20
C. Introduction to Multicellularity 1. Regulation of Organism Size by Cell Mass 2. Regulation of Extracellular Structure 3. Regulation of Cell Adhesion 4. Regulation of the Internal Aqueous Environment 5. Regulation by Intercellular Communication 6. Regulation by Cell Specialization ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 1. Regulation of Organism Size by Total Cell Mass Cell mass determines the size of an organism and is a combination of cell size and number a. The size of cells varies with gene dosage and a common nucleus-to-cytosol ratio b. Cell number is a balance between cell division and cell death ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ a. The size of cells varies with gene dosage and a common nucleus-to-cytosol ratio Most mature cells have a N:C ratio of 1:1 or 2:1 (early differentiating cells as high as 4:1) Multiple copies of chromosomes can increase the size of the nucleus and total cell size ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

C. Introduction to Multicellularity

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: C. Introduction to Multicellularity

C. Introduction to Multicellularity

1. Regulation of Organism Size by Cell Mass

2. Regulation of Extracellular Structure

3. Regulation of Cell Adhesion

4. Regulation of the Internal Aqueous Environment

5. Regulation by Intercellular Communication

6. Regulation by Cell Specialization

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

1. Regulation of Organism Size by Total Cell Mass

Cell mass determines the size of an organism and is a combination of cell size and number

a. The size of cells varies with gene dosage and a common nucleus-to-cytosol ratio

b. Cell number is a balance between cell division and cell death

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

a. The size of cells varies with gene dosage and a common nucleus-to-cytosol ratio

• Most mature cells have a N:C ratio of 1:1 or 2:1 (early differentiating cells as high as 4:1)

• Multiple copies of chromosomes can increase the size of the nucleus and total cell size

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 2: C. Introduction to Multicellularity

Figure 17-70 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

b. Numbers in a Cell Population

• Cell number is a combination of....

• Cell divisions – Cell deaths (necrotic + programmed)

• Necrosis is premature cell death

– disease, injury, starvation, toxicity, excitotoxicity

• Programmed cell death is death by design

– apoptosis, anoikis, cornification, autophagy

• Same for an organism, system, organ or tissue, and for single cell populations in an ecosystem

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 17-69 Molecular Biology of the Cell (© Garland Science 2008)

We’ve even learned to control it.........

A mutation in a signal molecule that limits muscle cell division has been bred in.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 3: C. Introduction to Multicellularity

2. Regulation of Extracellular Structure

• These extracellular materials are produced and organized by the cells themselves.

• Extracellular structures keep the organism intact and allow coordinated function

• Mechanical support and defense• Adhesion for cells and tissues• Substrate for cell and organismal movement • Regulation of cell growth and function

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

• Animal cells secrete an elaborate “ECM”

• Vertebrate four compound ECM

• Exoskeletal carapace in many arthropods

• Plants, fungi and prokaryotes cells secrete a “cell wall”

• Cellulose cell wall in plant cells

• Chitin in fungi

• (Pseudo-) peptidoglycan in prokaryotes

• Bacterial cells secrete “plaques”

• Extracellular polymeric substance: DNA, protein and polysaccarides (including cellulose)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

b. Variations in Animal ECM

• 4 basic components of vertebrate ECM• glycosaminoglycans

• proteoglycans (add Ca2+-apatite for bone)

• fibrous proteins

• elastic proteins

• Fibrous Proteins: collagen, fibronectin, laminin

• Elastic Proteins: elastin

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 4: C. Introduction to Multicellularity

Figure 19-56 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-60b Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-61 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 5: C. Introduction to Multicellularity

Figure 19-65 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-70b Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-71 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 6: C. Introduction to Multicellularity

• Different kinds of ECM vary in the relative concentrations of these basic components– Basal lamina in epithelial tissues and specialized basal lamina in

blood vessels

– Elastic tissues that transfer force

– Fibrous capsules in nearly all organs

– The non-cellular portion of the blood and extracellular fluid

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-39 (part 2 of 3) Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-40 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 7: C. Introduction to Multicellularity

Figure 19-39 (part 1 of 3) Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Degradation and Secretion of ECM are the twin sides of ECM Regulation

• Bound proteases act right at the cell surface, while secreted proteases act near cell surface

– Matrix metalloproteases and serine proteases

• They must be tightly controlled

– Secreted as inactive precursors

– Bound by cell-surface receptors

– Controlled by secreted inhibitors

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

ECM in Invertebrates

• Chitin (C8H13O5N)n , is a long-chain polymer of a N-acetylglucosamine, a derivative of glucose.

• It is the main component of the exoskeletons of arthropods such as crustaceans (e.g., crabs, lobsters and shrimps) and insects, the radulas of mollusks, and the beaks of cephalopods, including squid and octopuses.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 8: C. Introduction to Multicellularity

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Chitin ECM can also vary in structure

• In arthropods chitin is often modified, becoming embedded in a hardened proteinaceous matrix.

• In its pure form, it is leathery, but, when encrusted in calcium carbonate, it becomes much harder.

• The difference between the unmodified and modified forms can be seen by comparing the body wall of a caterpillar(unmodified) to a beetle (modified).

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

The Cellulose Cell Wall

• Cellulose is a polysaccharide consisting of a linear chain of several hundred to over ten thousand β(1→4) linked D-glucose units.

• Cellulose is the structural component of the primary cell wall of green plants, many forms of algae and the oomycetes.

• Cellulose is the most common organic compound on Earth. About 33% of all plant matter is cellulose (the cellulose content of cotton is 90% and that of wood is 40–50%).

