity and cascade values.

Page 11: C12 Application Reference Data

12 - 11

Innovators in Protection Technology

Application dataSelectivity tables @ 400/ 415 V ACACB/MCCB

Upstream: TemPower 2 ACB with or without Integral Protection Relay.Downstream: TemBreak 2 MCCB.

Frame (A)

Model

Breaking capacity (kA) 65 kA 80 kA 65 kA 80 kA 65 kA 80 kA 65 kA 80 kA 85 kA 100 kA 85 kA 100 kA 100 kA 100 kA 120 kA

800 A 1250 A 1600 A 2000 A 2500 A 3200 A 4000 A 5000 A 6300 AAR

212S

AR21

2H

AR21

2S

AR21

2H

AR21

6S

AR21

6H

AR22

0S

AR22

0H

AR32

5S

AR32

5H

AR33

2S

AR33

2H

AR44

0S

AH50

C

AH60

C

Notes: 1. All ACBs have Ii set at NON, MCR ON.2. Assuming ACB time settings are greater than MCCB.3. The above table is in accordance with IEC 60947-2, Annex A.4. External relay can be used - Contact NHP for further details.5. All values shown at 400 V AC.

Upstream ACB

Dow

nstr

eam

MCC

B

125 A E125NJ 25 kA 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25S125NJ 36 kA 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36S125GJ 65 kA 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65H125NJ 125 kA 65 80 65 80 65 80 65 80 85 100 85 100 100 100 120L125NJ 200 kA 65 80 65 80 65 80 65 80 85 100 85 100 100 100 120

160 A/ S160NJ 36 kA 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36250 A S160GJ 65 kA 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65

E250NJ 25 kA 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25S250NJ 36 kA 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36S250GJ 65 kA 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65S250PE 70 kA 65 70 65 70 65 70 65 70 70 70 70 70 70 70 70H250NJ 125 kA 65 80 65 80 65 80 65 80 85 100 85 100 100 100 120L250NJ 200 kA 65 80 65 80 65 80 65 80 85 100 85 100 100 100 120

400 A/ E400NJ 25 kA 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25630 A S400CJ 36 kA 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36

S400NJ 50 kA 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50S400NE 50 kA 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50S400GJ 70 kA 65 70 65 70 65 70 65 70 70 70 70 70 70 70 70S400GE 70 kA 65 70 65 70 65 70 65 70 70 70 70 70 70 70 70S400PE 85 KA 65 80 65 80 65 80 65 80 85 85 85 85 85 85 85H400NJ 125 kA 65 80 65 80 65 80 65 80 85 100 85 100 100 100 120H400NE 125 kA 65 80 65 80 65 80 65 80 85 100 85 100 100 100 120E630NE 36 kA 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36S630CE 50 kA 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50S630GE 70 kA 65 70 65 70 65 70 65 70 70 70 70 70 70 70 70

800 A XS800NJ 65 kA 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65XH800SE 65 kA 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65XH800PJ 100 kA 65 80 65 80 65 80 65 80 85 100 85 100 100 100 100XS800SE 50 kA 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

1250 A/ XS1250SE 65 kA 65 65 65 65 65 65 65 65 65 65 65 65 65 65 651600 A XS1600SE 85 kA - - - - 65 80 65 80 85 85 85 85 85 85 85

12

Page 12: C12 Application Reference Data

12 - 12

Application data Load-break / MCCBSocomec load-break switch and TemBreak MCCB co-ordination chart

Innovators in Protection Technology

SocomecLoad-breakswitch MCCB (kA) MCCB (kA) MCCB (kA) MCCB (kA)

SLB63 E125NJ 6.5 S125NJ 6.5 S125GJ 6.5 H125NJ 7.5

SLB125 E125NJ 22 S125NJ 22 S125GJ 22 H125NJ 30

- - S160NJ 15 S160GJ 15 H160NJ 27

E250NJ 15 S250NJ 15 S250GJ 15 H250NJ 26

SLB200 E125NJ 25 S125NJ 36 S125GJ 65 H125NJ 80

- - S160NJ 30 S160GJ 30 H160NJ 80

E250NJ 25 S250NJ 30 S250GJ 30 H250NJ 80

SLB250 E250NJ 25 S250NJ 30 S250GJ 30 H250NJ 50

E400NJ 25 S400NJ 25 S400GJ 25 H400NJ 35

SLB315 E250NJ 25 S250NJ 36 S250GJ 65 H250NJ 100

E400NJ 25 S400NJ 50 S400GJ 65 H400NJ 100

SLB400 E400NJ 25 S400NJ 50 S400GJ 65 H400NJ 100

Tembreak 2 MCCB

SocomecLoad-breakswitch MCCB (kA) MCCB (kA) MCCB (kA)

SLB630 E630NE 35 S630CE 35 TL630NE 24

SLB800 XS800NJ 40 XH800PJ 40 TL800NE 28

SLB1000 XS1250SE 45 XS1600SE 45 TL1250NE 45

SLB1250 XS1250SE 65 XS1600SE 75 TL1250NE 70

SLB1600 XS1600SE 75 XS2000NE 60 - -

SLB2000 XS2000NE 60 XS2500NE 60 - -

SLB2500 XS2500NE 60 - - - -

Tembreak MCCB

Notes: Figures based on / valid for – 400/415 V ACApplication example:- Socomec load-break switches can be used in higher prospective fault current level applications, due to theupstream Terasaki TemBreak MCCB reducing the peak let-through current.Example: SLB250 can be used in a 30 kA application if there is an upstream S250NJ MCCB.For other combinations please refer to NHPMCCBs can be changed to electronic types.ZS ELCBs can be used.12

Upstream MCCB

Downstream load break switch

Page 13: C12 Application Reference Data

12 - 13

Innovators in Protection Technology

Application dataMotor starting – introduction

Generally, an item of switchgear is selected on the basis of oneor more performance criteria, be it current/power carrying orinterrupting capabilities.

Additional consideration is often necessary when severaldifferent pieces of switchgear are connected in series, nonemoreso than in motor starting applications. As motors play asignificant part in most modern-day electrical systems, it isimportant to ensure that the components of switchgearcontrolling and protecting the motor will interact with eachother, in other words, they are “co-ordinated”.

In order to protect and operate a motor, several componentsmay be used, each with a different function. A typical set-up isas follows:

What problems can occur?At the instant the motor is supplied with power, it draws an “in-rush current” to its terminals before gradually decaying to anormal operating current.

Should the in-rush current be high, it could be detected by theSCPD and classed as a fault current. If a high in-rush currentshould occur or even after repeated stop-start (inching)operations of the motor, the SCPD may trip, albeit without afault in the system. This is commonly known as “nuisancetripping” of the SCPD.

Special care must be taken when selecting a SCPD for motor-starting applications to prevent nuisance tripping and, at thesame time, ensuring adequate protection to the motor andassociated cabling.

Another function of the SCPD is to protect the control device(e.g. contactor) from high-current, high-energy faults.Therefore, attention must also be paid when selecting a SCPD-Starter (contactor + thermal overload relay) combination.

When clearing a fault, every SCPD has a finite opening time,which will result in an amount of fault current and energy being“let-through” to the downstream system and other devices. Atthe same time a control device, such as a contactor, can onlywithstand a finite level of fault current and energy, otherwiseinternal damage could occur.

Even at relatively low fault levels the electromagnetic forcescreated by the fault current can cause the contacts of acontactor to lift. This can cause heating or even mild arcingwhich in turn can damage or weld the contacts of the contactor.

Furthermore, the let-through current of the SCPD can distort thebi-metal strip in the overload relay. This can prevent therestoration of the bi-metal strip to its original configuration oncooling, altering the relay’s protection characteristics, thusresulting in under or over protection of the motor.

What solutions are available?Good component design, in association with correct componentco-ordination, is the only way to ensure reliable protection andoperation under abnormal conditions.

Terasaki circuit breakers and Sprecher + Schuh startercombinations are tested to provide full and safeco-ordination for most motor starting applications.

Short circuitprotective device(S.C.P.D.)

Contactor

Thermaloverloadrelay

The main purpose of the Short Circuit ProtectiveDevice (SCPD) is to give protection against shortcircuits.Commonly used devices are circuit breakers orfuses. Each offer particular benefits and bothconfigurations are commonly used.

The function of the contactor is for circuitcontrol, i.e. for the on-off operations of themotor.As contactors are capable of thousands or evenmillions of operations, they are the mostcommonly used control devices.

A thermal overload relay will give ideal protectionagainst overloads on the motor, as well as phase-loss protection. Although the SCPD will giveoverload protection, the thermal overload is moreclosely related to the characteristics of the motor.If a fault is detected the thermal overload relaywill open the contactor or control device, therebyisolating supply to the motor.

12

Page 14: C12 Application Reference Data

12 - 14

Innovators in Protection Technology

Application dataMotor starting and protection

Fig 1.

Protective devices selectionIn most cases very little difference will be noticed in the serviceperformance of a system using fuses as against circuit breakers.

The circuit breaker is easier when it comes to restoring power butas tripping should only be the result of a system fault, it is unwiseto reclose the circuit breaker without finding the cause. In thisregard it is normal for only a “skilled person” to attend to fusereplacement and they are more likely to check for other problems.

As the circuit breaker or fuse is operating in conjunction withseparate motor overload protection, it is the contactor whichresponds to overload problems. This is different to a protectivedevice on a distribution circuit. For this application theadvantages of the circuit breaker’s easy return to service hascaused a general trend towards using circuit breakers.

Consideration should be given to preventing unskilled peoplefrom reclosing a tripped circuit breaker in a motor controlapplication. This can be done by making the switchboard onlyaccessible to the correct people, or by requiring the switchboardto be opened to reset the circuit breaker.

It must be assumed with both Type ‘1’ and Type ‘2’co-ordination that if the short circuit protective device hasoperated there is a fault in the motor, or wiring to it, and thatthe starter itself needs attention.

It is the let-through energy of the protective device whichdetermines the damage to the starter. As this varies greatlybetween different models, it is essential that only provencombinations are used.

NHP, Sprecher + Schuh and Terasaki have conducted many testson different combinations and these are detailed in the co-ordination tables.

Terasaki circuit breakers for short circuit protectionTerasaki circuit breakers have been tested in combination withSprecher + Schuh contactors and overloads and can be used forType ‘1’ and Type ‘2’ co-ordination requirements. (Refer tofollowing tables for actual combinations).

TemBreakA new generation of MCCBs offering a choice of 3 series(economical, standard and high fault) and two types, ie,adjustable thermal magnetic or microprocessor based solid stateOCR are available from Terasaki. Both types have commonconstruction features and interchangeable plug-in accessories.TemBreak thermal-magnetic MCCBs offer a wide adjustmentrange, with 63 % to 100 % of rated current. Each MCCB isindividually calibrated to ensure precision tripping onovercurrent.

TemBreak electronic typeThe rated current of the electronic type TemBreak is adjustablein 15 steps from 50 % to 100 % of the nominal rated current,using the base current (Io) select switch and the pick-upcurrent (I1) setting dial.

This is one of the essential features for precise protection co-ordination and for low voltage distribution systems.

TemBreak motor protection circuit breaker XM30PBThe XM30PB circuit breaker will protect contactor starters withdirect connected overcurrent relays at ratings of 1 amp to12 amp, in systems with up to 50 kA RMS prospective shortcircuit. The protection is due to the special current limitingeffect of the XM30PB.

Motor starter protectionThe XM30PB circuit breaker has been developed for motorstarter protection and is suitable as the short circuit protectiondevice (SCPD) for motor starters equipped with either directconnected or CT connected overcurrent relays.

XM30PB compared to HRC fuseThe circuit breaker tripping characteristic is more suitable forprotection of starters than the HRC fuse. Unlike the HRC fuse,the breaker can be selected to trip instantaneously at apredetermined current level just lower than the maximumbreaking current of the starter contactor, thus always protectingthe contactor against opening fault currents higher than itscapability. This can be seen from the typical breaker and fusetripping characteristics compared to the contactor breakingcapacity in figure 1.

No protection is provided by the fuse when the overcurrent is ofvalue B to C amps, should the contactor open by earth faultrelay. If the breaker is used as a SCPD then protection isprovided for all currents in excess of the instantaneous tripcurrent of the breaker. Also, the circuit breaker can be trippedby earth fault relay and so prevent the risk of contactor damagedue to the long delay of the HRC fuse interruption if the faultcurrent is of a value between B and C.

12

Page 15: C12 Application Reference Data

12 - 15

Innovators in Protection Technology

12

Application dataStarting motors - starting methods

Selection of the starting method and sometimesthe design of the motor depend on the load torqueand on the line power. The load torque often varieswith the speed of rotation. During the startingphase, the motor torque must be greater than theload torque at all rotational speeds, the differenceresults in the accelerating torque.

When a motor is started, substantial current surgeswill occur in the power network. This may lead toundesired voltage sags. To prevent other activecomponents connected to the mains network frombeing affected, utility companies define limitvalues for motor run-up currents as a factor of theirrated operational currents. The permissible valuesvary and depend on the capacity of the networks.

Direct on-line starting is the simplest and mosteconomical method to start a squirrel-cage motor.The motor develops a high accelerating torque, andthe run-up time is usually very short. The maindisadvantage lies in the high pick-up current.

All other starting methods for squirrel-cage motorsare associated with a reduced voltage and thus areduced run-up current. The starting torque and themomentum during run-up are almost proportionalto the applied power E.I. As a result, a reduction ofvoltage and pick-up current will also reduce themotor torque. Conversely, if load torque and motortype are determined, it will not be possible to

further reduce the minimum pick-up current byselecting a specific starting method. In all cases,starting with reduced voltages and pick-up currentswill result in a longer motor run-up time.

