28
Xiangbo Zhao Macmillan Group Meeting October 9th, 2019 Selective C-F bond Functionalization in Multifluoroarenes and Trifluoromethylarens F X F F F F F X F X F F F R X F F R

C-F Selective Functionalization PdF · Nu-F N Nu 1 Nu 3 F Nu 2 Nu 2 N Nu 1 Nu 3 F Nu 4 Nu 3 N Nu Nu 4 F Nu 2 Regioselectivity Pattern Petrov, V. Fluorinated Heterocyclic Compounds,

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

  • Xiangbo ZhaoMacmillan Group Meeting

    October 9th, 2019

    Selective C-F bond Functionalization in Multifluoroarenes and Trifluoromethylarens

    F

    X

    F

    F

    F

    F

    F

    X

    F

    X

    F F

    FR

    X

    F F

    R

  • Strategies for the Synthesis of Organofluorine Compounds

    C-F bond formation & C-F bond cleavage

    Organofluorine Compounds

    F

    F

    HN

    O

    NH

    OF F

    Cl

    Cl

    Teflubenzuron insecticide

    F F

    N

    N NN

    OH

    NN

    Fluconazole antifungal

    F

    F

    FNH2

    N

    O

    NN

    N

    CF3Januvia® (sitagliptin) antidiabetic

    N

    O S

    FF N

    N

    HIV-1 reverse Transcriptase inhibitor

    N

    F

    HN

    O

    MeMeHO

    HO Lipitor® (atorvastatin) cholesterol and triglyceraldehyde regulatorHO2C

    FF

    FF

    F

    NIr

    O

    O

    Me

    Me2

    C-F (or F-containing moiety) Bond Formation

    Selective C-F bond Activation and Functionalization

  • Content Outline

    Selective C-F bond functionalization in aromatic fluorides

    Selective C-F bond functionalization in trifluoromethylarenes

    Nucleophilic Substitution SNAr

    Photocatalytic reduction

    X

    F F

    FR

    X

    F F

    R

    SET & Photocatalysis

    Anonic or Cationic Mechanism

    F

    X

    F

    F

    F

    F

    F

    X

    F

    Defluorinative Functionalization Via Benzynes

  • F

    F

    HN

    O

    NH

    OF F

    Cl

    Cl

    Teflubenzuron insecticide

    F

    F

    FNH2

    N

    O

    NN

    N

    CF3

    Januvia® (sitagliptin) antidiabetic

    F

    F

    F

    F

    F

    NIr

    O

    O

    Me

    Me2

    An organic LED molecule

    Senaweera, S.; Weaver, J. D. Aldrichimica Acta 2016, 49, 45.

    Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.

    H

    HDG

    F+ reagent

    DG-assisted C-H Fluorination

    Catalyst

    FnR

    XF- or F+ reagent

    X = halide, BR3, SnR3Flourination of Prefunctionalized arenes

    X

    Fn

    Partially fluorinated aromatics

    n = 2-4

    Selective C-F bond Activation

    F

    X

    F

    F

    F

    F

    Commercially available

    Selective C-F bond Functionalization of Mutifluoroarenes

    Introduction of the alternative approach to partially fluorinated compounds

  • F

    Rr.d.s

    slow

    F

    RNu- Nu RNu

    fastR = EWG

    -F

    SNAr

    F > Cl > Br > I

    Reactivity Order Comparision

    SN2

    I > Br > Cl > F

    Aromatic Halides Aliphatic Halides

    CNX Pyrrole

    THF, 65 ◦C

    CNN

    X Yield

    F 100%

    Cl 70%Br 10%

    Thomas, S.; Collins, C. J.; Singaram, B. J. Org. Chem. 2001, 66, 1999.

    Petrov, V. Fluorinated Heterocyclic Compounds, New Jersey, 2009.Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.

    General Reactivity: Effects of Fluorine on Nuclephilic Substitution

    F

    F

    Very activating

    δ+Nu- F

    F

    Activating

    Nu-δ+

    F

    F

    Slightly Deactivating

    δ+Nu-

    Selective C-F Bond Functionalization in Aromatic Fluorides

    Nucleophilic substitution of aromatic fluorides (SNAr)

  • Petrov, V. Fluorinated Heterocyclic Compounds, New Jersey, 2009.Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.

