55

(C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2
Page 2: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2
Page 3: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R1:

CO

NIC

SE

CT

ION

SD

ate

:/

/D

ay:

Page:

01

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(1)

Para

bola

Defi

nit

ion

1A

para

bola

isth

ese

tof

all

poin

tsin

the

pla

ne

equ

idis

tan

tfr

om

afi

xed

poin

tF

(call

edth

efo

cus)

an

da

fixe

dli

neD

(call

edth

edir

ectr

ix)

inth

esa

me

pla

ne.

(1)

Th

evert

ex

of

the

para

bola

isth

eori

gin

(0,0

):

(A)x2

=4ay,

wh

erea>

0•

Ver

tex:V

(0,0

)•

Itop

ens

upw

ard

s•

Its

axis

:th

ey-a

xis

•F

ocu

s:isF

(0,a

)•

Dir

ectr

ix:y

=−a

(B)x2

=−

4ay,

wh

erea>

0•

Ver

tex:V

(0,0

)•

Itop

ens

dow

nw

ard

s•

Its

axis

:y-a

xis

•F

ocu

s:F

(0,−a)

•D

irec

trix

:y

=a

(C)y2

=4ax

,w

her

ea>

0•

Ver

tex:V

(0,0

)•

Itop

ens

toth

eri

ght

•It

sax

is:

the

x-a

xis

•F

ocu

sisF

(a,0

)•

Dir

ectr

ix:x

=−a

(D)y2

=−

4ax

,w

her

ea>

0•

Ver

tex:V

(0,0

)•

Itop

ens

toth

ele

ft•

Its

axis

:x-a

xis

•F

ocu

s:isF

(−a,0

)•

Dir

ectr

ix:x

=a

Exam

ple

1F

ind

the

focu

san

dth

edir

ectr

ixof

the

para

bolax2

=4y

,an

dsk

etch

its

graph.

Exam

ple

2F

ind

the

focu

san

dth

edir

ectr

ixof

the

para

bolay2

=−

8x,

an

dsk

etch

its

graph.

Exam

ple

3F

ind

the

equ

ati

on

of

the

para

bola

wit

hfo

cus

(3,0

)an

ddi-

rect

rixx

=−

3.T

hen

,sk

etch

the

graph.

Page 4: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R1:

CO

NIC

SE

CT

ION

SD

ate

:/

/D

ay:

Page:

02

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(2)

Th

egen

era

lfo

rmu

laof

ap

ara

bola

:

(A)

(x−h

)2=

4a(y−k),

wh

erea>

0•

Ver

tex:V

(h,k

)•

Itop

ens

upw

ard

s•

Its

axis

:p

aral

lel

toth

ey-a

xis

•F

ocu

s:F

(h,k

+a)

•D

irec

trix

:y

=k−a

(B)

(x−h

)2=−

4a(y−k),

wh

ere

a>

0 •V

erte

x:V

(h,k

)•

Its

axis

:p

ara

llel

toth

ey-a

xis

•It

open

sd

ownw

ard

s•

Focu

s:F

(h,k−a)

•D

irec

trix

:y

=k

+a

(C)

(y−k)2

=4a

(x−h

),w

her

ea>

0•

Ver

tex:V

(h,k

)•

Its

axis

:p

aral

lel

toth

ex-a

xis

•It

open

sto

the

righ

t•

Focu

s:F

(h+a,k

)•

Dir

ectr

ix:x

=h−a

(D)

(y−k)2

=−

4a(x−h

),w

her

ea>

0•

Ver

tex:V

(h,k

)•

Itop

ens

toth

ele

ft•

Focu

s:F

(h−a,k

)•

Dir

ectr

ix:x

=h

+a

•It

saxis

:p

ara

llel

toth

ex-a

xis

Exam

ple

4F

ind

the

focu

san

dth

edir

ectr

ixof

the

para

bola

(x+

1)2

=−

4(y−

1)

,an

dsk

etch

its

graph.

Exam

ple

5F

ind

the

equ

ati

on

of

the

para

bola

wit

hve

rtex

(2,1

)an

dfo

cusF

(2,3

).T

hen

,sk

etch

the

graph.

Exam

ple

6F

ind

the

focu

san

dth

edir

ectr

ixof

the

para

bola

2y2−

4y+

8x

+10

=0

,an

dsk

etch

its

graph.

Page 5: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R1:

CO

NIC

SE

CT

ION

SD

ate

:/

/D

ay:

Page:

03

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(2)

Ell

ipse

Defi

nit

ion

2A

nel

lipse

isth

ese

tof

all

poin

tsin

the

pla

ne

for

whic

hth

esu

mof

the

dis

tan

ces

totw

ofi

xed

poin

tsis

con

stan

t.

(1)

Th

ecente

rof

the

ell

ipse

isth

eori

gin

(0,0

):

(A)x2

a2

+y2

b2

=1

wh

ere

a>b

c=√ a2

−b2

•C

ente

r:P

(0,0

)•

Foci

:F1(−c,

0),F2(c,0

).•

Ver

tice

s:V1(−a,0

),V2(a,0

).•

Ma

jor

axis

:th

ex-a

xis

,le

ngt

his

2a.

•M

inor

axis

:y-a

xis

,le

ngt

his

2b.

•M

inor

axis

end

poi

nts

:W

1(0,b

),W

2(0,−b)

.