In industrial plants, the supply network usually hassufficient capacity to support direct-on-linestarting. Even if several large motors are present,they can usually be started directly as a controlsystem prevents them from running upsimultaneously.

If a drive system is to be started with a high loadtorque on a weak supply network, a slip-ring motorwith an insulated rotor winding should be used. byappropriate selection of the three-phase startingresistance and the number of starting steps, pick-up currents and torque values can be adapted tothe circumstances. However, the costs of thisapproach are high: the motor is more expensive,and an external starting resistor as well as devicesfor its step-by-step shorting will be required.

No additional external switching devices arerequired for slip-ring motors with centrifugal stator.In this case, the starting resistors rotate and areswitched off by speed-controlled centrifugalcontacts. Combined motors also require switchingonly in the stator circuit, since their rotors areequipped with a shorted cage winding and aninsulated winding with a centrifugal switch.

List of most common starting methods

Motor typeStandard squirrel-cage motor

Special squirrel-cage motor

Slip-ringmotor

Startingmethod

Mainscapacityload

Motorpick-upcurrent (A)

Pick-uptorque[Nm]

Normalrun-uptime(s)

Heavy dutyrun-up time

Direct-on-line

highfull

4…8

1.5…3

0.2…5 s

5…30 s

Startingviachokes

mediumlight

2…4

0.4…0.8

2…20 s

Star delta

lowlight

1.5…2.4

0.4…0.8

Y2…16 s∆ 0.2…4 s

20…60 s

Star delta,uninter-ruptedswitching

lowlight

1.5…2.4

0.4…0.8

Y2…16 s∆ 0.2…4 s

20…60 s

Auto trans-former

lowmedium

1.3…5

1…2.4

4…60 s

60…180 s

Startingviaresistors

mediumlight

2…4

0.4…0.8

2…20 s

Statorresistancestarting

highlight

4…8

0.1…1

4…30 s

Multi-stagestarting

highfull

4…8

1.5…3

0.2…5 s

5…30 s

Startingviarotorresistors

lowmed...full

1.1…2.8

0.5…2

4…60 s

60…180 s

Star deltawithincreasedpick-up

mediummedium

2.2…3.5

0.7…1.1

Y2…10 s∆ 0.2…3 s

10…30 s

Note: Electronic soft starters and variable speed drives (VSDs) are alternate methods of starting not covered by the above.For details contact NHP.

Page 16: C12 Application Reference Data

12 - 16

Innovators in Protection Technology

Application dataRated outputs and standard values for rated operationalcurrents of standard squirrel-cage motors.

3 phase 4 pole 50/60 Hz motors 1) 2)

kW 1)

0.180.370.550.751.11.52.2344.55.57.510111518.52225303745557590110132160185200220250280300315375400475500560600670750900

hp

0.30.50.7511.52345.567.51013.515202530354050607510012515018022025027030034038041043050054564568075080090010001200

230 VA

1.21.952.73.24.66.391215.5172027363952637583100122147180240290350410500570625675775830920980115012251450------

kW

0.370.550.751.11.51.82.2345.567.5

hp

0.50.7511.522.53457.5810

230 VA

456.391215182328414252

690 VA

0.40.60.91.21.62.12.9455.76.69121317222528354049597995114135160185200220250280300315375400465495570610680770930

1000 VA

0.30.40.61.01.11.522.73.44.4677.6912.11518222327344254668090117135150160200225235240270290335360390420470530650

1100 VA

0.240.40.560.70.921.31.852.53.23.54.35.67.5810.51315.5182125303750607385105120130142160180195200240255300320350390430490600

400-415 VA

0.61.11.51.82.63.44.86.58.2911141921283440465565801001301552002252703253613804304805055356506657808209201000110012501470

Single phase motors

Notes:1) Standard values for standard squirrel-cage

motors: Rated operational currents formotors with n = 1500/min (4 pole),possible deviation +_ 10 % depending ontype and manufacturer, +_ 50 % for smallmotors.Deviation of rated operational currents formotors with other speeds (greaterdeviations for smaller motors):

With n = 3000 rpm (2 pole): –2 %…–10 %With n = 1000 rpm (6 pole): +2 %…+10 %With n = 750 rpm (8 pole): +5 %…+20 %

2) The power factor is usually around 0.8, butthis varies with the size and speed of the motor. Efficiency ranges from 85%in small motors to 90 % and over for large motors.

440 VA

0.61.01.31.72.33.14.467.7810131719263238435263779712815018522127031034035341046049551561064575079081096010801220145012

Page 17: C12 Application Reference Data

12 - 17

Innovators in Protection Technology

12

Technical dataMotor circuit application table for DOL starting

S/H/L160E/S/H/L250XS/XH250NJ

E/S/H/L400XS/XH400

E630S630XH630XS630

XS800NJXH800SEXS800SE

160

160

160

160

250

250

250

250

250

400

400

400

400 2)

400 2)

400

400

400

630

630

630

630

630 2)

630 2)

800 2)

800

800

800

800 2)

XS1250-SE/1000

1000

Approx.FLC(Amps)

0.37

0.55

0.75

1.1

1.5

2.2

3.0

4

4.5

5.5

7.5

10

11

15

18.5

22

25

30

37

45

55

75

90

110

132

160

185

200

220

250

280

300

375

450

Din-TC & Dcurve Safe-T

E/S/H/L125XS/XH125 E250

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

9

11

14

19

21

28

34

40

46

55

66

80

100

135

160

200

230

270

320

361

380

430

480

510

650

750

6

6

6

6

10

16

16

20

25

32

40

50

50

63

80

100

100

20

20

20

20

20

20

20

20

32

32

50

50

63

100

100

100

125

125 3)

125 3)

125

125

175

225

Motorrating(kW)

Breaker type and current rating (A)

4

4

6

10

10

16

20

25

32

32

40

50

50

63

100 1)

125 1)

125 1)

These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 400/415 V motorsfor standard applications only. Non-standard applications refer NHP.Notes: 1) 80, 100 and 125 amp refers to Din-T10H type.

2) Electronic TemBreak MCCB only.3) Use magnetic type TemBreak MCCB only. Refer NHP.The DOL table is based on holding 125 % FLC continuously and 600 % FLC for 10 seconds. For non-standarddrives consult NHP.Lower circuit breaker ratings are possible in most applications. Refer to Type ‘2’ co-ordination tables for specificcircuit breaker/overload combinations.Adjustable magnetic trips set to high. Thermal magnetic TemBreak adjustable 63 % – 100 % of NRC (nominalrated current).Din-T MCBs are calibrated to IEC 60898 Curve ‘C’ & ‘D’. Selected sizes of ‘D’ Curve are available from stock refer NHP.

Page 18: C12 Application Reference Data

12 - 18

Innovators in Protection Technology

Technical dataGeneral motor circuit application table – Reduced Voltage starting

S/H/L160E/S/H/L250XS/XH250NJ

E/S/H/L400XS/XH400

E630S630XH630XS630

XS800NJXH800SEXS800SE

160

160

160

160

250

250

250

250

250

250

250

250

400

400

400

400 2)

400

400

400

400

630

630

630

630

630

800 2)

800 2)

800

800

800

800

800 2)

XS1250-SE/1000

1000

Approx.FLC(Amps)

0.37

0.55

0.75

1.1

1.5

2.2

3.0

4

4.5

5.5

7.5

10

11

15

18.5

22

25

30

37

45

55

75

90

110

132

160

185

200

220

250

280

300

375

450

Din-TC & Dcurve Safe-T

E/S/H/L 125XS/XH125 E250

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

9

11

14

19

21

28

34

40

46

55

66

80

100

135

160

200

230

270

320

361

380

430

480

510

650

750

6

6

6

6

6

10

16

16

16

20

25

40

40

50

63

63

80

100

20

20

20

20

20

20

20

20

20

20

32

32

50

50

63

100

100

100

125

125

125

150

175

225

Motorrating(kW)

Breaker type and current rating, star-delta, auto-transformer, resistor or reactance starting

4

4

4

6

10

10

16

20

20

25

32

40

50

50

63

80 1)

100 1)

125 1)

125 1)

These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 400/415 V motorsfor standard applications only. Non-standard applications refer NHP.Notes: 1) 80, 100 and 125 amp refers to Din-T10H type.

2) Electronic TemBreak MCCB only.If co-ordination to IEC 60947-4-1 is required refer to Type ‘1’ and ‘2’ co-ordination tables, contact NHP.Reduced voltage table is based on holding 120 % FLC continuously and 350 % FLC for 20 seconds. Din-T MCBs are calibrated to IEC 60898 Curve ‘C’ & ‘D’. Selected sizes of ‘D’ Curve are available from stock refer NHP.Circuit breaker sizings are primarily to provide short circuit protection. Mild overcurrent protection is providedby the starter circuit overload relay.

12

Page 19: C12 Application Reference Data

12 - 19

Innovators in Protection Technology

12

Technical dataMotor circuit application table – DOL FIRE PUMP starting duty

E250XE225

S/H/L160E/S/H/L250XS/XH250NJ

E/S/H/L400XS/XH400

E630S630XH630XS630

125

150

175

225

160

160

250

250

250

250

400

400

400

400

400

400 2)

630

630

630

630

630

630

630

XS800NJXH800SEXS800SE

1000

1000

Approx.FLC(Amps)

0.37

0.55

0.75

1.1

1.5

2.2

3

4

4.5

5.5

7.5

10

11

15

18.5

22

25

30

37

45

55

75

90

110

132

160

185

200

220

250

280

300

375

450

Din-TC & Dcurve Safe-T

XM30PB

E/S/H/L125XS/XH125

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

9

11

14

19

21

28

34

40

46

55

66

80

100

130

155

200

225

270

320

361

380

430

480

510

650

750

6

6

6

6

10

16

20

25

32

40

50

50

63

80

100

3.6

3.6

5

7.4

10

12

20

20

20

20

20

32

32

32

50

50

63

100

100

125

125

Motorrating(kW)

Breaker type and current rating (A)

4

6

6

10

16

20

25

32

32

40

50

63

63

100 1)

125 1)

These motor circuit application tables are to be used as a selection guide for average 3 phase, 4 pole 400/415 V motorsfor standard applications only. Non-standard applications refer NHP.Notes: 1) 80, 100 and 125 amp refers to Din-T10H type.

2) Electronic TemBreak MCCB only.DOL table is based on holding 125 % FLC continuously and 600 % FLC for at least 20 seconds.Din-T MCBs are calibrated to IEC 60898 Curve ‘C’ & ‘D’. Selected sizes of ‘D’ Curve are available from stock refer NHP.Circuit breaker sizings are primarily intended to provide short circuit protection. Mild overcurrent protection isproivided by the starter circuit overload relay.

XS1250-SE/1000

800

800

800

800

800

800 2)

Page 20: C12 Application Reference Data

12 - 20

Innovators in Protection Technology

Motor Size(kW)

Full Load Current Amperes (A) MCCB

Voltage(V)

0.37–10

11.0

15–18.5

22–33

37–50

55–80

90–110

150

185–220

220–500

0.4–7.5

9.0

12–14.5

17–23

28–38

40–57

65–78

102

138–160

160–350

TL100EM/15K

TL100EM/20K

TL100EM/30K

TL100EM/40K

TL100EM/50K

TL100EM/75K

TL100EM/100K

XV400NE/160K

XV400NE/250K

XV400NE/400K

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Motor starting table for DOL starting at 1000 VAC 50 Hz

Notes: This table should be used as a selection guide for standard applications only.

Sprecher + Schuh1000 V CA 6 Contactor(Refer Part A for more information)

1000 V

type 2

co-ordination

chart available

12

Page 21: C12 Application Reference Data

12 - 21

Innovators in Protection Technology

12

Application dataMotor starting Type ‘1’ and ‘2’ co-ordination

The motor starter consists of a combination of contactor,overload relay and Short Circuit Protective Device (SCPD) beingeither fuses or circuit breakers.

During motor starting and at normal loading, the overload relayprotects both the motor and cables by tripping the contactor ina time inversely proportional to the current. However, undershort circuit conditions, the response time would be too longand the fuses or circuit breakers must take over to interrupt thefault current therefore limiting energy passed through thestarter components. When this is successfully achieved, thecombination is said to be co-ordinated.

It is a requirement of the Australian Standard AS 3947.4.1 thatcombination motor starters are capable of withstanding theeffects of loadside short circuits. Some damage to thecombination is permitted, but this must be confined and notpresent a risk to the operator or damage equipment adjacent tothe starter.

Contactors and thermal overload relays only have limited abilityto withstand the high current associated with a fault such as aninternal motor short. Their design is optimised for performanceat much lower currents. To ‘design in’ the ability to control orwithstand high fault levels would add to costs and possiblyreduce performance at normal levels.

The standardsThe requirements of several standards can be applied to thesecombination units. The Wiring Rules, AS 3000, are concerned mainlywith setting standards for the fixed wiring. In this regard theconcern is the wiring between the protective device and the motor.

As motors can experience short term overloading the currentrating of a fuse can be up to 4 times and a circuit breaker 2.5times the full load rating of the motor. The Wiring Rules allowthe overload protection and the short circuit protection to beprovided by different devices. This allows magnetic only circuitbreakers, or back-up type fuses to be used, in conjunction witha contactor/thermal overload relay configuration.

Isolating switches must also be provided in the motor or controlcircuit. These are to be in clear view of any person working onthe motor, or provided with a locking device.

AS 3947.4.1 specifies testing requirements for the combinationof components required to perform the motor control andprotection functions. If the equipment has been mounted in aswitchboard it is possible to meet the testing requirements ofAS 3947.2 short circuit withstand of the outgoing circuit, at thesame time as the tests to AS 3947.4.1 are performed.

Both standards look at the performance of the equipment whena fault occurs on the outgoing circuit. It is accepted in thesestandards that some damage may be sustained by thecomponents of the starter when subjected to short circuitconditions.