    Regioselectivity Pattern

    F

    Nu1

    Nu2

    F

    F

    F

    1,4-disubstituted tetrafluorobenzene

    Nu

    Nu

    F

    F

    F

    F

    Nu2

    Nu1

    Nu1

    Nu2

    F

    F

    1,2-disubstituted tetrafluorobenzene

    Nu

    Nu

    Nu

    Nu

    Nu

    Nu

    1,2,4,5-tetrasubstituted 3,6-difluorobenzene

    Hexasubstituted benzene

    SNArNu-

    F

    F

    F

    F

    F

    F

    Perfluorobenzene

    Selective C-F Bond Functionalization in Aromatic Fluorides

    Nucleophilic substitution of hexafluorobenzene

    ◆ Perfluoro-substitution dramatically lowers the energy of the π* orbitals, making the aryl ring more susceptible to nucleophilic attack

    ◆ After monosubstitution, the second substitution occurs regioselectively at C-4 carbon, irrespective of the electronic nature of the first substituent.

  • Selective C-F Bond Functionalization in Aromatic Fluorides

    One example of nucleophilic substitution of hexafluorobenzene

    F

    F

    F

    F

    F

    F 43%(Mes)2PH, n-BuLi

    F

    P(Mes)2

    P(Mes)2

    F

    F

    F

    PhLi, THF

    54%

    Ph

    P(Mes)2

    P(Mes)2

    Ph

    F

    F

    Sasaki, S.; Tanabe, Y.; Yoshifuji, Y. Bull. Chem. Soc. Jpn. 1999, 72, 563.

    Sun, H.; DiMagno, S. G. J. Am. Chem. Soc. 2005, 127, 2050.

    An interesting application: the preparation of anhydrous TBAF

    Bu4NF (TBAF)Anhydrous

    F

    F

    F

    F

    F

    F -35 ◦CTBACN, CH3CN

    CN

    CN

    CN

    NC

    NC

    CN65%

    +

    PhCH2Br

    PhCH2F-35 ◦C, < 5 min

    100%

  • F

    N

    F

    F

    F

    F

    Pentafluoropyridine

    62

    345

    SNAr

    Nu-F

    N

    Nu1

    Nu3

    F

    Nu2

    Nu2

    N

    Nu1

    Nu3

    F

    Nu4

    Nu3

    N

    Nu1

    Nu4

    F

    Nu2

    Regioselectivity Pattern

    Petrov, V. Fluorinated Heterocyclic Compounds, New Jersey, 2009.Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.

    Selective C-F Bond Functionalization in Aromatic Fluorides

    Nucleophilic substitution of pentafluoropyridine

    CF3

    F

    F

    F

    F

    F

    F

    F

    N

    F

    F

    F

    F

    < <F

    F

    F

    F

    F

    Reactivity

    ◆ Nucleophilic substitution occurs regioselectively stepwise

    ◆ First carbon-4, then carbon-2, finally carbon-3.

    ◆ Three kinds of different nucleophiles can be introduced stepwise.

    most reactiveleast reactive

    mediun reactive

  • Petrov, V. Fluorinated Heterocyclic Compounds, New Jersey, 2009.

    Selective C-F Bond Functionalization in Aromatic Fluorides

    Some applications of nucleophilic substitution of pentafluoropyridine

    F

    N

    F

    F

    F

    F

    a. PhC=NHNH2, Na2CO3

    NF

    F

    F

    NHN

    Ph

    b. LDA, THF, rt

    NF

    F

    NMe

    NHN

    Ph

    91%

    PhCH2NHMe, THF, 150◦CMicrowave

    54%

    Ph

    CH3NHCH2CH2NHCH3

    NaHCO3, MeCN, reflux97%

    NF

    F

    F

    NN

    MeONa, MeOH reflux, 2 days

    NMeO

    F

    F

    NN

    Et2NLi, THFreflux

    76%

    NMeO

    F

    N

    NN

    64%

    PhSO2Na, DMF 140 ◦C, 22 h

    F

    N

    S

    F

    F

    F

    PhO

    O

    89%

    CH3NHCH2CH2NHCH3NaHCO3, MeCN, reflux

    N

    N

    S

    F

    F

    N

    PhO

    O

    67%

    a. PhC=NHNH2, Na2CO3b. LDA, THF, rt

    N

    S

    F

    F

    OO

    NH

    N

    85%

    Ph

  • Petrov, V. Fluorinated Heterocyclic Compounds, New Jersey, 2009.