(B)x2

a2

+y2

b2

=1

wh

ere

a<b

c=√ b2

−a2

•C

ente

r:P

(0,0

)•

Foci

:F1(0,c

),F2(0,−c)

•V

erti

ces:V1(0,b

),V2(0,−b)

•M

ajo

rax

is:

y-a

xis

,le

ngt

his

2b.

•M

inor

axis

:x-a

xis

,le

ngt

his

2a.

•M

inor

axis

end

poi

nts

:W

1(−a,0

),W

2(a,0

).

Exam

ple

7Id

enti

fyth

efe

atu

res

of

the

elli

pse

an

dsk

etch

its

graph.

(a)

9x2

+25y2

=22

5(b

)16x2

+9y2

=14

4

Exam

ple

8F

ind

an

equ

ati

on

of

an

elli

pse

ifth

ece

nte

ris

at

the

ori

gin

an

d

(a)

Majo

raxi

son

x-axi

sM

ajo

raxi

sle

ngt

h=

14

Min

or

axi

sle

ngt

h=

10

(b)

Majo

raxi

son

y-axi

sM

inor

axi

sle

ngt

h=

14

Dis

tan

ceof

foci

fro

mce

nte

r=

10√

2

Page 6: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R1:

CO

NIC

SE

CT

ION

SD

ate

:/

/D

ay:

Page:

04

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(2)

Th

egen

era

lfo

rmu

laof

the

ell

ipse

:

(A)

(x−h)2

a2

+(y−k)2

b2

=1

wh

ere

a>b

,c

=√a2−b2

•C

ente

r:P

(h,k

)•

Foci

:F1(h−c,k),F2(h

+c,k)

•V

erti

ces:V1(h−a,k

),V2(h

+a,k

)•

Ma

jor

axis

:p

aral

lel

toth

ex-a

xis

,le

ngt

his

2a

•M

inor

axis

:p

aral

lel

toth

ey-a

xis

,le

ngt

his

2b•

Min

orax

isen

dp

oints

:W

1(h,k

+b)

,W

2(h,k−b)

(B)

(x−h)2

a2

+(y−k)2

b2

=1

wh

ere

a<b

,c

=√b2−a2

•C

ente

r:P

(h,k

)•

Foci

:F1(h,k

+c)

,F2(h,k−c)

•V

erti

ces:V1(h,k

+b)

,V2(h,k−b)

•M

ajo

rax

is:

par

alle

lto

the

y-a

xis

,le

ngt

his

2b

•M

inor

axis

:p

aral

lel

toth

ex-a

xis

,le

ngt

his

2a•

Min

orax

isen

dp

oints

:W

1(h−a,k

)an

dW

2(h

+a,k

)

Exam

ple

9F

ind

the

equ

ati

on

of

the

elli

pse

wit

hfo

ciat

(−3,1

),

(5,1

),

an

don

eof

its

vert

ice

is(7,1

),

an

dsk

etch

its

graph.

Exam

ple

10

Fin

dth

eeq

uati

on

of

the

elli

pse

wit

hfo

ciat

(2,5

),

(2,−

3)

,an

dth

ele

ngt

hof

its

min

or

axi

seq

uals

6,

an

dsk

etch

its

graph.

Exam

ple

11

Iden

tify

the

featu

res

of

the

elli

pse

4x2+

2y2−

8x−

8y−

20

=0,

an

dsk

etch

its

graph.

Page 7: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R1:

CO

NIC

SE

CT

ION

SD

ate

:/

/D

ay:

Page:

05

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(3)

Hyp

erb

ola

Defi

nit

ion

3A

hyp

erbo

lais

the

set

of

all

poin

tsin

the

pla

ne

for

whic

hth

ediff

eren

ceof

the

dis

tan

ces

betw

een

two

fixe

dpo

ints

isco

nst

an

t.

(1)

Th

ecente

rof

the

hyp

erb

ola

isth

eori

gin

(0,0

):

c=√ a2

+b2

Th

eli

ne

segm

ent

bet

wee

nV1

andV2

isth

etr

an

sver

seaxis

.

(A)x2

a2−

y2

b2

=1

•C

ente

r:P

(0,0

)•

Foci

:F1(−c,

0),F2(c,0

)•

Ver

tice

s:V1(−a,0

),V2(a,0

)•

Tra

nsv

erse

axis

:x-a

xis

,le

ngt

his

2a.

•A

sym

pto

tes:y

=±b ax

.

(B)y2

b2−

x2

a2

=1

•C

ente

r:P

(0,0

)•

Foci

:F1(0,c

),F2(0,−c)

•V

erti

ces:V1(0,b

),V2(0,−b)

•T

ran

sver

seax

is:

y-a

xis

,le

ngt

his

2b•

Asy

mp

tote

s:y

=±b ax

Exam

ple

12

Iden

tify

the

featu

res

of

the

hyp

erbo

laan

dsk

etch

its

graph.

(a)

4x2−

16y2

=64

(b)

4y2−

9x2

=36

Exam

ple

13

Fin

dan

equ

ati

on

of

ahyp

erbo

laif

its

vert

ices

areV1(3,0

)an

dV2(−

3,0)

an

don

eof

its

foci

(4,0

).