Typical arrangement for co-ordination test

AS 3947.2 requires that during the tests the equipment installedin the switchboard performs in accordance to its own standard.A selection by the customer of the performance required needsto be made, as AS 3947.4.1 allows for Type ‘1’ and Type ‘2’performance.

Type ‘1’

Under short circuit conditions the starter shall not cause dangerto persons or the installation. The starter itself may need repair.

Type ‘2’

After a short circuit the starter is suitable for further service. Acontact weld is permitted, but it must be easily separated - forexample, by a screwdriver, without significant deformation.

Type ‘2’ co-ordination does not mean the starter is suitable fornormal operation without inspection/repair of the contacts. So,in both cases it is important that the condition of the starter ischecked, to ensure that the SCPD has operated and that nodamage has taken place.

Notes: IEC Standards are the basis of many Australian Standards. AS 3947.4.1 is equivalent to IEC 60947.4.1 and AS 3947.2 is equivalent to IEC 60947.2.Both Australian Standards list some amendments to the IECversions.

What is co-ordination?

Page 22: C12 Application Reference Data

12 - 22

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum instant trip setting of the MCCB.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• Refer to NHP for other component combinations.• MCCBs rated 65kA may be replaced by 50kA types where the kA rating does not need to be 65kA.

Type 2 short coordinationTerasaki/Sprecher + Schuh

Circuit breaker TerasakiContactor Sprecher + Schuh CA7 / CA6Overload relay CT7N thermal and CEP7 electronic Rated operational voltage 400 / 415 V ACRated conditional AC current (Iq) : 65 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

MotorkW

Motor AMPratings @400/ 415 V

0.6

0.8

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

11

14

17

21

28

34

40

55

66

80

100

130

155

200

225

250

270

325

361

383

425

538

700

Contactor Type

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-16

CA7-16

CA7-16

CA7-23

CA7-23

CA7-30

CA7-30

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-72

CA7-72

CA7-85

CA6-95

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630-EI

CA6-860-EI

CA6-860-EI

CA6-860-EI

Overload relayThermal Type

CT7N 23 A80

CT7N 23 B10

CT7N 23 B13

CT7N 23 B20

CT7N 23 B25

CT7N 23 B32

CT7N 23 B40

CT7N 23 B63

CT7N 23 B75

CT7N 23 C10

CEP7 EEED

CT7N 37 C20

CT7N 37 C20

CT7N 37 C25

CT7N 37 C30

CT7N 37 C38

CT7N 43 C47

CT7N 85 C60

CT7N 85 C75

CT7N 85 C90

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEJF

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EELG

CEP 7 EELG

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EENH

Amperesettingsrange0.55 - 0.8

0.75 - 1.0

0.9 - 1.3

1.4 - 2.0

1.8 - 2.5

2.3 - 3.2

2.9 - 4.0

435 - 6.3

5.5 - 7.5

7.2 - 10

5.4 - 27

15 - 20

15 - 20

24.5 - 30

33 - 38

35 - 47

45 - 60

58 - 75

72 - 90

30 - 150

30 - 150

30 - 150

40 - 200

60 - 300

60 - 300

60 - 300

60 - 300

100 - 500

100 - 500

120 - 600

120 - 600

120 - 600

160 - 800

MouldedCase CircuitBreakers

XM30PB/0.7A

XM30PB/1.4A

XM30PB/1.4A

XM30PB/2.0 A

XM30PB/2.6A

XM30PB/4A

XM30PB/5A

XM30PB/8A

XM30PB/10A

XM30PB/12A

S125GJ/20A

S125GJ/20A

S125GJ/20A

S125GJ/32A

S125GJ/50A

S125GJ/50A

S125GJ/63A

S125GJ/100A

S125GJ/100A

S125GJ/125A

S125GJ/125A

S160GJ/160A

S250GJ/250A

S250GJ/250A

S400GJ/400A

S400GJ/400A

S400GJ/400A

S400GJ/400A

S400GJ/400A

S400GJ/400A

S630GE/630A

S630GE/630A

XH800SE/800A

Component selection table

Table C64.0 For direct on line motor starting

CA 7-72

CT 7N-37-C30

Type 250/65 kA415 V

12

XM30PB

Page 23: C12 Application Reference Data

12 - 23

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum instant trip setting of the MCCB.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• Refer to NHP for other component combinations.• MCCBs rated 65kA may be replaced by 50kA types where the kA rating does not need to be 65kA.

Type 2 short coordinationTerasaki/Sprecher + Schuh

Circuit breaker TerasakiContactor Sprecher + Schuh CA7 / CA6Overload relay CT7N thermal and CEP7 electronic Rated operational voltage 400 / 415 V ACRated conditional AC current (Iq) : 65 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

MotorkW

Motor AMPratings @400/ 415 V

0.6

0.8

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

11

14

17

21

28

34

40

55

66

80

100

130

155

200

225

250

270

325

361

383

425

538

700

Contactor Type

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-30

CA7-30

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-72

CA7-72

CA7-85

CA6-95

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630-EI

CA6-860-EI

CA6-860-EI

CA6-860-EI

Overload relayThermal Type

CT7N 23 A80

CT7N 23 B10

CT7N 23 B13

CT7N 23 B20

CT7N 23 B25

CT7N 23 B32

CT7N 23 B40

CT7N 23 B63

CT7N 23 B75

CT7N 23 C10

CEP7 EEED

CT7N 37 C20

CT7N 37 C20

CT7N 37 C25

CT7N 37 C30

CT7N 37 C38

CT7N 43 C47

CT7N 85 C60

CT7N 85 C75

CT7N 85 C90

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEJF

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EELG

CEP 7 EELG

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EENH

Amperesettingsrange0.55 – 0.8

0.75 – 1.0

0.9 –1.3

1.4 – 2.0

1.8 – 2.5

2.3 – 3.2

2.9 – 4.0

4.5 – 6.3

5.5 – 7.5

7.2 – 10

5.4 – 27

15 – 20

15 – 20

21 – 25

24.5 – 30

33 – 38

35 – 47

45 – 60

58 – 75

72 – 90

30 – 150

30 – 150

40 – 200

60 – 300

60 – 300

60 – 300

60 – 300

100 – 500

100 – 500

120 – 600

120 – 600

120 – 600

160 – 800

MouldedCase CircuitBreakers

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 32A

S125GJ / 50A

S125GJ / 50A

S125GJ / 63A

S125GJ / 100A

S125GJ / 100A

S125GJ / 125A

S125GJ / 125A

S160GJ / 160A

S250GJ / 250A

S250GJ / 250A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S630GE / 630A

S630GE / 630A

XH800SE / 800A

Component selection table

Table C64.1 For direct on line motor starting

CA 7-72

CT 7N-37-C30

Type 250/65 kA415 V

12

S125GJ

Page 24: C12 Application Reference Data

12 - 24

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum instant trip setting of the MCCB.• CEP7 overload add-on modules are available for Profibus, DeviceNet, EtherNet, Ground Fault, remote reset, Jam protection, and a

thermistor protection relay. Only one option can be used at any one time on a CEP7 overload. • Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• MCCBs rated 65kA may be replaced by 50kA types where the kA rating does not need to be 65kA.

Type 2 short circuit coordinationTerasaki/Sprecher + Schuh

Circuit breaker TerasakiContactor Sprecher + Schuh CA7 / CA6Overload relay CEP7 electronic Rated operational voltage 400 / 415 V ACRated conditional AC current (Iq) : 65 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

MotorkW

Motor AMPratings @400/ 415 V

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

Contactor Type

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-16

CA7-16

CA7-16

CA7-23

CA7-23

CA7-30

CA7-30

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-72

CA7-72

CA7-85

CA6-95

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630-EI

CA6-860-EI

CA6-860-EI

CA6-860-EI

Overload relay (ELECTRONIC)

CEP 7 EEBB

CEP 7 EEBB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EEDB

CEP 7 EEEB

CEP 7 EEEB

CEP 7 EEED

CEP 7 EEED

CEP 7 EEED

CEP 7 EEED

CEP 7 EEFD

CEP 7 EEFD

CEP 7 EEFD

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEJF

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EELG

CEP 7 EELG

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EENH

Amperesettingsrange0.2 – 1.0

0.2 – 1.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 - 5.0

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

9.0 – 45

9.0 – 45

9.0 – 45

18 – 90

18 – 90

18 – 90

30 – 150

30 – 150

40 – 200

60 – 300

60 – 300

60 – 300

60 – 300

100 – 500

100 – 500

120 – 600

120 – 600

120 – 600

160 – 800

MouldedCase CircuitBreakers

XM30PB / 0.7A

XM30PB / 1.4A

XM30PB / 1.4A

XM30PB / 2.0 A

XM30PB / 2.6A

XM30PB / 4A

XM30PB / 5A

XM30PB / 8A

XM30PB / 10A

XM30PB / 12A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 32A

S125GJ / 50A

S125GJ / 50A

S125GJ / 63A

S125GJ / 100A

S125GJ / 100A

S125GJ / 125A

S125GJ / 125A

S160GJ / 160A

S250GJ / 250A

S250GJ / 250A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S630GE / 630A

S630GE / 630A

XH800SE / 800A

Component selection table

Table C64.2 For direct on line motor starting

Type 250/65 kA415 V

12

CA 7-85

XM30PB

Page 25: C12 Application Reference Data

12 - 25

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum instant trip setting of the MCCB.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• CEP7 C3 overloads include DeviceNet communications, an earth fault relay, and a thermistor relay. • MCCBs rated 65kA may be replaced by 50kA types where the kA rating does not need to be 65kA.

Type 2 short coordinationTerasaki/Sprecher + Schuh

Circuit breaker TerasakiContactor Sprecher + Schuh CA7 / CA6Overload relay CEP7 C3 electronic with communication and ELRated operational voltage 400 / 415 V ACRated conditional AC current (Iq) : 65 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

MotorkW

Motor AMPratings @400/ 415 V

0.6

0.8

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

11

14

17

21

28

34

40

55

66

80

100

130

155

200

225

250

270

325

361

383

425

538

700

Contactor Type

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-30

CA7-30

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-72

CA7-72

CA7-85

CA6-95

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630-EI

CA6-860-EI

CA6-860-EI

CA6-860-EI

Overload relay(electronic)

CEP7 C3-23-2

CEP7 C3-23-2

CEP7 C3-23-2

CEP7 C3-23-5

CEP7 C3-23-5

CEP7 C3-23-5

CEP7 C3-23-5

CEP7 C3-23-5

CEP7 C3 23-25

CEP7 C3 23-25

CEP7 C3 43-25

CEP7 C3 43-25

CEP7 C3 43-25

CEP7 C3 43-25

CEP7 C3 43-45

CEP7 C3 43-45

CEP7 C3 43-45

CEP7 C3 85-90

CEP7 C3 85-90

CEP7 C3 85-90

CEP7 C3 180 140

CEP7 C3 180 140

CEP7 C3 180 210

CEP7 C3 420 302

CEP7 C3 420 302

CEP7 C3 420 302

CEP7 C3 420 302

CEP7 C3 420 420

CEP7 C3 420 420

CEP7 C3 860 630

CEP7 C3 860 630

CEP7 C3 860 630

CEP7 C3 860 860

Amperesettingsrange0.4 – 2.0

0.4 – 2.0

0.4 – 2.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

5.0 – 25

5.0 – 25

5.0 – 25

5.0 – 25

5.0 – 25

5.0 – 25

9.0 – 45

9.0 – 45

9.0 – 45

18 – 90

18 – 90

18 – 90

28 – 140

28 – 140

42 – 210

60 – 302

60 – 302

60 – 302

60 – 302

84 – 420

84 – 420

125 – 630

125 – 630

125 – 630

172 – 860

MouldedCase CircuitBreakers

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 20A

S125GJ / 32A

S125GJ / 50A

S125GJ / 50A

S125GJ / 63A

S125GJ / 100A

S125GJ / 100A

S125GJ / 125A

S125GJ / 125A

S160GJ / 160A

S250GJ / 250A

S250GJ / 250A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S400GJ / 400A

S630GE / 630A

S630GE / 630A

XH800SE / 800A

Component selection table

Table C64.11 For direct on line motor starting

Type 250/65 kA415 V

12

S125GJ

CA 7-85

Page 26: C12 Application Reference Data

12 - 26

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum instant trip setting of the MCCB.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.