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 9: C. Introduction to Multicellularity

Figure 19-76 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-79 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

• Some animals, particularly ruminants and termites, can digest cellulose with the help of symbiotic micro-organisms that live in their guts. Humans can digest cellulose to some extent,[6][7] however it is often referred to as 'dietary fiber' or 'roughage' (e.g. outer shell of maize) and acts as a hydrophilic bulking agent for feces.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 10: C. Introduction to Multicellularity

• The cell wall of fungi and the bulk of the fruiting body is chitin

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Prokaryotic ECM

• Peptidoglycan, also known as murein, is a polymer consisting of sugars and amino acids that forms a mesh-like layer outside the plasma membrane of bacteria (but not Archaea), forming the cell wall.

• Some Archaea have a similar layer of pseudopeptidoglycan or pseudomurein, where the sugar residues are β-(1,3) linked N-acetylglucosamine and N-acetyltalosaminuronic acid. That is why the cell wall of Archaea is insensitive to lysozyme.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

• The peptidoglycan layer is substantially thicker in Gram-positive bacteria (20 to 80 nanometers) than in Gram-negative bacteria (7 to 8 nanometers), with the attachment of the S-layer.

• Peptidoglycan forms around 90% of the dry weightof Gram-positive bacteria but only 10% of Gram-negative strains. Thus, presence of high levels of peptidoglycan is the primary determinant of the characterisation of bacteria as gram-positive.[3]

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 11: C. Introduction to Multicellularity

• A biofilm is an aggregate of microorganisms in which cells adhere to each other on a surface. These adherent cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS).

• Biofilm EPS, which is also referred to as slime (although not everything described as slime is a biofilm), is a polymeric conglomeration generally composed of extracellular DNA, proteins, and polysaccharides. Some species of bacteriasecrete cellulose to form biofilms.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 12: C. Introduction to Multicellularity

3. Regulation of Cell Adhesion

• Most of the cells of multicellular organisms must adhere to survive – VERY few are free

• Cells adhere to other cells, the ECM or, quite commonly, to both

• It is also common for cells that lose their appropriate attachments to undergo anoikis

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-1 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 13: C. Introduction to Multicellularity

4. The Internal Aqueous Environment

• All multicellular organisms on Earth maintain an aqueous environment

• Most animals have the roughly the same pH and ion concentrations as sea water

• Plants are more dependent on their external environment for these

• Some of us maintain the water temperature, others rely on solar energy

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

• All plants and animals have water in their cells and in the extracellular matrix

• Some also have water in a vascular system that can exchange that water with tissues

• Animals with a GI or respiratory systems also exchange water with those systems

• Vertebrate animals also have a specialized cerebrospinal and lymphatic fluid systems

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

5. Regulation by Intercellular Communication

Single celled organisms use intercellular signals to coordinate such things as gene expression, mating, sporulation and cell death in response to population density, nutrients, stress and other cues.

Multicellular organisms use intercellular communications to coordinate the activities of their component cells.

– The overall purpose is to coordinate the activities of multiple cells in response to the needs of the organism and changes in its environment.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 14: C. Introduction to Multicellularity

• We have evolved very complex cell communications systems to regulate our 100 trillion cells

• These pathways are similar to and likely arose from those that single celled organisms use to molecularly sense their environments.

• Much of our genetic energy is spent on cell signaling and control.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 15-4a Molecular Biology of the Cell (© Garland Science 2008)

“Juxtacrine”

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 15: C. Introduction to Multicellularity

Fig. 6-31

Interior of cell

Interior of cell

0.5 µm Plasmodesmata Plasma membranes

Cell walls

Plasmodesmata in Plant Cells

Gap Junctions in Animal Cells

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Soluble Molecule Signaling

1. Paracrine signaling

2. Endocrine signaling

3. Synaptic signaling

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

2. Paracrine Signaling

• Local secretion into extracellular fluid affects nearby cells within a tissue or organ

• Very selective and VERY powerful

• Allows local coordination of cells that share the same or closely related jobs

• Autocrine signals are paracrine signals where the same type of cell both secretes and responds to the signal

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 16: C. Introduction to Multicellularity

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

1. Endocrine Signaling

• Cells must be within diffusing range of our capillaries so that they have access to oxygen and nutrients.

• Hormones come from the Endocrine System/Glands: ductless glands that secrete into the blood

• Every cell in the body is exposed to all of the hormones that are running through our blood stream.

• Cell must express receptors specific for those hormones if they are to respond to them.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 15-5a Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 17: C. Introduction to Multicellularity

Figure 15-4c Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

d. The Structure of Signaling Systems in Multicellular Organisms

• All systems have 4 primary components

– Ligand

– Receptor

– 2nd Messengers

– Target Mechanisms

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 15-1 Molecular Biology of the Cell (© Garland Science 2008)

secondmessenger

cascade

targetmechanisms

ligand

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 18: C. Introduction to Multicellularity

Figure 15-8 Molecular Biology of the Cell (© Garland Science 2008)

TargetMechanisms

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

6. Regulation by Cell Specialization

Cells of an organism share the exact same DNA but they can be very different

a. There are over 200 cell types in adult humans

b. Cell types are determined by differential gene expression

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Anatomical Organization in Multicellular Organisms is Based on Cell Functions

Tissues are made up of multiple cell types

Organs are made up of multiple tissue types

Systems are made up of multiple organs

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 19: C. Introduction to Multicellularity

Anatomical Organization in Multicellular Organisms is Based on Cell Functions

• Characteristic Types of Cells

• epithelial vs. mesenchymal

• parenchymal vs. support

• stem cells vs. adult cells

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 19-1 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

A variety of mechanisms can change a cell’s gene expression and, thus, its phenotype

a. Changes can occur due to developmental stage

a. Changes can occur due to age

b. Changes can occur due to injury

b. Changes can occur due to infection

b. Changes can occur due to disease state

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Page 20: C. Introduction to Multicellularity