Page 8: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R1:

CO

NIC

SE

CT

ION

SD

ate

:/

/D

ay:

Page:

06

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(2)

Th

egen

era

lfo

rmu

laof

the

hyp

erb

ola

:

c=√ a2

+b2

(A)

(x−h)2

a2−

(y−k)2

b2

=1

•C

ente

r:P

(h,k

)•

Foci

:F1(h−c,k),F2(h

+c,k)

•V

erti

ces:V1(h−a,k

),V2(h

+a,k

)•

Tra

nsv

erse

axis

:p

aral

lel

tox-a

xis

,le

ngt

his

2a

•A

sym

pto

tes:

(y−k)

=±b a(x−h

)

(B)

(y−k)2

b2−

(x−h)2

a2

=1

•C

ente

r:P

(h,k

)•

Foci

:F1(h,k

+c)

,F2(h,k−c)

•V

erti

ces:V1(h,k

+b)

,V2(h,k−b)

•T

ran

sver

seax

is:

par

alle

lto

y-a

xis

,le

ngt

his

2b

•A

sym

pto

tes:

(y−k)

=±b a(x−h

)

Exam

ple

14

Fin

dth

eeq

uati

on

of

the

hyp

erbo

law

ith

foci

at

(−2,2

),

(6,2

)an

don

eof

its

vert

ices

is(5,2

),

an

dsk

etch

its

graph.

Exam

ple

15

Fin

dth

eeq

uati

on

of

the

hyp

erbo

law

ith

foci

at

(−1,−

6)

,(−

1,4

)an

dth

ele

ngt

hof

its

tran

sver

seaxi

sis

8,

an

dsk

etch

its

graph.

Exam

ple

16

Iden

tify

the

featu

res

of

the

hyp

erbo

la2y

2−

4x2−

4y−

8x−

34

=0,

an

dsk

etch

its

graph.

Page 9: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R1:

CO

NIC

SE

CT

ION

SD

ate

:/

/D

ay:

Page:

07

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Hom

ew

ork

(1):

1.F

ind

the

focu

san

dth

edir

ectr

ixof

the

par

ab

ola

(x−

1)2

=8(y

+1),

and

sket

chit

sgr

aph

.

2.F

ind

the

equ

atio

nof

the

par

abol

aw

ith

vert

ex(−

4,2)

an

dfo

cus

(−7 2,2

).T

hen

,sk

etch

the

grap

h.

3.F

ind

the

equ

atio

nof

the

par

abol

aw

ith

focu

s(3,6

)an

dd

irec

trix

y=

2.T

hen

,sk

etch

the

grap

h.

4.F

ind

aneq

uat

ion

ofan

elli

pse

ifth

ece

nte

ris

at

the

ori

gin

an

dm

ajo

rax

isis

onx-a

xis

and

its

len

gth

equ

als

8an

dm

inor

axis

len

gth

equ

als

6.

5.F

ind

the

equ

atio

nof

the

elli

pse

wit

hfo

ciat

(10,−

2),

(4,−

2),

an

don

eof

its

vert

ices

is(1

2,−

2),

then

sket

chit

sgr

aph

.

6.

Fin

dan

equ

ati

on

of

ahyp

erb

ola

ifit

sve

rtic

esare

(0,−

2)

an

d(0,2

)an

don

eof

its

foci

(0,√

13).

7.

Fin

dth

eeq

uati

on

of

the

hyp

erb

ola

wit

hfo

ciat

(4,−

2),

(10,−

2)

and

on

eof

its

vert

ices

is(8,−

2),

an

dsk

etch

its

gra

ph

.

8.

Fin

dth

eel

emen

tsof

the

con

icse

ctio

nx2

+5y2

+6x−

40y

+84

=0,

an

dsk

etch

its

gra

ph

.

9.

Fin

dth

eel

emen

tsof

the

con

icse

ctio

nx2

+2y

+2x

=2,

an

dsk

etch

its

gra

ph

.

10.

Fin

dth

eel

emen

tsof

the

con

icse

ctio

ny2−

5x2

+6y−

40x−

76

=0,

an

dsk

etch

its

gra

ph

.

Page 10: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R2:

Matr

ices

an

dD

ete

rmin

ants

Date

:/

/D

ay:

Page:

08

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(1)

Matr

ices

Defi

nit

ion

4A

matr

ixA

of

ord

erm×n

isa

set

of

real

nu

mbe

rsarr

an

ged

ina

rect

an

gula

rarr

ay

ofm

row

san

dn

colu

mn

s.

A=

a11

a12···

a1n

a21

a22···

a2n

. . .. . .

. ..

. . .am

1am

2···amn

N

ote

s:

1.aij

rep

rese

nts

the

elem

ent

ofth

em

atri

xA

that

lies

inro

wi

an

dco

lum

nj.

2.T

he

mat

rixA

can

also

be

wri

tten

asA

=(aij

) m×n.

3.If

the

nu

mb

erof

row

seq

ual

sth

enu

mb

erof

colu

mn

s(m

=n

),th

enA

isca

lled

asq

uar

em

atri

xof

ord

ern

.4.

Ina

squ

are

mat

rixA

=(aij

),

the

set

ofel

emen

tsof

the

form

aii

isca

lled

the

dia

gon

alof

the

mat

rix.

Exam

ple

17

Fin

dth

eord

erof

each

matr

ix,

then

fin

dth

eel

emen

ts:

1.

A=

( 2−

41

0

) ,a11

an

da22

2.

A=

( 13

52

10

) ,a12,a21

an

da23

Exam

ple

18

Fin

dth

edia

gon

al

of

the

squ

are

matr

ix.

1.

A=

( 2−

41

0

)

2.

A=

2−

73

10

9−

16

8

Sp

ecia

lty

pes

of

matr

ices:

1.

Row

vecto

r:

Aro

wve

ctor

of

ord

ern

isa

matr

ixof

ord

er1×n

,an

dit

isw

ritt

enas

(a1a2...an)

Exam

ple

:(2

70−

19)

isa

row

vect

or

of

ord

er5.