Type 2 short circuit coordinationTerasaki/Sprecher + Schuh

Circuit breaker TerasakiContactor Sprecher + Schuh CA7 / CA6Overload relay CT7N thermal and CEP7 electronic Rated operational voltage 400 / 415 V ACRated conditional AC current (Iq) : 85 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

MotorkW

Motor AMPratings @400/ 415 V

0.6

0.8

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

11

14

17

21

28

34

40

55

66

80

100

130

155

200

225

250

270

325

361

383

425

538

700

Contactor Type

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-16

CA7-16

CA7-16

CA7-23

CA7-23

CA7-30

CA7-30

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-72

CA7-72

CA7-85

CA6-95

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630-EI

CA6-860-EI

CA6-860-EI

CA6-860-EI

Overload relayThermal Type

CT7N 23 A80

CT7N 23 B10

CT7N 23 B13

CT7N 23 B20

CT7N 23 B25

CT7N 23 B32

CT7N 23 B40

CT7N 23 B63

CT7N 23 B75

CT7N 23 C10

CEP7 EEED

CT7N 37 C20

CT7N 37 C20

CT7N 37 C25

CT7N 37 C30

CT7N 37 C38

CT7N 43 C47

CT7N 85 C60

CT7N 85 C75

CT7N 85 C90

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEJF

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EELG

CEP 7 EELG

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EENH

Amperesettingsrange0.55 – 0.8

0.75 – 1.0

0.9 –1.3

1.4 – 2.0

1.8 – 2.5

2.3 – 3.2

2.9 – 4.0

4.5 – 6.3

5.5 – 7.5

7.2 – 10

5.4 – 27

15 – 20

15 – 20

21 – 25

24.5 – 30

33 – 38

35 – 47

45 – 60

58 – 75

72 – 90

30 – 150

30 – 150

40 – 200

60 – 300

60 – 300

60 – 300

60 – 300

100 – 500

100 – 500

120 – 600

120 – 600

120 – 600

160 – 800

MouldedCase CircuitBreakers

XM30PB / 0.7A

XM30PB / 1.4A

XM30PB / 1.4A

XM30PB / 2.0 A

XM30PB / 2.6A

XM30PB / 4A

XM30PB / 5A

XM30PB / 8A

XM30PB / 10A

XM30PB / 12A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 32A

H125NJ / 50A

H125NJ / 50A

H125NJ / 63A

H125NJ / 100A

H125NJ / 100A

H125NJ / 125A

H125NJ / 125A

H160NJ / 160A

H250NJ / 250A

H250NJ / 250A

H400NE / 400A

H400NE / 400A

H400NE / 400A

H400NE / 400A

H400NE / 400A

H400NE / 400A

XH630PJ / 630A

XH630PJ / 630A

XH800PJ / 800A

Component selection table

Table C84.0 For direct on line motor starting

CA 7-72

CT 7N-37-C30

Type 285 kA415 V

12

XM30PB

Page 27: C12 Application Reference Data

12 - 27

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum instant trip setting of the MCCB.• CEP7 overload add-on modules are available for Profibus, DeviceNet, EtherNet, Ground Fault, remote reset, Jam protection, and a

thermistor protection relay. Only one option can be used at any one time on a CEP7 overload. • Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.

Type 2 short coordinationTerasaki/Sprecher + Schuh

Circuit breaker TerasakiContactor Sprecher + Schuh CA7 / CA6Overload relay CEP7 electronicRated operational voltage 400 / 415 V ACRated conditional AC current (Iq) : 100 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

MotorkW

Motor AMPratings @400/ 415 V

0.6

0.8

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

11

14

17

21

28

34

40

55

66

80

100

130

155

200

225

250

270

325

361

383

425

538

700

Contactor Type

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-30

CA7-30

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-72

CA7-72

CA7-85

CA6-95

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630-EI

CA6-860-EI

CA6-860-EI

CA6-860-EI

Overload relay (electronic)

CEP 7 EEBB

CEP 7 EEBB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EEDB

CEP 7 EEEB

CEP 7 EEEB

CEP 7 EEED

CEP 7 EEED

CEP 7 EEED

CEP 7 EEED

CEP 7 EEFD

CEP 7 EEFD

CEP 7 EEFD

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEJF

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EELG

CEP 7 EELG

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EENH

Amperesettingsrange0.2 – 1.0

0.2 – 1.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

3.2 - 1.6

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

9.0 – 45

9.0 – 45

9.0 – 45

18 – 90

18 – 90

18 – 90

30 – 150

30 – 150

40 – 200

60 – 300

60 – 300

60 – 300

60 – 300

100 – 500

100 – 500

120 – 600

120 – 600

120 – 600

160 – 800

MouldedCase CircuitBreakers

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 20A

H125NJ / 32A

H125NJ / 50A

H125NJ / 50A

H125NJ / 63A

H125NJ / 100A

H125NJ / 100A

H125NJ / 100A

H125NJ / 125A

H125NJ / 125A

H250NJ / 250A

H250NJ / 250A

H400NE / 400A

H400NE / 400A

H400NE / 400A

H400NE / 400A

H400NE / 400A

H400NE / 400A

TL630NE / 630A

TL630NE / 630A

TL800NE / 800A

Component selection table

Table C14.3 For direct on line motor starting

Type 2100 kA415 V

12

CA 7-85

H125NJ

Page 28: C12 Application Reference Data

12 - 28

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum instant trip setting of the MCCB.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• CEP7 overload add-on modules are available for Profibus, DeviceNet, EtherNet, Ground Fault, remote reset, Jam protection, and a

thermistor protection relay. Only one option can be used at any one time on a CEP7 overload. • MCCBs 400 to 800A have a Ground Fault option fitted. This will not sense small earth leakage (residual currents).• MCCBs 400 to 800A need an external 4th CT when 3 pole MCCBs are used, only if a neutral is present. 4 pole GF MCCBs have internal 4th CT.

Type 2 short circuit coordinationTerasaki ZS ELCB/Sprecher + Schuh

Circuit breaker TerasakiContactor Sprecher + Schuh CA7 / CA6Overload relay CEP7 electronic Rated operational voltage 400 / 415 V ACRated conditional AC current (Iq) : 65 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

MotorkW

Motor AMPratings @400/ 415 V

0.6

0.8

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

11

14

17

21

28

34

40

55

66

80

100

130

155

200

225

250

270

325

361

383

425

538

700

Earth faultsensingrange30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Type

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-30

CA7-30

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-72

CA7-72

CA7-85

CA6-95

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630-EI

CA6-860

CA6-860

CA6-860

Overloadrelay(electronic)CEP 7 EEBB

CEP 7 EEBB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EEDB

CEP 7 EEEB

CEP 7 EEEB

CEP 7 EEED

CEP 7 EEED

CEP 7 EEED

CEP 7 EEED

CEP 7 EEFD

CEP 7 EEFD

CEP 7 EEFD

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEJF

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EELG

CEP 7 EELG

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EENH

CircuitBreakersZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 32A

ZS125GJ / 50A

ZS125GJ / 50A

ZS125GJ / 63A

ZS125GJ / 100A

ZS125GJ / 100A

ZS125GJ / 125A

ZS125GJ / 125A

ZS250GJ / 160A

ZS250GJ / 250A

ZS250GJ / 250A

S400GE_AG / 400A

S400GE_AG / 400A

S400GE_AG / 400A

S400GE_AG / 400A

S400GE_AG / 400A

S400GE_AG / 400A

S630GE_AG / 630A

S630GE_AG / 630A

XH800SE 800_ LSIG

Component selection table

Table EC64.3 For direct on line motor startingType 250/65 kA415 V

Amperesettingsrange0.2 – 1.0

0.2 – 1.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

3.2 - 1.6

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

9.0 – 45

9.0 – 45

9.0 – 45

18 – 90

18 – 90

18 – 90

30 – 150

30 – 150

40 – 200

60 – 300

60 – 300

60 – 300

60 – 300

100 – 500

100 – 500

120 – 600

120 – 600

-120 – 600

160 – 80012

CA 7-85

ZS125GJ320

Page 29: C12 Application Reference Data

12 - 29

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum instant trip setting of the MCCB.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• CEP7 C3 overloads include DeviceNet communications, an earth fault relay, and a thermistor relay. • MCCBs 400 to 800A have a Ground Fault option fitted. This will not sense small earth leakage (residual currents).• MCCBs 400 to 800A need an external 4th CT when 3 pole MCCBs are used, only if a neutral is present. 4 pole GF MCCBs have internal 4th CT.

Type 2 short coordinationTerasaki ZS ELCB/Sprecher + Schuh

Circuit breaker Terasaki earth leakageContactor Sprecher + Schuh CA7 / CA6Overload relay CEP7 C3 electronic with communications and ELRated operational voltage 400 / 415 V ACRated conditional AC current (Iq) : 65 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

160

185

200

220

250

320

400

MotorkW

Motor AMPratings @400/ 415 V

0.6

0.8

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

11

14

17

21

28

34

40

55

66

80

100

130

155*

200

225

250

270

325

361

383

425

538

700

Earthfaultsensingrange30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

30mA – 3A

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Ig = 0.2 x In min.

Type

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-23

CA7-30

CA7-30

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-72

CA7-72

CA7-85

CA6-95

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630-EI

CA6-860-EI

CA6-860-EI

CA6-860-EI

Overloadrelay(electronic)

CEP7 C3-23-2

CEP7 C3-23-2

CEP7 C3-23-2

CEP7 C3-23-5

CEP7 C3-23-5

CEP7 C3-23-5

CEP7 C3-23-5

CEP7 C3-23-5

CEP7 C3 23-25

CEP7 C3 23-25

CEP7 C3 43-25

CEP7 C3 43-25

CEP7 C3 43-25

CEP7 C3 43-25

CEP7 C3 43-45

CEP7 C3 43-45

CEP7 C3 43-45

CEP7 C3 85-90

CEP7 C3 85-90

CEP7 C3 85-90

CEP7 C3 180 140

CEP7 C3 180 140

CEP7 C3 180 210

CEP7 C3 420 302

CEP7 C3 420 302

CEP7 C3 420 302

CEP7 C3 420 302

CEP7 C3 420 420

CEP7 C3 420 420

CEP7 C3 860 630

CEP7 C3 860 630

CEP7 C3 860 630

CEP7 C3 860 860

CircuitBreakerZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 20A

ZS125GJ / 32A

ZS125GJ / 50A

ZS125GJ / 50A

ZS125GJ / 63A

ZS125GJ / 100A

ZS125GJ / 100A

ZS125GJ / 125A

ZS125GJ / 125A

ZS250GJ / 160A

ZS250GJ / 250A

ZS250GJ / 250A

S400GE_AG / 400A

S400GE_AG / 400A

S400GE_AG / 400A

S400GE_AG / 400A

S400GE_AG / 400A

S400GE_AG / 400A

S630GE_AG / 630A

S630GE_AG / 630A

XH800SE 800_ LSIG

Component selection table

Table EC64.11 For direct on line motor starting

Type 250/65 kA415 V

Amperesettingsrange0.4 – 2.0

0.4 – 2.0

0.4 – 2.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

5.0 – 25

5.0 – 25

5.0 – 25

5.0 – 25

5.0 – 25

5.0 – 25

9.0 – 45

9.0 – 45

9.0 – 45

18 – 90

18 – 90

18 – 90

28 – 140

42 – 140

42 – 210

60 – 302

60 – 302

60 – 302

60 – 302

84 – 420

84 – 420

125 – 630

125 – 630

125 – 630

172 – 860

12

CA 7-85

ZS125GJ320

Page 30: C12 Application Reference Data

12 - 30

Innovators in Protection Technology

Note: • Recommended fuse link sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the fault interruption point of the fuse link.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• BS, DIN or cylindrical gG fuse links are an option. The appropriate fuse holder or fuse switch must be used to suit the fuse link.

Type 2 short circuit coordinationSocomec switch fuses/Sprecher + Schuh

Fuse links BS fuse links type gGSwitch fuse Socomec BS fuses typeContractor Socomec + Schuh CA7 /CA6 Overload relay CT7N thermal and CEP7 electronicRated operational voltage 400 / 415V ACRated conditional AC current (Iq) : 50/65 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

150

185

200

220

250

320

380

MotorkW

Motor AMPratings @400/ 415 V

0.6

0.8

1.1

1.5

1.8

2.6

3.4

4.8

6.5

8.2

11

14

17

21

28

34

40

55

66

80

100

130

155

200

225

250

320

361

380

425

538

650

Switchfuse

SSFBS 20 C

SSFBS 20 C

SSFBS 20 C

SSFBS 20 C

SSFBS 20 C

SSFBS 20 C

SSFBS 20 C

SSFBS 20 C

SSFBS 20 C

SSFBS 32

SSFBS 32

SSFBS 63

SSFBS 63

SSFBS 63

SSFBS 100

SSFBS 100

SSFBS 100

SSFBS 160

SSFBS 160

SSFBS 160

SSFBS 200

SSFBS 250

SSFBS 315

SSFBS 400

SSFBS 400

SSFBS 630

SSFBS 630

SSFBS 630

SSFBS 630

SSFBS 630

SSFBS 800

SSFBS 800

Overload relayThermal Type

CT7N 23 A80

CT7N 23 B10

CT7N 23 B13

CT7N 23 B20

CT7N 23 B25

CT7N 23 B32

CT7N 23 B40

CT7N 23 B63

CT7N 23 B75

CT7N 23 C10

CT7N 23 C16

CT7N 23 C16

CT7N 37 C20

CT7N 37 C25

CT7N 37 C30

CT7N 37 C38

CT7N 43 C47

CT7N 85 C60

CT7N 85 C75

CT7N 85 C90

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEJF

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EELG

CEP 7 EELG

CEP 7 EELG

CEP 7 EEMH

CEP 7 EEMH

CEP 7 EENH

Amperesettingsrange0.55 – 0.8

0.75 – 1.0

0.9 –1.3

1.4 – 2.0

1.8 – 2.5

2.3 – 3.2

2.9 – 4.0

4.5 – 6.3

5.5 – 7.5

7.2 – 10

11.3 – 16

11.3 – 16

15 – 20

21 – 25

24.5 – 30

33 – 38

35 – 47

45 – 60

58 – 75

72 – 90

30 – 150

30 – 150

40 – 200

60 – 300

60 – 300

60 – 300

100 – 500

100 – 500

100 – 500

120 – 600

120 – 600

160 – 800

BS type gG fuseAmps

4

4

4

6

6

10

10

16

16

25

32

40

50

50

80

80

100

125

160

160

200

250

300

355

400

500

450

630

630

630

710

800

Component selection table

Table F64B.0 For direct on line motor starting

CA 7-72

CT 7N-37-C30

Type 250/65 kA415 V

Contactor Type

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-12

CA7-23

CA7-30

CA7-30

CA7-30

CA7-37

CA7-43

CA7-60

CA7-72

CA7-85

CA6-110-EI

CA6-140-EI

CA6-180-EI

CA6-210-EI

CA6-210-EI

CA6-250-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

CA6-630

CA6-860

CA6-860 12

SSFDN1253P switch fuse

Page 31: C12 Application Reference Data

12 - 31

Innovators in Protection Technology

Note: • Recommended fuse link sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the fault interruption point of the fuse link.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• CEP7 overload add-on modules are available for Profibus, DeviceNet, EtherNet, Ground Fault, remote reset, Jam protection, and a

thermistor protection relay. Only one option can be used at any one time on a CEP7 overload. • Type gG: BS, DIN or cylindrical fuse links are an option. The appropriate fuse holder / fuse switch must be used to suit the fuse link.