    Selective C-F Bond Functionalization in Aromatic Fluorides

    Nucleophilic substitution of perfluoroheteroaromatic systems

    F

    N

    F

    F2

    34F

    F

    F

    F

    Perfluoroquinoline

    F

    F

    N

    F

    1

    6

    F

    F

    F

    F

    Perfluoroisoquinoline

    N

    N

    F

    F

    F

    F2

    4

    Perfluoropyrimidine

    F

    NN

    F

    F

    F 4

    Perfluoropyridazine

    F

    N

    N

    F

    F

    F

    Perfluoropyrazine

    N

    N

    N

    F

    F F

    Perfluoro-1,3,5-triazine

    ◆ Favored sites of attack for SNAr occurs at sites that are para or ortho to the ring nitrogen

    Difficult to get mono only (highly activated)

  • Yudin, A. K.; Zheng, J.; Lough, A. Org. Lett. 2000, 2, 41Masson, E.; Schlosser, M. Eur. J. Org. Chem. 2005, 4401

    Selective C-F Bond Functionalization in Aromatic Fluorides

    Defluorinative functionalization via benzynes

    X

    H

    R RLi

    a

    X = Br, I c

    ba. Lithium-halogen exchange

    b. Nucleophilic replacement

    c. Deprotonation

    F

    H

    R RLi

    a

    c

    b

    Lithium halogen exchange favoured Ortho-hydrogen deprotonation favoured

    ClF

    F

    F

    FF

    n-BuLi, Hexane-15 ºC

    F

    F

    F

    F

    S

    OMeF

    F

    F

    FOMe63%

    n-BuLiF

    Li(THF)nTHF

    Benzyne

    F

    H

    R R R-LiF ◆ Elimination of LiX follows the

    order of LiBr < LiCl < LiF.

  • Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.Laev, S. S.; Shteingarts, V. D. Tetrahedron Lett. 1997, 38, 3765.

    Selective C-F bond functionalization in Aromatic Fluorides

    C-F bond reduction of aromatic fluorides via low-valent metals

    F

    F

    F

    F

    F

    F

    HexafluorobenzeneE1/2 Ar0/-1= -2.81 V

    BDE(C-F)= 145 kcal/mol

    F

    N

    F

    F

    F

    F

    E1/2 Ar0/-1= -2.12 VPentafluoropyridine

    BDE(C-F)= 127 kcal/mol

    ◆ Li, Na, K in liquid ammonia ◆ Lithium naphthalene ◆ Activated Mg powder ◆ CeCl3, LiAlH4

    Hydrodefluorination almost no selectivity

    ◆ Large excess of reductants◆ Limited substrate scope

    FR

    FF

    F

    F

    R = CN, CH2OH

    R

    H

    F

    F

    F

    Zn (6.0 eq) aq. NH3

    F

    > 70% yield

    rt, 10 h

    FR

    FF

    F

    F

    R = NHAc, CO2H

    R

    FF

    F

    F

    H

    > 70% yield

    Zn (6.0 eq) aq. NH3

    rt, 10 h

  • Photocatalytic C-F reduction and Functionalization in Aromatic Fluorides

    Introduction of Weaver group’s work on photocatalytic C-F functionalization

    F

    NF

    F

    F

    H

    HR2HN

    H2C=NHR2Hydrodefluorination

    R

    C-F alkylation

    F

    NF

    F

    F

    R

    H

    C-F arylation

    R

    H F

    NF

    F

    F

    R

    F

    NF

    F

    F

    R

    R

    C-F alkenylation

    Ir(ppy)3

    Ir*(ppy)3

    hv

    Ir(ppy)3

    F

    N

    F

    F

    F

    F

    F

    N

    F

    F

    F

    F

    F-F

    NF

    F

    F

    Key radical Intermediate

    HR2N

    HR2HN

    Ir

    N

    N

    E1/2 [Ir(III)/(II)]= -2.19 Vfac-Ir(ppy)3

    Senaweera, S.; Weaver, J. D. Aldrichimica Acta 2016, 49, 45.