2.

Colu

mn

vecto

r:

Aco

lum

nve

ctor

of

ord

ern

isa

matr

ixof

ord

er

1,

an

dit

isw

ritt

enas

A=

a1

a2 . . . an

E

xam

ple

:

1 7 3

isa

colu

mn

vect

or

of

ord

er3.

3.

Nu

llm

atr

ix:

Th

em

atr

ix(aij

) m×n

of

ord

erm×n

isca

lled

anu

llm

atr

ixifaij

=0

for

alli

an

dj,

an

dit

isd

enote

dby

0.

A=

00···

00

0···

0. . .

. . .. .

.. . .

00···

0 E

xam

ple

:

( 00

00

00) is

anu

llm

atr

ixof

ord

er2×

3.

4.

Up

per

tria

ngu

lar

matr

ix:

Th

esq

uare

matr

ixA

=(aij

)of

ord

ern

isca

lled

an

up

per

tria

ngu

lar

matr

ixifaij

=0

for

alli>j,

an

dit

is

wri

tten

as

A=

a11

a12

a13···

a1n

0a22

a23···

a2n

0a32

a33···

a3n

. . .. . .

. ..

. . .0

00···ann

E

xam

ple

:

23

10−

14

00

5 isan

up

per

tria

ngula

rm

atr

ixof

ord

er3.

Page 11: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R2:

Matr

ices

an

dD

ete

rmin

ants

Date

:/

/D

ay:

Page:

09

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

5.L

ow

er

tria

ngu

lar

matr

ix:

Th

esq

uar

em

atr

ixA

=(aij

)of

ord

ern

isca

lled

alo

wer

tria

ngu

lar

mat

rix

ifaij

=0

for

alli<j

,an

dit

is

wri

tten

asA

=

a11

00···

0a21

a22

0···

0a31

a32

a33···

0. . .

. . .. .

.. . .

an1

an2

an3···ann

E

xam

ple

:

40

01−

10

23

5 isa

low

ertr

ian

gula

rm

atr

ixof

ord

er3.

6.D

iagon

al

matr

ix:

Th

esq

uar

em

atri

xA

=(aij

)of

ord

ern

isca

lled

ad

iago

nal

mat

rix

ifaij

=0

for

allij

,an

dit

isw

ritt

enas

A=

a11

00···

00

a22

0···

00

0a33···

0. . .

. . .. .

.. . .

00

0···ann

E

xam

ple

:

20

00

10

00

5

isa

dia

gon

alm

atri

xof

ord

er3.

7.Id

enti

tym

atr

ix:

Th

esq

uar

em

atri

xI n

=(aij

)of

ord

ern

isca

lled

anid

enti

tym

atri

xifaij

=0

for

alli

=j

andaij

=1

for

alli

=j,

an

dit

is

I n=

10

0···

00

10···

00

01···

0. . .

. . .. .

.. . .

00

0···

1 E

xam

ple

:

10

00

10

00

1

isan

iden

tity

mat

rix

of

ord

er3.

Matr

ixO

pera

tion

s:(1

)A

dd

itio

nan

dsu

btr

acti

on

of

matr

ices

:A

dd

itio

nor

sub

tract

ion

of

two

matr

ices

isd

efin

edif

the

two

matr

ices

hav

eth

esa

me

ord

er.

IfA

=(aij

) m×n

an

dB

=(bij

) m×n

any

two

matr

ices

of

ord

erm×n

then

1.A

+B

=(aij

+b ij) m×n.

A+

B=

a11

+b 1

1a12

+b 1

2···

a1n

+b 1n

a21

+b 2

1a22

+b 2

2···

a2n

+b 2n

. . .. . .

. ..

. . .am

1+b m

1am

2+b m

2···amn

+b m

n

2.A−B

=(aij−b ij) m×n.

A-

B=

a11−b 1

1a12−b 1

2···

a1n−b 1n

a21−b 2

1a22−b 2

2···

a2n−b 2n

. . .. . .

. ..

. . .am

1−b m

1am

2−b m

2···amn−b m

n

E

xam

ple

19

IfA

=

13

25−

46

09

2 and

B=

50

81

4−

110

11−

2

F

indA

+B

an

dA−B

.

Note

s:1.

Th

ead

dit

ion

of

matr

ices

isco

mm

uta

tive

:ifA

an

dB

any

two

matr

ices

of

the

sam

eord

erth

enA

+B

=B

+A

.2.

Th

enu

llm

atr

ixis

the

iden

tity

elem

ent

of

ad

dit

ion

:ifA

isany

matr

ixth

enA

+0

=A

.

Page 12: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R2:

Matr

ices

an

dD

ete

rmin

ants

Date

:/

/D

ay:

Page:

10

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(2)

Mu

ltip

lyin

ga

matr

ixby

asc

ala

r:IfA

=(aij

)is

am

atri

xof

ord

erm×n

andc∈R

then

cA

=(caij

).

cA

=

ca11

ca12···

ca1n

ca21

ca22···

ca2n

. . .. . .

. ..

. . .cam

1cam

2···camn

E

xam

ple

20

IfA

=

( 13

20

92) ,

fin

d3A

.

Exam

ple

21

IfA

=

( 16

−2

4) an

dB

=

( 23

08

) ,fi

nd−

2A+

3B

.