Type 2 short coordinationSocomec switch fuses/Sprecher + Schuh

0.18

0.25

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

90

110

132

160

200

220

250

315

355

400

MotorkW

Motor Ampratings@ 690 V AC

0.35

0.46

0.63

0.86

1.1

1.5

2.1

2.9

3.8

4.9

6.6

8.9

12

13

17

21

24

32

39

47

57

78

94

114

135

163

203

220

252

312

354

397

Switch-Fuse

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 63

SSFDN 125

SSFDN 125

SSFDN 125

SSFDN 125

SSFDN 160

SSFDN 250

SSFDN 250

SSFDN 250

SSFDN 400

SSFDN 400

SSFDN 400

SSFDN 630

SSFDN 630

SSFDN 630

SSFDN 630

ContactorType

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-12

CA7-16

CA7-23

CA7-30

CA7-30

CA7-37

CA7-43

CA7-60

CA7-72

CA7-85

CA6-95

CA6-95

CA6-110-EI

CA6-140-EI

CA6-140-EI

CA6-180-EI

CA6-210-EI

CA6-300-EI

CA6-300-EI

CA6-420-EI

CA6-420-EI

CA6-420-EI

Overloadrelay(electronic)CEP 7 EEBB

CEP 7 EEBB

CEP 7 EEBB

CEP 7 EEBB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EECB

CEP 7 EEEB

CEP 7 EEEB

CEP 7 EEEB

CEP 7 EEED

CEP 7 EEED

CEP 7 EEED

CEP 7 EEED

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEJF

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EEKG

CEP 7 EELG

CEP 7 EELG

CEP 7 EELG

DIN gG fuseAmps / size

2 / 00C

2 / 00C

4 / 00C

4 / 00C

4 / 00C

6 / 00C

6 / 00C

10 / 00C

10 / 00C

16 / 00C

20 / 00C

25 / 00C

32 / 00C

35 / 00C

50 / 00C

50 / 00C

63 / 00C

80 / 00

100 / 00

125 / 00

125 / 00

160 / 00

200 / 1

224 / 1

250 / 1

300 / 2

400 / 2

400 / 2

425 / 3

500 / 3

630 / 3

630 / 3

Component selection table

Table F66D.1 For direct on line motor startingFuse links DIN fuse links class gGSwitch fuse SocomecContractor Socomec + Schuh CA7 /CA6 Overload relay CEP7 electronicRated operational voltage 690 V ACRated conditional AC current (Iq) : 65 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.

Type 250/65 kA690 V

Ampere settingrange0.2 – 1.0

0.2 – 1.0

0.2 – 1.0

0.2 – 1.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

1.0 – 5.0

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

5.4 – 27

18 – 90

18 – 90

18 – 90

30 – 150

30 – 150

30 – 150

30 – 150

30 – 150

40 – 200

60 – 300

60 – 300

60 – 300

100 – 500

100 – 500

100 – 500

12

SSFDN1253P switch fuse

CA 7-85

Page 32: C12 Application Reference Data

12 - 32

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:< 3 kW starting current maximum of 6 x motor rated current, starting time maximum of 5 seconds> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum circuit breaker instant trip point.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• TL100NJ MCCBs are to be magnetic only. Refer NHP.• CEP7 overload add-on modules are available for Profibus, DeviceNet, EtherNet, Ground Fault, remote reset, Jam protection, and a

thermistor protection relay. Only one option can be used at any one time on a CEP7 overload. • Refer to NHP for other component combinations.

Type 2 short circuit coordinationSprecher + Schuh/Terasaki

0.37

0.55

0.75

1.1

1.5

2.2

3

4

5.5

7.5

10

11

15

18.5

22

30

37

45

55

75

MotorkW

Motor AMPratings @690 V

0.63

0.86

1.1

1.5

2.1

2.9

3.8

4.9

6.6

8.9

12

13

17

21

24

32

39

47

57

78

Contactor Type

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-9

CA7-12

CA7-12

CA7-16

CA7-23

CA7-23

CA7-30

CA7-30

CA7-43

CA7-60

CA7-72

CA7-85

CA7-95

CA6-110-EI

CA6-140-EI

KT7 overload orseperateOverload relay

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

KT7 has adjustable O/L

CEP 7 EEGE

CEP 7 EEGE

CEP 7 EEHF

CEP 7 EEHF

CEP 7 EEHF

Amperesettingsrange0.63 – 1.0

0.63 – 1.0

1.0 – 1.6

1.0 – 1.6

1.6 – 2.5

2.5 – 4

2.5 – 4

4.0 – 6.3

6.3 – 10

6.3 – 10

10 – 16

10 – 16

14.5 – 20

18 – 25

23 – 32

18 – 90

18 – 90

30 – 150

30 – 150

30 – 150

MPCB/MCCBcircuitbreaker

KTA 7–25S-1A

KTA 7–25S-1A

KTA 7–25S-1.6A

KTA 7–25S-1.6A

KTA 7–25H-2.5A

KTA 7–25H-4A

KTA 7–25H-4A

KTA 7–25H-6.3A

KTA 7–25H-10A

KTA 7–25H-10A

KTA 7–25H-16A

KTA 7–25H-16A

KTA 7–45H-20A

KTA 7–45H-25A

KTA 7–45H-32A

TL100NJ / 50

TL100NJ / 63

TL100NJ / 63

TL100NJ / 63

TL100NJ / 100

Table C56.0 For direct on line motor startingCircuit breaker Sprecher + Schuh and Terasaki circuit breakersContactor Sprecher + Schuh CA7 / CA6Overload relay CEP7 electronic or Integral with KT7Rated operational voltage 690 V ACRated conditional AC current (Iq) : 50 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

Refer to NHP for high efficiency motor starting.CA 7-43 and KTA 7-4522 kW with type ‘2’ co-ordination

Type 250 kA690 V

12

Component selection table: Sprecher + Schuh KT7 motor start circuit breakers andTerasaki MCCBs

Page 33: C12 Application Reference Data

12 - 33

Innovators in Protection Technology

Note: • Recommended circuit breaker sizes are based on the following starting conditions, using standard efficiency motors:> 3 kW starting current maximum of 7 x motor rated current, starting time maximum of 5 seconds

The use of high inrush, high efficiency motors needs to be considered, along with the maximum circuit breaker instant trip point.• Combinations are based on the overload tripping before the circuit breaker at overload currents up to the motor locked rotor current.• CEP7 overload add-on modules are available for Profibus, DeviceNet, EtherNet, Ground Fault, remote reset, Jam protection, and a

thermistor protection relay. Only one option can be used at any one time on a CEP7 overload. • CEF1 CT type overloads can replace CEP7 overloads if required.• When using CEP7 C3 overloads, 1000 V rated CTs must be used. Refer Microelettrica CTs type “TO”• Refer to NHP for other component combinations.

Type 2 short coordinationTerasaki/Sprecher + Schuh

25

30

45

55

75

90

111

133

163

206

280

355

500

550

MotorkW

Motor AMPratings @1000 V

20

25

33

40

55

65

80

95

115

145

200

250

340

380

Contactor Type

CA6 95 EI

CA6 95 EI

CA6 95 EI

CA6 105 EI

CA6 140 EI

CA6 170 EI

CA6 210 EI

CA6 250 EI

CA6 300 EI

CA6 420 EI

CA5 450

CA5 550

CA5 700

CA5 860

Overload relaywith currenttrasformerCEF1-11

CEF1-11

CEP7 EE HF

CEP7 EE HF

CEP7 EE HF

CEP7 EE HF

CEP7 EE HF

CEP7 EE HF

CEP7 EE HF

CEP7 EE JF

CEP7 EE KG

CEP7 EE KG

CEP7 EE LG

CEP7 EE LG

Amperesettingsrange20 - 180

20 - 180

30 - 150

30 - 150

30 - 150

30 - 150

30 - 150

30 - 150

30 - 150

40 - 200

60 - 300

60 - 300

100 - 500

100 - 500

MPCB/MCCBcircuitbreaker

TL100EM403K

TL100EM503K

TL100EM603K

TL100EM753K

TL100EM1003K

TL100EM1003K

XV400NE2503K

XV400NE2503K

XV400NE2503K

XV400NE2503K

XV400NE4003K

XV400NE4003K

XV400NE4003K

XV630PE6303K

Table C21.0 For direct on line motor startingCircuit breaker Terasaki TL and XV 1000 V circuit breakersContactor Sprecher + Schuh 1000 V CA6 / CA5Overload relay CEP7 EE and CEF1 electronicRated operational voltage 1000 V ACRated conditional AC current (Iq) : 6.5-20 kA (rms symetrical)Coordination type (AS / NZS 60947.4.1 - 2004) Type 2 coordination

CA 6-180-EI

Type 2 6.5 - 20 kA415 V

12

Component selection table

XV400NE

Page 34: C12 Application Reference Data

12 - 34

Innovators in Protection Technology

Application dataMCCBs for protection of Power Factor Correction (PFC) units

Recommended MCCB 1) 2) (type/rating (A))

Capacitorrating(kVAr)

5

10

15

20

25

30

40

50

75

100

150

200

300

400

500

600

800

1000

7

13.9

20.9

27.8

34.8

41.7

55.6

69.6

104

139

209

278

417

556

696

835

1113

1391

E250NJ/160

E250NJ/250

XS800NJ/800

XS1250SE/1250

XS1250SE/1250

XS1600SE/1600

XS2000NE/2000

S160NJ/160

S250NJ/250

S400CJ/400

S400CJ/400

S630CE/630

XS800SE/800

E125NJ/20

E125NJ/32

E125NJ/50

E125NJ/50

E125NJ/63

E125NJ/100

E125NJ/100

E125NJ/125

S160GJ/160

S250GJ/250

S400NJ/400

S400NJ/400

S630GE/630

XH800SE/800

S125NJ/20

S125NJ/32

S125NJ/50

S125NJ/50

S125NJ/63

S125NJ/100

S125NJ/100

S125NJ/125

S400NE/250

S400NE/400

S400NE/400

S630GE/630

S125GJ/20

S125GJ/32

S125GJ/50

S125GJ/50

S125GJ/63

S125GJ/100

S125GJ/100

S125GJ/125

S400GE/250

S400GE/400

S400GE/400

S630GE/630

Capacitorrated current(A)

Voltage 415 V (3 Ph)

Note: 1) Select applicable short circuit rating required by system specifications.2) MCCBs can be changed to electronic types if required.

MCCB selection guide for power factor capacitor application

In circuits containing capacitor banks for power factorcorrection (PFC), two conditions that the circuit breaker mustovercome are as follows:

1. Voltage surges during MCCB opening.2. Nuisance tripping due to in-rush current.

1. Voltage surges during MCCB openingAt the instant where the MCCB has to open, the voltagedeveloped across its contacts can be up to twice the supplyvoltage, which can have damaging consequences should thebreaker be slow to operate. If this worse case scenario actuallyoccurs a potential re-arcing can take place across the contacts ofthe MCCB, until the breaker has fully opened and the distancebetween the contacts is at a maximum.

Re-arcing at each instant can be:

1st re-arcing – 3 x supply voltage

2nd re-arcing – 5 x supply voltage

3rd re-arcing – 7 x supply voltage

Internal capacitor damage will occur if the voltage level isgreater than the capacitor’s Dielectric Strength. With modern-dayprotection devices, (for example the Terasaki TemBreak MCCBs)this problem will not occur.

The numerous cases of re-arcing are mainly a result of older style“dependant manual closing” devices, which rely on the operatorspeed for opening or closing.

All Terasaki MCCBs are of the “manually independent closing”type, with high speed opening to prevent re-arcing between thecontacts.

2. Nuisance tripping due to in-rush currentWhen feeding a circuit containing a PFC unit the circuit breakerand the PFC unit can be exposed to a large in-rush current,equal to the instantaneous value of the power source. The endresult of this is a large in-rush current, which could cause thecircuit breaker to operate instantaneously due to its short-circuitprotection. (The value of in-rush current will depend on thesource voltage, the inductance and reactance in the circuit).

Special care should be taken to ensure that the MCCB selectedwill not nuisance trip due to high in-rush currents.

The table below shows typical MCCB selections for varyingcapacitor ratings, and the breaker selection is by a rule-of-thumb.

Capacitor rated current = kVAr x 1000 (A)

√3 x V

kVAr: Capacitor rating

V: Source voltage

MCCB Rating = Capacitor rated current x 1.5 (A)

Once the MCCB rating has been determined, the MCCB typeshould be selected according to the short circuit fault level ofthe system. (Please refer to Section 4 for MCCB breakingcapacities).

12

Page 35: C12 Application Reference Data

12 - 35

Innovators in Protection Technology

Application dataMCCB use in high frequency (400 Hz) applications

GeneralTerasaki TemBreak MCCBs are designed to operate primarily in 50or 60 Hz systems. However, it is possible to use the same MCCBsin high frequency (400 Hz) applications, provided considerationis given to the effects high frequencies will have on the breaker.

A consequence of high frequencies is an increase in Eddycurrents in conductors, including those internal to the breaker.This generally causes an increase in temperature, in and aroundthe breaker. As such, some derating allowances must be madewhen selecting a breaker in these 400 Hz systems.

Thermal magnetic MCCBsIn low overload (thermal) regions the current required to trip theMCCB is reduced as a result of the heat generated due to the

higher Eddy currents. As a result, the thermal protection must bederated to take the heating effect into account.In short-circuit (magnetic) regions, the demagnetising effects ofthe Eddy currents mean that a larger fault will be required to tripthe breaker. The rule of thumb generally used is that theMagnetic/Instantaneous Trip setting will be approximately twicethat at normal 50/60 Hz operation.