    Jimmie Weaver

    ◆ Photocatalysis can make perfluoroaryl radical catalytically and in a controlled manner in situ.

    ◆ The outer sphere nature of the electron transfer might avoid the problematic catalyst–fluoride intermediates and lead to higher TONs.

  • Photocatalytic C-F reduction and Functionalization in Aromatic Fluorides

    Weaver group’s work: Photocatalytic hydrodefluororination

    Fn

    RIr(ppy)3 (0.5 mol%)

    DIPEA, MeCN, 45 ºCBlue LEDs, 24h

    Fn-1

    R

    H

    F

    N

    H

    F

    F

    F

    93%

    FH

    FF

    F

    F

    90%

    FH

    CO2MeF

    F

    F

    75%

    FH

    CF3

    F

    F

    F

    95%

    HCN

    NH2

    F

    F

    F

    82%

    H

    N

    NHAc

    F

    F

    F97%

    F

    N

    NMeAc

    F

    F

    H100%

    H

    N

    F

    F

    F

    F

    78%

    Cl

    N

    F

    F

    F

    F

    3-chlorotetrafluoropyridine

    from

    FH

    CO2MeF

    F

    H

    FH

    CF3

    F

    F

    H

    86% 73%

    FNHAc

    CF3

    F

    H

    H

    74%

    HH

    FF

    F F F F

    F F

    85%

    Senaweera, S. M.; Singh, A.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 3002.

  • Photocatalytic C-F reduction and Functionalization in Aromatic Fluorides

    Weaver group’s work: Photocatalytic Alkylation of Fluoroarenes

    F

    NF

    F

    NHEtO2C

    O

    H

    OCO2Me

    CO2Me61%

    F

    F

    F

    OMe

    O

    H

    60%CO2Me

    F

    NF

    F

    F

    Me

    HO MeH

    52%rr > 20:1

    F

    NF

    F

    F

    Cl H

    76%rr > 20:1

    Cl

    NF

    F

    F

    F

    SNAr Photocatalysis

    $ 1.84/g

    Cl

    NF

    F

    F

    MeO2C

    DIPEAthen, HCl

    O

    OO

    O

    FnIr(ppy)3 (0.25 mol%)

    DIPEA (1.2 eq), MeCN, 45 ºCargon, Blue LEDs

    Fn-1

    alkylAlkene (6.0 eq)

    Singh, A.; Kubik, J. J.; Weaver, J. D. Chem. Sci. 2015, 6, 7206

    Photocatalytic Reductive Alkylation

    Ir(ppy)3

    DIPEA, MeCN

    OCO2Me

    CO2Me

    Photocatalytic Hydrodefluorination

    NH

    F

    F

    MeO2C HO

    CO2Me

    CO2MeIr(ppy)3DIPEA, MeCN

    45%Overall yield

  • Photocatalytic C-F reduction and Functionalization in Aromatic Fluorides

    Weaver group’s work: Photocatalytic Arylation of Fluoroarenes

    F

    NF

    F

    F

    OMe

    MeO OMe

    70%

    F

    NF

    F

    F

    NMe

    50%

    F

    NF

    F

    F

    CN

    58%

    F

    NF

    F

    F

    N

    NHAc

    70%

    F

    NF

    F

    F

    NN

    NHMe

    57%

    F

    NF

    F

    F

    Key radical Intermediate

    H

    RF

    NF

    F

    F

    RH F

    NF

    F

    F

    R

    C-F arylation product

    eH+

    Oxidativere-aromatization

    Fn

    Ir(ppy)3 (0.25 mol%)

    DIPEA (1.2 eq), MeCN, 0 ºCargon, Blue LEDs

    Fn-1

    Ar+ Ar-H KHCO3 (1.2 eq)

    Senaweera, S.; Weaver, J. D. J. Am. Chem. Soc. 2016, 138, 2520.