(3)

Mu

ltip

lyin

ga

row

vecto

rby

acolu

mn

vecto

r:

IfA

=(a

1a2...an)

isa

row

vect

orof

ord

ern

an

dB

=

b 1 b 2 . . . b n

is

aco

lum

nve

ctor

ofor

dern

then

AB

=(a

1a2...an)B

=

b 1 b 2 . . . b n

=

a1b 1

+a2b 2

+...+

anb n

Exam

ple

22

IfA

=(2

14)

an

dB

=

8 −3 5

,fin

dAB

Exam

ple

23

IfA

=(2

14−

6)an

dB

=

1 3 −4 7

,fin

dAB

(4)

Mu

ltip

licati

on

of

matr

ices:

1.

IfA

an

dB

any

two

matr

ices

then

AB

isd

efin

edif

the

nu

mb

erof

colu

mn

sofA

equ

als

the

nu

mb

erof

row

sofB

.

2.

IfA

=(aij

) m×n

an

dB

=(bij

) n×

then

AB

=(cij

) m×p.

c ij

isca

lcu

late

dby

mu

ltip

lyin

gth

eith

row

ofA

by

thejth

colu

mn

of

B.

Exam

ple

24

IfA

=

( 16

−2

4

) an

dB

=

( 23

08) ,

fin

dAB

.

Exam

ple

25

IfA

=

( 16

2−

24

1

) an

dB

=

23

0−

14

20

17 ,

fin

dAB

.

Exam

ple

26

IfA

=( 1

35) ,

B=

2 −1 0

and

C=

23

−1

40

1 ,fi

nd

1.AB

2.BC

.

Page 13: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R2:

Matr

ices

an

dD

ete

rmin

ants

Date

:/

/D

ay:

Page:

11

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Note

s:1

Matr

ixm

ult

ipli

cati

on

isnot

com

mu

tati

ve.

Exam

ple

27

IfA

=

( 43

9−

12

0) an

dB

=

( 23

01

) Com

pu

te(i

fpo

s-

sibl

e)1.AB

2.BA

Exam

ple

28

IfA

=

( 34

−1

2) an

dB

=

( 75

10) ,

fin

d1.AB

2.

BA

.

2T

he

identi

tym

atr

ixis

the

identi

tyele

ment

inm

atr

ixm

ul-

tip

licati

on

.

I n=

10···

00

1···

00

01···

0. . .

. . .. .

.. . .

00···

1

IfA

isa

mat

rix

ofor

derm×n

andI n

isth

eid

enti

tym

atr

ixof

ord

ern

then

AI n

=I nA

=A.

Exam

ple

29

IfA

=

( 43

−1

2) ,fi

ndAI 2

Pro

pert

ies

of

op

era

tion

son

matr

ices:

1.

IfA

,B

an

dC

any

thre

em

atr

ices

of

the

sam

eord

erth

en

A+B

+C

=(A

+B

)+C

=A

+(B

+C

)=

(A+C

)+B

2.

IfA

,B

any

two

matr

ices

of

ord

erm×n

an

dC

am

atr

ixof

ord

ern×p

then

(A+B

)C=AC

+BC

3.

IfA

,B

any

two

matr

ices

of

ord

erm×n

an

dC

am

atr

ixof

ord

erp×m

then

C(A

+B

)=CA

+CB

4.

IfA

am

atr

ixof

ord

erm×n

,B

am

atr

ixof

ord

ern×p

an

dC

am

atr

ixof

ord

erp×q

then

ABC

=(AB

)C=A

(BC

)

Tra

nsp

ose

of

am

atr

ix:

IfA

=(aij

) m×n

then

the

tran

spose

ofA

isAt

=(aji)n×m

.

Exam

ple

30

IfA

=

( 43

−1

2) ,fi

ndAt

Note

:T

he

tran

spose

of

alo

wer

tria

ngu

lar

matr

ixis

an

up

per

tria

ngu

-la

rm

atr

ix,

an

dth

etr

an

spose

of

an

up

per

tria

ngu

lar

matr

ixis

alo

wer

tria

ngu

lar

matr

ix.

Pro

pert

ies

of

tran

spose

of

am

atr

ix:

IfA

an

dB

any

two

matr

ices

an

dλ∈R

then

1.

(At)t

=A

.2.

(A+B

)t=At

+Bt

.3.

(λA

)t=λAt

.4.

(AB

)t=BtAt

.

Page 14: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R2:

Matr

ices

an

dD

ete

rmin

ants

Date

:/

/D

ay:

Page:

12

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(2)

Dete

rmin

ants

IfA

isa

squ

are

mat

rix

then

the

det

erm

inan

tofA

isd

enote

dbydet

(A)

or|A|.

(A)

Th

ed

ete

rmin

ant

of

a2×

2m

atr

ix:

IfA

=

( a 11a12

a21

a22

) ,th

endet

(A)

=

∣ ∣ ∣ ∣a 11a12

a21

a22

∣ ∣ ∣ ∣=a11a22−a21a12

Exam

ple

31

fin

ddet

(A):

(1)

A=

( 15

37) (2

)A

=

( 4−

12

9

)

(B)

Th

ed

ete

rmin

ant

of

a3×

3m

atr

ix:

IfA

=

a 11a12

a13

a21

a22

a23

a31

a32

a33

,th

en

det

(A)

=a11

∣ ∣ ∣ ∣a 22a23

a32

a33

∣ ∣ ∣ ∣−a12

∣ ∣ ∣ ∣a 21a23

a31

a33

∣ ∣ ∣ ∣+a13

∣ ∣ ∣ ∣a 21a22

a31

a32

∣ ∣ ∣ ∣=a11(a

22a33−a23a32)−a12(a

21a33−a23a31)