Electronic MCCBsElectronic MCCBs offer better performance at higher frequencies,although some consideration must be given in regard to the heatingeffects caused by the Eddy currents. The figures in the table givethe maximum overcurrent relay (OCR) rated current setting (I0 x I1) that should be used in high frequency applications.

MCCBCat. No

Rating at 50/60 Hz (A)

Cable size in mm2

as specified IEC 60947-1

E125NJ

S125NJ

S160GJ

E250NJ

S160NJ

S250NJ

S160GJ

S250PE/H250NE

S250GJ

S400NJ

S400GJ

XS630NJ

XS630NJ

XS800NJ

S400NE/XV400

S400GE/S400GE

XS630SE/S630CE/XV630

XH630SE/PE/S630GE

XS800SE

XH800SE/PE/XV800

XS1250SE/XV1250

XS1600SE

20

32

50

63

100

125

160

125

150

175

200

225

160

250

160

125

250

250

250

400

400

630

800

250

400

630

800

1250

1600

MCCBType

Thermal/Magnetic

Thermal/Magnetic

Thermal/Magnetic

Thermal/Magnetic

Thermal/Magnetic

Electronic

Thermal/Magnetic

Thermal/Magnetic

Thermal/Magnetic

Thermal/Magnetic

Electronic

Electronic

Electronic

Electronic

Electronic

2.5

6

10

16

35

50

70

50

50

70

95

95

70

120

70

70

120

120

120

240

240

2 x 185

2 x 240

120

240

2 x 185

2 x 240

2 x (80 x 5t)

2 x (100 x 5t)

MCCB rating at400 Hz 1)(A)

18

30

45

58

89

110

147

116

135

155

185

195

147

210

147

110

238

240

240

330

320

475

600

238

360

600

640

800

900

Note: 1) When used at 400 Hz, the rated current setting of the OCR must not exceed the values shown in Column 4.

Selection guide for thermal-magnetic/electronic MCCBs

12

Page 36: C12 Application Reference Data

12 - 36

Innovators in Protection Technology

Application dataCircuit breaker selection for DC applications

Terasaki MCB use in DC systems 4)

The characteristics of an MCB or MCCB for DC applications aredifferent from AC. The main differences are as follows:1. Maximum permissible voltage is reduced in value

(refer table below).2. Number of electrical operations is reduced (refer table).3. Magnetic trip current increases by 40 %.

Selecting the circuit breakerWhen selecting the MCB most suitable for the protection of DCcircuits the following criteria must be considered:n Rated current.n Rated voltage which determines the number of poles

required to be involved in the interruption of the circuit.

Din-T6

Din-T10

Din-T DC

Din-T15

Din-T10H

Safe-T

0.5...63 A

0.5...63 A

0.5...63 A

6...25 A

80...125 A

6...100 A

20

25

-

25

10

-

25

30

-

30

10

5

RatedCurrent(A)

CircuitBreakerType

-

-

6

-

-

-

-

-

6

-

-

-

S160NF 1 pole

ES125/NJ

SHL125NJ/GJ

E250NJ

SHL160/250 2)

E400NJ

SHL400NJ/GJ 3)

XS630NJ

XS800NJ

XS1000ND 1)

XS1250ND

XS1600ND

XS2000ND 1)

XS2500ND 1)

-15

25

50

25

50

25

50

50

50

15

25

40

25

40

25

40

40

40

40

40

40

40

40

20

20

20

20

20

20

20

20

20

20

20

20

20

20

MCCBtype 1) 2) 24/48/60 V 125 V

-

25

40

25

40

25

40

40

40

40

40

40

40

40

250 V

30

30

30

30

30

30

30

350 V 500 V 600 V

Notes: 1) Magnetic trip, without overload protection. Available on indent only.

2) Thermal magnetic types only can be used on DC.2) MCCBs not suitable for 12 V DC.

Notes for MCCB only: For voltage levels up to and including 250 V standardbreakers maybe be used, with 2 both poles connected in series.For voltage levels greater than 250 V DC 3-pole breakers must be used, withall three poles connected in series as shown.The time constant (L/R) of the circuit should be:

less than 2ms at rated current.less than 2.5ms for overload (2.5 x in).less than 7ms for short circuit ≤ 10 kA.less than 15ms for short circuit > 10 kA.

4) Additional MCB DC applications information, refer section 3.

The following connection diagram should be applied to TemBreak circuitbreakers when the voltage is greater than 250 V DC.

n The type of DC system used.n Maximum short circuit current to determine the breaking

capacity.As a general rule the Isc (short circuit current at the batteryterminals) can be calculated as follows:

Isc = VbRi

Where Vb – maximum discharge battery voltageWhere Ri – internal resistance (sum of all cell resistances)

Note: If Ri is not known an estimation of Isc can bedetermined using the formula Isc = kC where C is the battery capacity (in Ah) and k a factor between10 and 20. (refer battery manufacturer)

48 V 1 PoleIcu (kA)

110 V 1 Polein seriesIcu (kA)

250 V 1 PoleIcu (kA)

500 V 1 PoleIcu (kA)

Refer to section 4 for ‘ND’ DC MCCBs rated to600 V DC at 20 A - 800 A

Refer NHP for MCCBs rated to 1000 V DC

12

Page 37: C12 Application Reference Data

12 - 37

Innovators in Protection Technology

Application dataCircuit breaker selection for DC applications (cont’d)

Arrangement of breaking poles according to type of system.

RUb

+

RUb

+

Both poles insulated from earth

Note: For specific DC applications (e.g. parallel pole connection) consult NHP.

The poles required to interrupt the fault can be divided between the (+) and (-) polarities. The total number of poles connected inseries should be capable of breaking the short circuit current at a voltage level of Ub.Sharing the circuit breaker interrupting poles between both polarities also ensures isolation as well as protection of the system.

Protection and IsolationProtection only

RUb

+

RUb

+

One polarity of the DC supply is earthed

Full protection is assured if the total number of poles in series on the side not connected to earth are capable of breaking the shortcircuit current at a voltage level of Ub. If full isolation is required then at least one interrupting pole is also required on the earthedpolarity side.

Protection and IsolationProtection only

RUb

+

The centre point of the DC supply is earthed

To ensure full protection the number of poles connected in series on each polarity must be capable of breaking the maximum shortcircuit current, but at a reduced voltage level of Ub/2.Having circuit breaker interrupting poles breaking both polarities ensures isolation as well as protection of the system.

The centre Protection and Isolation

12

Page 38: C12 Application Reference Data

12 - 38

Innovators in Protection Technology

Application dataSelection of MCCBs for use in welder circuits

P x 1000

V

The thermally equivalent continuous current,Ie, may be calculated from:

Ie = (B )x √B T1

T1 + T2

Note: The rated capacity of a spot welder is normally expressed interms of its 50% duty ratio, ie. B = 0.5.

Once an MCCB has been selected, it is necessary to compare themaximum primary current I1 and the current ‘ON’ period, T1 withthe MCCB characteristic curve to ensure that it will not trip.

Time

Current

MCCB characteristic curve

T > T isconditional

1

1

T

T

Note: A tolerance of 10 to 15% should be included to allow for variations in the supply voltage and equipment.

1. Definitions

P =Rated capacity of welder in kVA.V =Welder rated voltage.I1 =Maximum primary current (P/V).T1 =Current ‘ON’ period.T2 =Current ‘OFF’ period.T1 + T2 =One welding cycle time.B =Duty ratio, current ‘ON’ period divided by one

welding cycle.Ie =Thermally equivalent continuous current.

2. MCCB selection

a) Current ratingIt can be seen from the diagrams below that the welder onlydraws current intermittently. MCCB selection should be based onthe thermally equivalent continuous current,i.e. the current which would produce the MCCB averagetemperature shown in the diagram below.

It can further be seen that the MCCB temperature will not beconstant but will vary as the load varies.

T1 T2

I

Time

I

Time

MCCB temperature variation

MCCB average temperature

General guidelines for MCCB selection

Selection factor MCCB ratingResistance welders 3 x maxTransformer arc welders 2 x max

SAA wiring rules state that a circuit breaker protecting a circuitfrom which one or more welders are supplied may be greaterthan the rating of the protected conductor calculated asfollows:

The maximum demand of the circuit excluding that of thelargest welding machine plus

i) Three times the primary current of the largest resistancewelders.

ii) Two times the primary ratings of the largest transformer arcwelders.

Welding with RCDs in the circuitDuring welding a varing amount of earth leakage may occur. I fan earth leakage relay or EL MCCB is installed, the leakagecurrent setting should be set high enough (if possible) toensure unwanted tripping does not occur.

(Cont’d next page...)

12

Page 39: C12 Application Reference Data

12 - 39

Innovators in Protection Technology

Application dataSelection of MCCBs for use in welder circuits (cont’d)

K = 1 to 1.5 for synchronous type with peak control.K = 1.4 to 3 for synchronous type without peak control.K = 2 to 6 for non-synchronous soft start type.If protection of the thyristor stack is also required, theinstantaneous trip setting must be greater than Im, but less thanthe surge on-state current rating of the thyristor stack:

where:Is = surge on-state current rating of thyristor stack, in A

Im = maximum welder input current at start of welding, in A

I INST = MCCB Instantaneous trip setting, in A

1.1 = Factor to allow for + 10% tolerance on theinstantaneous setting

c) MCCB breaking capacityThe MCCB breaking capacity should be higher than the estimatedshort-circuit fault level of the system.

2. MCCB Selection (Cont’d)b) Instantaneous settingThe MCCBs instantaneous trip setting should be high enough toavoid nuisance tripping due to the welding transformersexcitation inrush current. When voltage is supplied to thetransformer primary side, the iron core is saturated. This resultsin the flow of a large inrush current caused by a combination ofthe DC component of the voltage at the instant of closing andthe residual magnetic flux of the transformer. The transformerinput current value when the welder secondary is completelyshort-circuited is about 30% higher than the value calculatedfrom the nominal maximum power input of the welder. So themaximum welder input current, Im, at the start of welding isgiven by:

The value of K varies depending on the type of welder controlemployed. (Some form of synchronous closing is nearly alwaysemployed in order to stabilise the welding work and to preventnuisance tripping of the MCCB).

Pm x 1000

VIm = x 1.3 x K

Is

1.1Im < I INST <

12

Page 40: C12 Application Reference Data

12 - 40

Innovators in Protection Technology

Application dataPrimary LV/LV transformer protection

Transformer(kVA)

MCCB Cat. No

1 phase 240V 3 phase 415V

MCCB rating (A)

MCCB Cat. No

MCCB rating (A)

5

7.5

10

15

20

30

50

75

100

150

200

300

S125/160NF

S125/160NF

S125/160NF

E250NJ

S250GJ

S160GJ

S160GJ

S160GJ

50

63

100

125

160

160

160

160

S125NJ

S125NJ

S125NJ

S125NJ

S125NJ

S125NJ

S125NJ

E250NJ

S250NJ

S400NE

S400NE

S400NE

S630CE

20

32

32

50

63

100

125

225

250

250

250

400

630

BC (kA)at 415V

36

36

36

36

36

36

36

25

36

50

50

50

50

BC (kA)at 240V

25

25

25

25

65

65

65

65

(kVA)First peak multiplier

Single-phase transformer Three-phase transformerDecay timeconstant

First peak multiplier

Decay timeconstant

5 - 10

15 - 20

30

50

75

100

150

200

300

34

33

-

-

-

-

-

-

-

3 - 6

3 - 6

-

-

-

-

-

-

-

32

30

26

24

20

18

16

14

12

3 - 6

3 - 6

3 - 6

4 - 7

4 - 7

6 - 10

6 - 10

6 - 10

6 - 10

Notes: First peak multiplier is the first peak current as a multiple of the transformer rated current.The above table/multipliers are in general larger than the practical current levels, as the current limiting by the circuit impedance is nottaken into account.

When selecting an MCCB to protect the primary of an LV/LVtransformer, the inrush current during initial energisation mustbe taken into account.

The magnitude of inrush current for any transformer is governedby several variables:

1. The primary winding resistance.2. The supply impedance.3. The excitation current.

The excitation current is, in theory, at a maximum when thevoltage is at a minimum, and vice versa.

Usually the level does not exceed 30 times the normal operatingcurrent.

If the inrush current is not known then a rule of thumb is that itis approximately 15 x the Primary Current.

The above breaker selections are based on inrush currents calculated using the table below

12

Page 41: C12 Application Reference Data

12 - 41

Innovators in Protection Technology

Application dataMCB selection for high pressure sodium lamps

Assumptions

1. The maximum inrush current which the circuit will pass is a feature of the current limiting ballast and not the lamp. Assuming these ballasts comply with the relevant IEC specification, the circuit will pass currents not exceeding twice the appropriate lamp nominal current.

ExampleGiven 42 lamps each 250 W installed on a 415 V 3 phase system.Which MCB must be selected?Number of tubes per phase = 42

3Therefore from the table above a 32 A MCB should be selected.A short circuit rating as appropriate must be selected.

This table provides details for Din-T type ‘C’ MCBs

Power (W)

50 W

70 W

150 W

250 W

400 W

700 W

MCB (Amps)

2

1

-

-

-

-

1

4

3

1

-

-

-

2

7

5

2

1

-

-

4

9

6

3

1

1

-

4

12

8

4

2

1

-

6

24

17

8

4

3

1

10

36

25

12

0.7

4

2

16

48

34

16

9

6

3

20

60

42

20

12

7

4

25

76

54

25

15

9

5

32

108

77

36

21

13

7

50

Number of fittings per phase

2. Run-up time 10 minutes with the current decaying exponentially.

3. Based on 415/240 V 3 phase or 240 V single phase systems.

= 14

Note: Observe the requirements of AS 3000 for No. of lighting points on a final sub-circuit.