  • Photocatalytic C-F reduction and Functionalization in Aromatic Fluorides

    Weaver group’s work: Photocatalytic Alkenylation and Energy Transfer

    F

    NF

    F

    F

    Key radical Intermediate

    F

    NF

    F

    F

    R

    R

    F

    NF

    F

    F

    Electron-transfer product

    HR2HN

    H2C=NHR2

    R

    F

    NF

    F

    F

    Energy-transfer product

    RIr Pcat.

    F

    NF

    F

    F

    i-Pr

    74%Z/E = 25:1

    F

    NF

    F

    F

    61%Z/E = 25:1

    OH

    F

    NF

    F

    F

    OH

    Me

    51%Z/E = 25:1

    Ir

    N

    N

    Ir(ppy)3

    F

    NF

    F

    F

    i-Pr

    66%E/Z = 2:1

    F

    NF

    F

    F 71%E/Z = 7:1

    HO

    F

    NF

    F

    F

    OH

    Me

    84%E/Z = 2.6:1

    Ir

    N

    N

    Ir(t-Buppy)3

    Singh, A.; Fennell, C. J.; Weaver, J. D. Chem. Sci. 2016, 7, 6796

  • Photocatalytic C-F reduction and Functionalization in Aromatic Fluorides

    Weaver group’s work: Photocatalytic Alkenylation and Energy Transfer

    F

    NF

    F

    F

    F

    +t-Bu

    Ir

    N

    N

    F

    F

    F

    photocatalyst with smaller steric volume

    F

    NF

    F

    F

    t-Bu

    85%Z/E = 24:1

    F

    NF

    F

    F

    t-Bu

    77%E/Z = 25:1

    Ir

    N

    N

    photocatalyst with larger steric volume

    2 5

    Ir

    N

    NIr

    N

    NF

    3

    F

    1

    Ir

    N

    NCF3

    F3C

    CF3

    4

    ◆ The plot of log(Z:E) as a function of the radius of the catalyst shows a linear correlation

    ◆ The plot of Log(Z:E) vs the photocatalyst’s emissive energy revealed no correlation

    Singh, A.; Fennell, C. J.; Weaver, J. D. Chem. Sci. 2016, 7, 6796

  • X

    F F

    FR

    X

    F F

    R

    SET & Photocatalysis

    Anonic or Cationic Mechanism

    Content Outline

    Selective C-F bond functionalization in aromatic fluorides

    F

    X

    F

    F

    F

    F

    F

    X

    F

    Nucleophilic Substitution SNAr

    Defluorinative Functionalization Via Benzynes

    Photocatalytic reduction

    Selective C-F bond functionalization in trifluoromethylarenes

  • N

    O S

    FF N

    N

    HIV-1 reverse Transcriptase inhibitor

    F FNH

    NNN

    NH2O

    MeMe

    O

    HN

    Grownth hormone secretagogue

    F F

    H

    F

    NN

    NN

    Me

    NR2B antagoinst

    F F

    RAr

    ⍺,⍺-difluorobenzylic structure

    ◆ Enhanced bioavailability, metabolic stability.◆ Serving as bioisosteres of aryl ethers ◆ Lipophilic hydrogen bond donors (ArCF2H).

    F F

    FAr

    Trifluoromethylareneswidely available

    Single C-F bond Cleavage

    PhF2C F

    PhFHC F

    PhH2C F

    BDE (kcal/mol)115

    99

    106

    F F

    FAr

    SET

    Metal, e-, UV light

    F F

    RAr

    large excess of reductantspoor selectivity, limited scope

    Selective C-F bond functionalization of Trifluoromethylarenes

    Inroduction of the transformation challenge from ArCF3 to ArCF2R

    Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.