+a13(a

21a32−a22a31)

Exam

ple

32

Fin

d|A|:

(1)

A=

16

35−

14

−2

97 (2

)A

=

41

52

1−

21

87

(C)

Th

ed

ete

rmin

ant

of

a4×

4m

atr

ix:

IfA

=

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

a41

a42

a43

a44

,th

en

det

(A)

=a11det

(A1)−a12det

(A2)

+a13det

(A3)−a14det

(A4)

wh

ere

A1

=

a 22a23

a24

a32

a33

a34

a42

a43

a44

A 2=

a 21a23

a24

a31

a33

a34

a41

a43

a44

A

3=

a 21a22

a24

a31

a32

a34

a41

a42

a44

A 4=

a 21a22

a23

a31

a32

a33

a41

a42

a43

E

xam

ple

33

Fin

ddet

(A):

(1)

A=

16

32

5−

14

1−

29

73

71

3−

6

(2)

A=

41

52

21

01

01

39

17

46

Page 15: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R2:

Matr

ices

an

dD

ete

rmin

ants

Date

:/

/D

ay:

Page:

13

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Pro

pert

ies

of

dete

rmin

ants

:1.

IfA

isa

squ

are

mat

rix

that

conta

ins

aze

roro

w(o

ra

zero

colu

mn

)th

endet

(A)

=0.

2.IfA

isa

squ

are

mat

rix

that

conta

ins

two

equ

al

row

s(o

rtw

oeq

ual

colu

mn

s)th

endet

(A)

=0.

3.IfA

isa

squ

are

mat

rix

that

conta

ins

aro

ww

hic

his

am

ult

iple

of

anot

her

row

(or

aco

lum

nw

hic

his

am

ult

iple

of

an

oth

erco

lum

n)

then

det

(A)

=0.

4.IfA

isa

dia

gon

alm

atri

xor

anup

per

tria

ngu

lar

matr

ixor

alo

wer

tria

ngu

lar

mat

rix

thedet

(A)

isth

eth

ep

rod

uct

of

the

elem

ents

of

the

mai

nd

iago

nal

.

5.T

he

det

erm

inan

tof

the

nu

llm

atri

xis

0an

dth

ed

eter

min

ant

of

the

iden

tity

mat

rix

is1.

6.IfA

isa

squ

are

mat

rix

andB

isth

em

atri

xfo

rmed

by

mu

ltip

lyin

gon

eof

the

row

s(o

rco

lum

ns)

ofA

by

an

on

-zer

oco

nst

antλ

then

det

(B)

=λdet

(A)

.

7.IfA

isa

squ

are

mat

rix

andB

isth

em

atri

xfo

rmed

by

inte

rch

an

g-

ing

two

row

s(o

rtw

oco

lum

ns)

ofA

then

det

(B)

=−det

(A).

8.IfA

isa

squ

are

mat

rix

andB

isth

em

atri

xfo

rmed

by

mu

ltip

lyin

ga

row

by

an

on-z

ero

const

ant

and

add

ing

the

resu

ltto

an

oth

erro

w(o

rm

ult

iply

ing

aco

lum

nby

an

on-z

ero

const

ant

an

dad

din

gth

ere

sult

toan

oth

erco

lum

n)

then

det

(B)

=det

(A).

Exam

ple

34

Use

pro

pert

ies

of

det

erm

inan

tsto

calc

ula

teth

edet

erm

i-n

an

tsof

the

foll

ow

ing

matr

ices

(1)

A=

12−

20

00

34

7

(2)

A=

12

16

56

34

3 (3

)A

=

12−

24

75

36−

6 (4)

A=

30

46−

12

00

5 (5

)A

=

52

315

81

10

62

(6)

A=

12

34

02

30

12

35

30

00

Page 16: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R2:

Matr

ices

an

dD

ete

rmin

ants

Date

:/

/D

ay:

Page:

14

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Hom

ew

ork

(2):

Qu

est

ion

1:

IfA

=

13

25−

46

09

2 ,B=

50

14

1011

and

C=

−20

07

53

Fin

d 1.B

+C

2.2B

+3C

3.C−B

4.A−C

5.AB

6.BA

7.At

8.(3A

)t

9.det

(A)

10.det

(2A

)

Qu

est

ion

2:

IfB

=7A

an

ddet

(A)

=−

3,

fin

ddet

(B).

Qu

est

ion

3:

Fin

dth

efo

llow

ing

det

erm

inants

:

1.

∣ ∣ ∣ ∣1−

22

7

∣ ∣ ∣ ∣

2.

∣ ∣ ∣ ∣ ∣ ∣1−

23

40

12

70∣ ∣ ∣ ∣ ∣ ∣

Page 17: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R3:

SY

ST

EM

SO

FL

INE

AR

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

15

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Con

sid

erth

esy

stem

ofli

nea

req

uat

ion

sin

2d

iffer

ent

vari

ab

les

a11x1

+a12x2

=b 1

a21x1

+a22x2

=b 2

Th

eab

ove

syst

emof

lin

ear

equ

atio

ns

can

be

wri

tten

as

:AX

=B

wh

ere

A=

( a 11a12

a21

a22

) ,X

=

( x 1 x2

) ,an

dB

=

( b 1 b 2

) .