12

Page 42: C12 Application Reference Data

12 - 42

Innovators in Protection Technology

Application dataMCB selection for fluorescent lighting loads

MCB selection for incandescent lighting loads

Assumptions

1. The power rating of the ballast is 25% of power of the tubes.2. Power factor - 0.6 for non-compensated fittings 0.86 for compensated fittings.3. MCBs are installed in an enclosure with external ambient of 25 °C.4. Based on 415/240 V 3 phase or 240 V single phase systems.5. MCB is used for circuit protection only, not switching.

For switching duties of Din-T MCBs refer NHP.

This table provides details for Din-T type ‘C’ MCBs

45

22

14

11

64

32

20

16

32

16

10

8

10

66

33

20

16

94

47

29

23

47

23

14

11

16

79

39

24

20

113

57

35

28

57

28

17

14

20

100

50

30

25

143

72

44

36

72

36

22

17

25

116

57

36

29

166

83

51

41

83

41

25

20

32

150

75

50

40

200

110

70

55

110

55

35

30

50

Type of fitting

Power(W)

Number of fittings per phase

Single non-

compensated

Single

compensated

Twin

compensated

Recommended

MCB rating

20

40

65

80

20

40

65

80

2 x 20

2 x 40

2 x 65

2 x 80

Amps

Assumptionsn Tungsten lamps have a theoretical inrush current of

14 times normal current, when switched from cold.n The circuit impedance typically limits the inrush to

10 times normal running current, the inrush currentpeaking at 0.0007 seconds falling exponentially tonormal running current within 0.1 seconds.

n Consider the worst case, if all lamps are switched onsimultaneously, then nuisance tripping of MCB mayresult.

n Above is based on 415/240 V 3 phase and neutral or240V single phase system and 240 V lamps.

n MCB is used for circuit protection only, not switching.For switching duties of Din-T MCBs refer NHP.

MethodIn order to cope with this inrush the followingformula should be used to calculate breaker size:Breaker rating = W x 10

P x 240 x I instWhere W = Total wattageWhere P = Number of phasesI inst = Minimum instantaneous tripping

co-efficient.C curve = 5D curve = 10

Note: Observe the requirements of AS/NZS 3000 for No. of lighting points on a final sub-circuit.

12

Page 43: C12 Application Reference Data

12 - 43

Innovators in Protection Technology

Application data

Current-carrying capacity (A)

Cable sizeUnenclosed

R75, V75, V90 (PVC)XLPE, R90

(Polyethylene)R75, V75, V90 (PVC)

XLPE, R90 (Polyethylene)

Buried direct in ground

mm2

1

1.5

2.5

4

6

10

16

25

35

50

70

95

120

150

185

240

300

400

500

630

Copper

13

17

23

31

40

53

68

90

110

140

175

210

245

280

325

385

440

510

600

690

Copper

18

22

30

30

50

69

92

125

150

175

220

265

320

355

415

490

550

630

710

800

Copper

18

25

32

43

54

71

93

125

145

175

210

255

290

325

365

430

480

540

620

710

Copper

23

30

40

51

64

87

110

145

175

210

255

300

350

390

440

500

560

630

690

760

Notes: Approximate ampere ratingsThese ratings are based on a 40°C ambient air temperature and a 25°C soil temperature.

Cable 3 phase current ratings 0.6 / 1 kVPVC and Polyethylene cables

12

Page 44: C12 Application Reference Data

12 - 44

Innovators in Protection Technology

Application dataDownstream short circuit current calculator

Calculation of a downstream short-circuit current is a function of the upstream short-circuit current(Isco), cross-section and length of the conductor. The following table provides information tocalculate approximately, the short circuit current at a relevant point of the installation.

Line protection - copper conductor

1.52.546101625355070951201501852403004005006252x952x1202x1502x1852x2403x953x1203x1503x1853x240

0.81.01.21.41.61.71.81.21.51.61.92.41.82.32.52.93.6

0.91.01.21.51.71.92.12.11.41.82.02.32.92.22.73.03.54.4

0.81.01.11.31.72.02.22.42.51.62.12.32.73.32.53.13.44.05.0

0.91.21.31.51.92.22.42.72.81.82.32.53.03.72.83.53.84.55.6

1.01.31.41.72.12.52.73.03.12.12.62.83.34.23.13.94.25.06.2

1.01.42.02.52.73.23.94.75.15.75.83.94.95.46.37.95.97.48.09.512

1.11.52.23.04.15.25.66.78.3101112128.2101113171216172025

0.81.31.82.63.64.96.26.88.010121314159.9121416201519202430

1.01.62.23.14.46.07.58.29.7121416171812151619241823252936

0.81.32.13.04.25.98.0101113161921232416202226322430333949

1.11.72.63.75.37.410131416202426293020252833413038414961

0.81.22.13.35.17.21014202527323947515758394954637959748095118

1.01.62.54.16.6101421293949546379951031141177899107127158117148161190237

1.32.13.15.28.3131826364962688010012013014414799125135160199148187203240299

0.91.62.53.86.3101622314460758297120145157174178119150164193241179226245290361

1.32.13.45.18.4132130425980101110130162195211234240160202220260324240304330390486

1.62.64.26.4111726375374101127138163203244265294301201254276327407302381415490610

3.15.18.21221335172103144195246268317394474514571584390493536633789585739804950

6.21016254166103144205288390493536633789948

781986

7.81321315283130182259363493623677800996

986

9.416253863100157219314439596752818967

1321345184135211295422590801

16264264106170265371530742

315182123205329514719

100908070605040353025201510754321

9485766758493934292520159.97.05.04.03.02.01.0

9384766757483934292520159.97.05.04.03.02.01.0

9284756657483934292420159.97.05.04.03.02.01.0

9183746657483934292420159.97.05.04.03.02.01.0

9082746556473834292420159.96.95.04.03.02.01.0

8376696154453733282419159.86.95.04.03.02.01.0

7065605448413430272318149.66.84.93.93.02.01.0

6662575246403330262218149.56.84.93.93.02.01.0

6258544944383229252218149.46.74.93.92.92.01.0

5552484440353027242117139.26.64.83.92.92.01.0

4947444137332826232017139.16.54.83.82.92.01.0

3332312927252221191714128.36.14.53.72.81.91.0

20191918181715151412119.47.15.54.23.42.71.91.0

161616151514131312111097543321

1414141313121211119.99.07.86.24.93.83.22.51.80.9

11111110109.89.39.08.68.27.56.75.54.43.53.02.41.70.9

8.88.78.68.58.38.17.87.67.37.06.55.94.94.13.32.82.31.70.9

4.74.74.74.64.64.54.44.44.34.24.03.73.32.92.52.21.91.40.8

2.42.42.42.42.42.42.32.32.32.32.22.12.01.81.71.51.41.10.7

1.91.91.91.91.91.91.91.91.81.81.81.71.61.51.41.31.21.00.7

1.61.61.61.61.61.61.61.61.51.51.51.51.41.31.21.21.10.90.6

1.21.21.21.21.21.21.21.21.21.21.11.11.11.01.00.90.90.80.5

1.01.01.01.00.90.90.90.90.90.90.90.90.90.80.80.80.70.70.5

0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.40.40.40.3

Isc at the

origin of the

cab

le

Isco(kA)

Short-circuit current at the end of the cable

mm2

Length of the line in metres

Notes: • Values shorter than 0.8 m or longer than 1 km are not considered• All values are for voltage 400 V.

Correction coefficient

Voltage K

230 V 0.58

660 V 1.65

Example

Cable with cross section 95 mm2 Cu, 45 m length, and short-circuit current at the transformer terminals of 30 kA.Estimated short-circuit current of 12 kA at the end of the cable.

12

Page 45: C12 Application Reference Data

12 - 45

Innovators in Protection Technology

Application dataTransformers in parallel

Parallel transformer short-circuit current (Isc)

In the case of several transformers in parallel there are some points of the installation where the Icc is the sum of the short-circuit currents provided by each transformer. The short-circuit capacity of theprotective devices shall be calculated taking into consideration the following criteria:

Let-through energy

The standard IEC 60364 describes that the current limiting of the conductors (K2S2) shall be equal to or greater than the let-through energy (I2t) quoted by the protective device. The K coefficient depends on the conductor insulation. S is the cross section of the conductor. I2t ≤ K2S2

Copper conductor

K=Crosssectionmm2

115 135 146

Maximum admissible value K2S2 x 103

1.5

2.5

4

6

10

16

25

35

50

70

95

120

150

185

240

30

83

212

476

1323

3386

8266

16201

33063

64803

119356

190440

297563

452626

761760

41

114

292

656

1823

4666

11391

22326

45563

89303

164481

262440

410063

623751

1049760

48

133

341

767

2132

5457

13323

26112

53290

104448

192377

306950

479610

729540

1227802

Short-circuit in A: Icu1 ≥ Isc2 + Isc3

Short-circuit in F: Icu2 ≥ Isc2

Short-circuit in D: Icu4 ≥ Isc1 + Isc2 + Isc3

Insulation PVC Rubber PolyethyleneALPE

12

Page 46: C12 Application Reference Data

12 - 46

Application dataProtection grades against contact and foreign bodies -Ingress Protection (IP)

IP TestsO

IP Tests

First NumberProtection against solid objects

Second NumberProtection against liquids

No protection.No protection.

Protected against directsprays of water up to 15 ° from the vertical.

Protected against spray of

water up to 60 ° from the

vertical.

Protected againstwater sprayed fromall directions - limitedingress permissable.

Protected against strong

jets of water eg. for use on

shipdecks - limited ingress

permissable

Protected against lowpressure jets of waterfrom all directions - limitedingress permissable.

Protected against the

affects of immersion

between 15 cm and 1 m.

Protected against long

periods of immersion

under pressure.

Protected against

solid objects up to

12 mm (eg. fingers).

Protected against

solid objects over

2.5 mm (tools + small

wires).

Protected against

solid objects over

1 mm (tools + small

wires).

Protected against dust

- limited ingress

permitted (no harmful

deposit).

Totally protected

against dust.

2

3

4

5

6

1O

2

3

4

5

6

1

7

8

Protected against

solid objects up to

50 mm.

(eg. accidental touch

by hands).

Protected againstvertical fallingdrops of water.

12

Page 47: C12 Application Reference Data

12 - 47

Application dataUseful formulae and conversion factors.

kW =

kW = kVA x PF

hp x 7461000 x Eff

kW =Ix Ex 1.732 x PF

1000

kVA =Ix Ex 1.732

1000

I =kW x 1000

E x 1.732 x PF

I =kVA x 1000E x 1.732

I =hp x 746

E x 1.732 x Eff x PF

I =kW x 1000

E x PF

I =746 x hp

E x PF x Eff

kVA =I x E1000

hp =kW x 1000 x Eff

746

hp =kVA x 1000 x Eff x PF

746

hp =Ix Ex 1.732 x Eff x PF

746

kVA =kWPF

Useful 3 phase formulae

Useful 1 phase formulae

Metric to imperial Imperial to metric

Multiply by To convert Multiply by

2.47100.00990.94782.11900.06101.30791.0000(C° x 9 ÷ 5) +323.28084.975013.19800.22001.34050.03940.393739.870.27780.62100.62141.75980.22480.14502.20460.15500.001110.76390.38610.10040.98421.10201.09361093.6132

0.4047101.3250

1.05510.4719

16.38710.76461.000

(F° -32) x 5 ÷ 90.30480.20100.07584.54600.7460

25.40002.5400.254

3.60001.60931.60930.56834.44826.89480.45366.4516

929.03100.09292.58999.96401.01610.90720.91440.0009

Acres to HectaresAtmospheres to KilopascalsBritish Thermal Units to KilojoulesCubic feet per minute to Litres per secondCubic inches to cubic centimetresCubic yards to Cubic metresCycles per second to HertzDegrees fahrenheit to Degrees celciusFeet to MetresFurlongs to KilometresGallons per minute to Litres per secondGallons to LitresHorse power (Electric) to KilowattsInches to MillimetresInches to CentimetresInches to MetresKilowatt hours to MegajoulesMiles per hour to Kilometres per hourMiles to KilometresPints to LitresPound-force to NewtonsPounds per square inch to KilopascalsPounds to KilogramsSquare Inches to Square CentimetresSquare Feet to Square CentimetresSquare Feet to Square MetresSquare Miles to Square KilometresTon-Force to KilonewtonsTons-Long (2,240 pounds) to TonnesTons-short (2,000 pounds) to TonnesYards to MetresYards to Kilometres

12

Page 48: C12 Application Reference Data

12 - 48

Application dataDerived units of the International system

Formula symbols for the quantities are printed in italics, unit symbols in regular type.