  • F F

    SiF

    Ph Ph

    MeO

    81%

    F F

    SiF

    Ph Ph

    Me

    78%

    F F

    SiF

    Ph PhF3C

    26%

    F F

    Cl

    SiF

    Ph PhF3C

    50%

    F F

    O

    SiF

    Ph Ph

    OOMe

    OMe

    54%

    F F

    FR1

    SiH

    Ph Ph

    Nucleophile (5.0 eq) Ph3CBF4 (1.2 eq)CH2Cl2 / (CF3)2CHOH (1:1), 0○C, 10 min

    F F

    NuR1

    SiF

    Ph PhEasily Activatable with a base

    Nu = allylsilane, Cl-, Carboxylic acid.

    F F

    F

    SiH

    Ph Ph

    Ph3CBF4

    Hydride abstraction

    F F

    F

    SiPh

    PhBF4-

    F

    F

    SiPh Ph

    BF4-

    F

    +

    SiMe3F F

    SiF

    Ph Ph C-F bond Cleavage

    Ph3CH

    Me3SiBF4

    Yoshida, S.; Shimomori, K.; Kim, Y.; Hosoya, T. Angew. Chem., Int. Ed. 2016, 55,10406.

    Selective C-F bond functionalization of Trifluoromethylarenes

    Yoshida group’s work: Ortho-silylium cation mediated C-F bond cleavage of trifluoromethylarenes

  • NMe

    FF

    O

    CN

    58%

    NMe

    FF

    O

    CN

    MeO

    80%

    NMe

    FF

    O

    CN

    t-Bu

    82%

    NMe

    FF

    O

    CN

    Cl

    59%

    F

    NMe

    FF

    O

    CO2Et

    35%

    NMe

    FF

    O

    CN

    53%

    NMe

    FF

    O

    SO2N(Et)2

    57%

    NMe

    FF

    O

    N

    CO2Et

    34% (16%b)

    F

    Me

    b: yield of the didefluorinated product

    Photocatalytic C-F bond Functionalization in Trifluoromethylarenes

    König group’s work: Meriging photocatalysis with Lewis acid Activation

    Chen, K.; Berg, N.; Gschwind, R.; König, B. J. Am. Chem. Soc. 2017, 139, 18444.

    N

    R2O

    R1 + F

    F F

    fac-Ir(ppy)3 (1.0 mol%)TMP (2.0 eq) HBpin (3.0 eq)

    DCE, 20 ºC, N2, 455 nm, 24 hAr R1

    N

    R2

    ArFF

    O

    HN

    Me

    Me

    Me

    MeBPin

    Borenium cation

  • Photocatalytic C-F bond Functionalization in Trifluoromethylarenes

    König group’s work: Meriging photocatalysis with Lewis acid Activation

    Chen, K.; Berg, N.; Gschwind, R.; König, B. J. Am. Chem. Soc. 2017, 139, 18444.

    NH

    Me

    Me

    Me

    Me

    TMP

    Ir(III)* Ir(II)

    Ir(III)

    NH

    Me

    Me

    Me

    Me

    A

    hv

    CF3

    NC

    SETReduction

    CF3

    NC

    Lewis Acid ActivationCF2

    NC

    TMP-Bpin

    TMP + F-Bpin

    NMe

    O

    NMe

    FF

    O

    CN

    NH2

    Me

    Me

    Me

    Me

    HN

    Me

    Me

    Me

    MeBPin

    Borenium cationC

    HBpin

    TBP-Bpin

    H2

    Ir(III)* or A

    NMe

    FF

    O

    CN

    TMP

    CNMe

    FF

    O

    CN

  • Photocatalytic C-F bond Functionalization in Trifluoromethylarenes

    Jui group’s work: Photocatalytic defluoroalkylation and hydrodefluorination of trifluoromethylarenes

    Ph

    Ph

    N O

    E1/2 * = -1.70 Vttriplet = 480 ℳs

    PC

    F F

    FR

    PC (3 mol%)PhSH (10 mol%) DMSO, 100 ○C blue LEDs

    +R1

    R2 KO H

    O+

    F F

    R1

    R2

    R

    Unactivated Defluoroalylation

    F F

    FR

    PC (2 mol%)

    DMSO, 50 ○C blue LEDs, 24 h

    CsO H

    OF F

    HR

    Unactivated Hydrodefluorination

    +

    F F

    FR

    PTH (10 mol%)CySH (10 mol%)

    5% H2O/DMSO23 ○C, blue LED, 24 h

    +R1

    R2 NaHO H

    O+

    F F

    R1

    R2

    R

    N

    S

    Ph PTH

    E1/2 * = -2.10 Vtsinglet = 3 ns

    R = EWG, eg., -CF3, -CN, -SO2NH2. Limited Scope

    SH

    = CySH

    Activated

    Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2018, 140, 163.