Gen

eral

ly,co

nsi

der

the

syst

emof

lin

ear

equ

atio

ns

inn

diff

eren

tva

riab

les

a11x1

+a12x2

+a13x3

+...+

a1nxn

=b 1

a21x1

+a22x2

+a23x3

+...+

a2nxn

=b 2

a31x1

+a32x2

+a33x3

+...+

a3nxn

=b 3

. . .+. . .+

. . .+. . .+

. . .=

. . .

an1x1

+an2x2

+an3x3

+...+

+annxn

=b n

(1)

Th

eab

ove

syst

emof

lin

ear

equ

atio

ns

can

be

wri

tten

as

:AX

=B

wh

ere

A=

a11

a12···

a1n

a21

a22···

a2n

. . .. . .

. ..

. . .an1

an2···ann

,X

=

x1

x2 . . . xn

,an

dB

=

b 1 b 2 . . . b n

.

Ais

call

edth

eco

effici

ents

mat

rix

Xis

call

edth

eco

lum

nve

ctor

ofva

riab

les

(or

colu

mn

vec

tor

of

the

un

kn

own

s)B

isca

lled

the

colu

mn

vec

tor

ofco

nst

ants

(or

colu

mn

vec

tor

of

the

resu

ltan

ts)

Th

eore

m1

The

syst

emof

lin

ear

equ

ati

on

s(3

)has

aso

luti

on

ifdet

(A)6=

0.

Th

isch

ap

ter

pre

sents

thre

em

eth

od

sof

solv

ing

the

syst

emof

lin

ear

equ

ati

on

s(3

),th

efirs

tm

eth

od

isC

ram

ers

rule

,th

ese

con

dis

Gau

sseli

min

ati

on

meth

od

,an

dth

eth

ird

isG

au

ss-J

ord

an

meth

od

.

(1)

Cra

mers

Ru

leC

on

sid

erth

esy

stem

of

lin

ear

equ

ati

on

sinn

diff

eren

tva

riab

les

(3).

Th

em

eth

od

:Ifdet

(A)6=

0,

then

the

solu

tion

of

the

syst

em(3

)is

giv

enby

xi

=det

(Ai)

det

(A)

for

ever

yi

=1,

2,...,n.

wh

ereAi

isth

em

atr

ixfo

rmed

by

rep

laci

ng

theith

colu

mn

ofA

by

the

colu

mn

vec

tor

of

con

stants

:

A1

=

b 1a12···

a1n

b 2a22···

a2n

. . .. . .

. ..

. . .b n

an2···ann

,A2

=

a11

b 1···

a1n

a21

b 2···

a2n

. . .. . .

. ..

. . .an1

b n···ann

,...,An

=

a11

a12···

b 1a21

a22···

b 2. . .

. . .. .

.. . .

an1

an2···b n

,

Exam

ple

35

Use

Cra

mer

sru

leto

solv

eth

esy

stem

of

lin

ear

equ

ati

on

s

2x

+3y

=7

−x

+y

=4

Page 18: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R3:

SY

ST

EM

SO

FL

INE

AR

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

16

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

36

Use

Cra

mer

sru

leto

solv

eth

esy

stem

of

lin

ear

equ

ati

on

s

2x+y

+z

=3

4x+y−z

=−

2

2x−

2y+z

=6

Exam

ple

37

Use

Cra

mer

sru

leto

solv

eth

esy

stem

of

lin

ear

equ

ati

on

s

x1

+2x2

=1

2x1

+x2

=−

1

Exam

ple

38

Use

Cra

mer

sru

leto

solv

eth

esy

stem

of

lin

ear

equ

ati

on

s

x+y

+z

=12

x−y

=2

x−z

=4

Page 19: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R3:

SY

ST

EM

SO

FL

INE

AR

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

17

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(2)

Gau

sseli

min

ati

on

meth

od

Con

sid

erth

esy

stem

ofli

nea

req

uat

ion

sinn

diff

eren

tva

riab

les:

a11x1

+a12x2

+a13x3

+...+

a1nxn

=b 1

a21x1

+a22x2

+a23x3

+...+

a2nxn

=b 2

a31x1

+a32x2

+a33x3

+...+

a3nxn

=b 3

. . .+. . .+

. . .+. . .+

. . .=

. . .

an1x1

+an2x2

+an3x3

+...+

+annxn

=b n

(2)

AX

=B

wh

ere

A=

a11

a12···

a1n

a21

a22···

a2n

. . .. . .

. ..

. . .an1

an2···ann

,X

=

x1

x2 . . . xn

,an

dB

=

b 1 b 2 . . . b n

.

Th

em

eth

od

:

1.C

onst

ruct

the

augm

ente

dm

atri

x[A|B

].

a11

a12···

a1n

b 1a21

a22···

a2n

b 2. . .

. . .. .

.. . .

. . .an1

an2···ann

b n

2.

Use

elem

enta

ryro

wop

erat

ion

son

the

augm

ente

dm

atr

ixto

tran

sform

the

mat

rixA

toan

up

per

tria

ngu

lar

mat

rix

wit

hle

ad

ing

coeffi

cien

tof

each

row

equ

als

1. 1

c 12

c 13

c 14···

c 1n

d1

01

c 33

c 24···

c 2n

d2

. . .. . .

. ..

. . .. . .

00

0···

1c (n−1)n

dn−1

00

00···

1dn

3.

Fro

mth

ela

stau

gmen

ted

mat

rix,xn

=dn

and

the

rest

ofth

eu

nkn

own

sca

nb

eca

lcu

late

dby

back

ward

sub

stit

u-

tion

.