QuantityFormulasymbol Name of unit

Unitsymbol Definitions, Notes

GeometryLength

Area

Volume

TimeTime, duration

Frequency

Rotational frequency

Revolutions

MechanicsMass

Density

Velocity

Acceleration

Force

Impulse

Pressure (mechanical)

Fluid pressure

Stress

Energy, work

Moment

Torque

Power

HeatTemperature

Temperature difference

Quantity of heat

Heat flux

ElectricityElectric current

Electric voltage

Current density

Electric charge

Capacitance

Magnetomotive force

Resistance

Conductance

Conductivity

Resistivity

Magnetic flux

Magn. field strength

Magn. flux density

Inductance

Apparent power

Active power

Reactive power

Energy

Impedance

Reactance

Phase displacement angle

metre

square metre

cubic metre

second

hertz

reciprocal second

reciprocal second

kilogram

kilogram per cubic metre

metres per second

metres per second squared

newton

newton-second

pascal

bar

newton per square metre

joule

newton-metre

newton-metre

watt

kelvin

degrees Celsius

kelvin

degrees Celsius

joule

watt

ampere

volt

ampere per square metre

coulomb

farad

ampere

ohm

siemens

siemens per metre

ohm-metre

weber

ampere per metre

tesla

henry

volt-ampere

watt

volt-ampere reactive

joule

ohm

ohm

radian

Basic SI unit

Basic SI unit

1 Hz = 1/s

ω = 2πf

Basic SI unit

1 N = 1 kg m / s2

1 Ns = 1 kg m / s

1 Pa = 1 N / m2 = 105 bar

1 bar = 105 Pa

1 N / m2 = 1 Pa

1 J = 1 Nm = 1 Ws

1 Nm = 1 kgm2 / s2

1 Nm = 1 kgm2 / s2

1 W = 1 Nm / s = 1 J / s

Basic SI unit

ϑ = T – To with To = 273.15 K

preferred

1°C - 1 K

1 J = 1 Nm = 1 Ws

1 W = 1 Nm / s = 1 J / s

Basic SI unit

1 V = 1 W / A

1 C = 1 As

1 F = 1 C / V = 1 As / V

ampere-turns of a coil

1 Ω = 1 V / A

G = 1 / R, 1 S = 1 A / V = 1 / Ω

χ = 1 /

1 Ωm = 1 Vm / A

1 Wb = 1 Vs

1 T = 1 Wb / m2 = 1 Vs / m2

1 H = 1 Wb / A = 1 Vs / A

1 W = 1 J / s

1 J = 1 Nm = 1 Ws

1 rad = 1

m

m2

m3

s

Hz

1/s

1/s

kg

kg/m3

m/s

m/s2

N

Ns

Pa

bar

N/m2

J

Nm

Nm

W

K

°C

K

°C

J

W

A

V

A/m2

C

F

A

Ω

S

S/m

Ωm

Wb

A/m

T

H

VA

W

Var

J

Ω

Ω

rad

lAV

tfω

n

m

v

a

F

I

p

p

σ

W

M

T 1)

P

T

ϑ

ΔT

Δϑ

Q

Φ

I

U

J

Q

C

Θ

R

G

χ

Φ

H

B

L

S

P

Q

W

Z

X

ϕ

Note: 1) According to IEC 27-1. According to DIN 1304 and 40121, the formula symbol M is used for torque.

12

Page 49: C12 Application Reference Data

12 - 49

Standards, codes and approvalsInternational and National testing institutes/authorities

Validity

AS

AS/NZS

BS

BV

CE

CEC

CEBEC

CEE

CEI

CEI

CEMA

CENELEC

CSA

DEMKO

DNV

EEMAC

EN

FI

GL

IEC

Australia

Australia / NewZealand

Great Britain

France

EU

Canada

Belgium

International

Italy

International

Canada

EC and EFTAcountries

Canada

Denmark

Norway

Canada

EC and EFTAcountries

Finland

FederalRepublic ofGermany

International

Abbreviation Symbol

Australian Standard of Standards Australia (SA). Extensively harmonised with IEC

Joint Australia and New Zealand Standard. Increasingly harmonised.

British Standard of the British Standards Institution (BSI). Extensivelyharmonised with IEC.

Bureau Veritas. Ship classification company. Headquartered in Paris

European compliance symbol

Canadian Electrical Code. Installation codes of the CSA.

Comité electrotechnique Belge/Belgian Electrotechnical Comittee. Approvaland labelling required for equipment used in public installations.

Commission Internationale de Certification de conformité de l’Equipementelectrique. Applicable in Scandinavian countries as a supplement to thenational codes.

Comitato elettrotecnico Italiano of the Associazione Elettrotecnica edelettronica Italiana. Codes partially the same as IEC.

Commission Electrotechnique Internationale. French designation for IEC.

Canadian Electrical Manufacturers Association. Old name of the EEMAC.

Comite Européen de Normalisation electrotechnique. Its European standards(EN) are increasingly applied by governments and users. Generaladministration in Bruxelles. Old name CENELCOM.

Canadian Standards Association. Independent codes. Statutory approval andlabelling requirement for all electrical equipment.

Danmarks Elektriske Materielkontrol. Codes, approval and labelling requiredup to 63 A nominal or continuous current.

Det Norske Veritas, ship classification company, headquartered in Oslo.

Electrical and Electronic Manufacturers Association of Canada. ManufacturersAssociation that publishes standards containing design and testing codes.

European standards (EN). The member countries are required to implementthese standards without modification and to give it the status of a nationalstandard.Sähkötarkastuskeskus/Elinspektionscentralen. Testing laboratory withindependent specifications. Statutory approval and labelling required up to 63 A.

Germanischer Lloyd. Ship classification company. Headquartered in Hamburg.

International Electrical Commission. Most countries use the IECrecommendations as a base and implement these with or withoutmodifications, with supplements or in major areas as their own national codes.

Designation, field of application, Statutory approval and labelling requirements

Only components that have passed the tests in the corresponding country may be labelled with the approval symbol.

12

Page 50: C12 Application Reference Data

12 - 50

Standards, codes and approvals (Cont’d)International and National testing institutes/authorities

Only components that have passed the tests in the corresponding country may be labelled with the approval symbol.

listed

ValidityAbbreviation SymbolDesignation, field of application, Statutory approval and labelling requirements

IS

JIS

KEMA

LRS

NBN

NEC

NEMA

NEMKO

NF

NZS

ÖVE

PTB

RINA

SABS

SEMKO

SEV/ASE

UL

VDE

India

Japan

Netherlands

United Kingdom

Belgium

USA

USA

Norway

France

New Zealand

Austria

Federal Republicof Germany

Italy

South Africa

Sweden

Switzerland

USA

Federal Republicof Germany

Indian Standard of the Indian Standards Institution, partially harmonisedwith IEC.

Japanese Industrial Standard. Detailed design codes.

N.V. tot Keuring van Elektrotechnische Materialen. Netherlands testinginstitute, also authorised to issue CSA approvals in Europe.

Lloyd’s Register of shipping. Ship classification institute. Headquartered inLondon.

Normes Belges/Belgisch Norm, standards of the Belgian Standards Institute,partially harmonised with IEC.

National Electrical Code. Installation codes of the National Fire ProtectionAssociation (NFPA) and the American National Standards Institute (ANSI).

National Electrical Manufacturers association. Manufacturers associationthat publishes standards containing power, construction and testing codes.

Norges Elektriske Materiellkontroll. Codes, approval and labelling requiredup to 32 A nominal or continuous current.

Normes Francaises of the Union technique de l’Electricité (UTE), partiallysimilar to IEC.

New Zealand Standards association. Extensively harmonised with IEC & AS.

Österreichischer Verband für Elektrotechnik. Approval and labelling requiredfor house installations and fuse devices.

Physikalisch-Technische Bundesanstalt. Testing institute responsible e.g. for the testing of protective components used for motors to be installed inhazardous locations.

Registro Italiano Navale. Ship classification company. Headquartered inGenova.

South African Bureau of Standards. Specifications partially harmonised withIEC.

Svenska Elektriska Materialkontrollanstalten. Codes, approval and labellingrequired for household equipment and special applications up to 32 A.

Schweizerischer Elektrotechnischer Verein/Association Suisse desElectriciens. Safety codes, extensively harmonised with IEC. Approval andlabelling required up to 200 A.

Underwriters Laboratories Inc. Public testing institute. Electrical equipmentthat conforms to the UL rules satisfies the Occupational Health and SafetyAct (OHSA). This approval is required by the largest states and cities.“listed” : approval and labelling required for all electrical equipment.“recognised” : only approval required.

Verband Deutscher elektrotechniker. Recent German standards (DIN)coincide with the VDE rules. Extensively harmonised with IEC. Older rulespartially similar to CEE.

12

Page 51: C12 Application Reference Data

12 - 51

Technical news publications

A quarterly NHP publication, the NHP technical news features a widerange of application and design criteria for the motor control, powerdistribution and numerous other product fields. Copies are availableon request. NHP Technical news ranges from 4 to 8 pages.

1. Contactor control circuits, latches etc.2. Contactors: Parallel/series connection, non standard frequencies3. Contactors: Failure to open or close, flashover, coil burnout4. Soft starters: Motor starting, loads, electronic soft starters5. MCCB overcurrent relay types and applications 6. Contactors: AC and DC control7. Fault Levels: At the point of supply and reducing factors – bars, cables etc.8. IP ratings: Definition and applications9. AC-1 to AC-23 (AC types only) 10. VSDs: Loads, Dynamic resistor and DC injection braking11. Thermal and electronic overloads12. Contactors: Operating curves and contact inspection13. Slip ring motors, liquid resistance types and applications14. DC contactor arc design, arcing and connection options15. Selecting the right kind of motor starter for an application16. AC, DC lamps, types and applications17. Surge causes and diverters18. PLCs: Control, mathematics, inputs and outputs19. Conventional types and contactors with electronic coils20. Enclosures and temperature rise21. Electro-magnetic interference (EMI)22. The need for safety, sensors, E stops and other devices23. Torque and motor starters24. Power Factor: Electricity supply degradation and solutions25. Safety, RCD operating speed, and applications26. Terminations: Control circuit Temp. rise, vibration, corrosion, developments27. Switchboards: Design, venting, earthing, fault containment, control equipment28. Electrical Equip: Ambient temp, current, voltage, impulse, ins ratings29. Electro-magnetic compatibility, cabling and EMC sources30. Current limiting circuit breakers: Electric arcs, applications and device types31. MCBs, characteristic curves, fault calculation, RCD’s32. Cable ratings, overloads, faults, circuit breakers, AS standards33. RCDs, how they work, wiring, nuisance tripping, testing.34. Derating: TemPerformance CD, enclosures, heat loss, enclosure design35. Star-delta starters and wiring, different versions, SC protection36. CT selection, types and applications37. Flexible copper busbar - application38. New standard Australian voltages: 230/400 V39. Motor protection and the wiring rules40. Confused about which RCD you should be choosing?41. Circuit breaker - selectivity & cascade applications42. Keeping in contact.43(b).Is your switchboard in good form?44. Automation in a technological world.45. Thermal simulation of switchgear46. Cable considerations.47. Output chokes for use with Variable Speed Drives.48. VSD installation techniques 49. The modern SCADA system50. NHP still delivering its promise51. Electrical design considerations for commercial buildings52. Terminal temperatures - how hot are they?53. Taking care of business - prevention is better than cure54. Control voltages for contactors55. Electrical switchgear - Will it turn you off?56. Electrical Arcs, Beauty and the Beast

12

Pt C 2010 Sec 12_Part C - 12 24/11/10 12:01 PM Page 51

Page 52: C12 Application Reference Data

12 - 52

Terasaki MCCB Old Vs New cross reference

Amps

12.5-125

12.5-125

12.5-125

125-225

100-160

160-250

100-160

160-250

160-250

250-400

160-250

250-400

125-250

200-400

125-250

200-400

250-400

400-630

250-400

400-630

315-630

315-630

500-800

500-800

400-800

400-800

630-1250

800-1600

1000-2000

1250-2500

Introduction date:

kA

18

30

50

18

35

50

35

50

50

65

45

65

50

65

65

85

50

65

85

100

100

100

TO/TG/TTMCCB

TO100BA

TO100BH

TG100B

TO225CB

TO225BA

TG225B

TO400BA

TG400B

TTE400

TTE400

TO600BA

TG600B

TTE630

TTE630

TO800BA

TG800B

TTE800

TTE800

TO1000B

TO1200B

TO1600B

TTE2000

TO2000

TO2500

1982

OCRtype

Adj. therm. fixed mag.

Adj. therm. fixed mag.

Adj. therm. fixed mag.

Fixed therm. fixed mag.

Adj. therm. fixed mag.

Adj. therm. fixed mag.

Adj. therm. fixed mag.

Adj. therm. adj. mag.

Electronic LSI

Electronic LSI

Adj. therm.

adj. mag.

Adj. therm.

adj. mag.

Electronic

Electronic

Adj. therm.adj. mag.

Adj. therm.adj. mag.

Electronic

Electronic

Electronic

Electronic

Electronic

Electronic

Basecurrent adj.

63-100 %

63-100 %

63-100 %

Fixed

63-100 %

63-100 %

63-100 %

63-100 %

50-100 %

50-100 %

63-100 %

63-100 %

50-100 %

50-100 %

63-100 %

63-100 %

50-100 %

50-100 %

50-100 %

50-100 %

50-100 %

50-100 %

TemBreakCat.No.

XS125CJ

XS125NJ

XH125NJ 1)

XE225NS

XS250NJ 1)

XH250NJ 1)

XS400CJ

XS400NJ 1)

XS400NE

XH400NE

XS630CJ

XS630NJ 1)

XS630NE

XH630NE

XS800NJ 1)

XS1250NE

XS800NE

XH800NE

XS1250NE

XS1600NE

XS2000NE

XS2500NE

1990

TemBreakPlusCat.No.

XS400SE

XH400SE 1)

XS630SE 1)

XH630SE 1)

XS1250SE 1)

XS800SE 1)

XH800SE 1)

XS1250SE 1)

XS1600SE 1)

– 1)

– 1)

2000

2009/10TemBreak 2& TemBreak1 combinedrange

E125NJ

S125NJ

S125GJ

E250NJ

S160NJ

S250NJ

S160GJ

S250GJ

S400CJ

S400NJ

S400SE

S400GE

XS630NJ

XS630NJ

S630CE

S630GE

XS800NJ

XS1250SE

XS800SE

XH800SE

XS1250SE

XS1600SE

XS2000NE

XS2500NE

2006/07

400 VACratingskA

25

36

65

25

36

65

36

50

50

70

50

50

50

70

50

85

50

65

85

100

85

85

Note: 1) Stocked

12

TO225BA MCCB XS250NJ MCCB S125GJ