    Vogt, D. B.; Seath, C. P.; Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2019, 141, 13203.

  • Photocatalytic C-F bond Functionalization in Trifluoromethylarenes

    Jui group’s work: Photocatalytic defluoroalkylation and hydrodefluorination of trifluoromethylarenes

    P* P

    P

    hv

    CF3

    SET

    Ar-CF3 Substrate

    PhSH

    PhS

    HAT

    MO H

    OCO2, M+

    SETHAT

    Defluoroalkylation

    F F

    R

    H

    Direct HAT

    F F

    H

    Hydrodefluorination

    F F

    F F-

    Mesolytic Cleavage

    F

    F

    Difluorobenzylic radical

    R

    F F

    R

    Radical anion Alkyl radical

    Vogt, D. B.; Seath, C. P.; Wang, H.; Jui, N. T. J. Am. Chem. Soc. 2019, 141, 13203.

  • SET Mediated Selective Defluoroallylation Trifluoromethylarenes

    Bandar group’s work: Fluoride-Induced direct ArCF3 coupling with allylsilane

    F3C CF3+ SiMe3

    1.0 eq 2.0 eq

    CsF (10 mol%)18-crown-6 (30 mol%)

    TEMPO (1.2 eq)DME, 80 ◦C, N2, 15 h

    ON

    MeMe

    MeMe

    23% yield

    ◆ Traping experiment suggests ArCF3-enabled allyl radical formation◆ No adduct observed in absence of ArCF3, or if PhCF3 used

    Ar

    F F

    F

    Activated1.0 eq

    +R

    SiMe3

    CsF (10 mol%)18-crown-6 (30 mol%)

    2.0 ~ 4.0 eqDME, 80 ◦C, N2, 15 h Ar

    F F R

    monoselective allylation

    F F

    OMe

    F3C

    85%

    F F

    Ph

    NC

    79%

    F F

    NSN

    54%

    F F

    N OBn

    Me

    58%

    F F

    NMePh

    F3C

    43%

  • SET Mediated Selective Defluoroallylation Trifluoromethylarenes

    Bandar group’s work: Fluoride-Induced direct ArCF3 coupling with allylsilane

    Ar

    F F

    F

    Activated1.0 eq

    +R

    SiMe3

    CsF (10 mol%)18-crown-6 (30 mol%)

    2.0 ~ 4.0 eqDME, 80 ◦C, N2, 15 h Ar

    F F R

    monoselective allylation

    F F

    OMe

    F3C

    85%

    F F

    Ph

    NC

    79%

    F F

    NSN

    54%

    F F

    N OBn

    Me

    58%

    F F

    NMePh

    F3C

    43%

    ArCF3 SiMe3Fnn-

    Fluoride-induced SET reductions of ArCF3

    SET and mesolytic Cleavage

    - nF-- TMSF

    Ar

    F

    F+

    Ar

    F F

    Possible intermediates(discrete or formal species)

    ◆ Reactivity correlates with ArCF3 reduction potential◆ No yield decrease in strict absence of light

  • Selective C-F bond functionalization in trifluoromethylarenes

    X

    F F

    FR

    X

    F F

    R

    F

    X

    F

    F

    F

    F

    F

    X

    F

    Summary and Outlook

    Selective C-F bond functionalization in aromatic fluorides

    Photocatalytic reduction

    Photocatalytic reduction

    Transition-Metal Catalysis

    Chem. Rev. 2015, 115, 931Chem. Rev. 2009, 109, 2119

    J. Fluorine Chem. 2015, 179, 14