Exam

ple

39

Use

Gau

ssel

imin

ati

on

met

hod

toso

lve

the

syst

em

x−

2y+z

=4

−x

+2y

+z

=−

2

4x−

3y−z

=−

4

Page 20: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R3:

SY

ST

EM

SO

FL

INE

AR

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

18

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

40

Use

Gau

ssel

imin

ati

on

met

hod

toso

lve

the

syst

em

x+y

+z

=2

x−y

+2z

=0

2x+z

=2

Exam

ple

41

Use

Gau

ssel

imin

ati

on

met

hod

toso

lve

the

syst

em

3x1

+x2

=9

x1

+2x2

=8

Exam

ple

42

Use

Gau

ssel

imin

ati

on

met

hod

toso

lve

the

syst

em

x+

2y

+3z

=14

2x

+y

+2z

=10

3x+

4y−

3z=

2

Page 21: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R3:

SY

ST

EM

SO

FL

INE

AR

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

19

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(3)

Gau

ss-J

ord

an

meth

od

Con

sid

erth

esy

stem

ofli

nea

req

uat

ion

sinn

diff

eren

tva

riab

les:

a11x1

+a12x2

+a13x3

+...+

a1nxn

=b 1

a21x1

+a22x2

+a23x3

+...+

a2nxn

=b 2

a31x1

+a32x2

+a33x3

+...+

a3nxn

=b 3

. . .+. . .+

. . .+. . .+

. . .=

. . .

an1x1

+an2x2

+an3x3

+...+

+annxn

=b n

(3)

AX

=B

wh

ere

A=

a11

a12···

a1n

a21

a22···

a2n

. . .. . .

. ..

. . .an1

an2···ann

,X

=

x1

x2 . . . xn

,an

dB

=

b 1 b 2 . . . b n

.

Th

em

eth

od

:

1.C

onst

ruct

the

augm

ente

dm

atri

x[A|B

].

a11

a12···

a1n

b 1a21

a22···

a2n

b 2. . .

. . .. .

.. . .

. . .an1

an2···ann

b n

2.

Use

elem

enta

ryro

wop

erat

ion

son

the

augm

ente

dm

atr

ixto

tran

sform

the

mat

rixA

toth

eid

enti

tym

atri

x.

10

00···

0d1

01

00···

0d2

. . .. . .

. ..

. . .. . .

00

0···

10

dn−1

00

00···

1dn

3.

Fro

mth

ela

stau

gmen

ted

mat

rix,xi

=di

for

ever

yi

=1,

2,,n

.

Exam

ple

43

Use

Gau

ss-J

ord

an

met

hod

toso

lve

the

syst

em

x+y

=2

2x+y

=1

Page 22: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R3:

SY

ST

EM

SO

FL

INE

AR

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

20

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

44

Use

Gau

ss-J

ord

an

met

hod

toso

lve

the

syst

em

x+y

+z

=2

x−y

+2z

=0

2x+z

=2

Exam

ple

45

Use

Gau

ss-J

ord

an

met

hod

toso

lve

the

syst

em

x−

2y+

2z

=5

5x+

3y

+6z

=57

x+

2y

+2z

=21

Page 23: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R3:

SY

ST

EM

SO

FL

INE

AR

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

21

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Hom

ew

ork

(3):

Qu

est

ion

1:

Use

Cra

mer

sru

leto

solv

eth

esy

stem

of

lin

ear

equ

ati

on

s1.

x+y

+z

=18

x−y

+z

=6

x+y−z

=4

2.

2x−

4y

+3z

=10

3x+y−

2z=

6

x+

3y−z

=20

Qu

est

ion

2:

Use

Gau

ssel

imin

atio

nm

eth

od

toso

lve

the

syst

em1.

x+y

+z

=18

x−y

+z

=6

x+y−z

=4

2.

x+y

+z

=12

x−y

=2

x−z

=4

Qu

est

ion

3:

Use

Gau

ss-J

ord

an

met

hod

toso

lve

the

syst

em1.

x−

3y+z

=21

4x+

2y

+z

=14

3x+

3y

+z

=7

2.

2x−

4y+

3z

=10

3x+y−

2z=

6

x+

3y−z

=20

Page 24: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

22

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Anti

-deri

vati

ves

&In

defi

nit

ein

tegra

l(1

)A

nti

-deri

vati

ves

Anti

-deri

vati

ves

Defi

nit

ion

5A

fun

ctio

nF

isca

lled

an

an

ti-d

eriv

ati

veoff

on

an

inte

rvalI

if

F′ (x

)=f

(x)

for

ever

yx∈I.

Exam

ple

46

1.

LetF

(x)

=x2

+3x

+1

an

df

(x)

=2x

+3.

Sin

ceF

′ (x)

=f

(x),

the

fun

ctio

nF

(x)

isan

an

ti-d

eriv

ati

veof

f(x

).

2.

LetG

(x)

=si

n(x

)+x

an

dg(x

)=

cos(x

)+

1.

We

know

thatG

′ (x)

=co

s(x

)+

1an

dth

ism

ean

sth

efu

nct

ion

G(x

)is

an

an

ti-d

eriv

ati

veofg(x

).

Th

eore

m2

Ifth

efu

nct

ion

sF

(x)

an

dG

(x)

are

an

ti-d

eriv

ati

ves

of

afu

nct

ionf

(x)

on

the

inte

rvalI

,th

ere

exis

tsa

con

stan

tc

such

thatG

(x)−F

(x)

=c.

Exam

ple

47

Letf

(x)

=2x

.T

he

fun

ctio

ns

F(x

)=x2

+2,

G(x

)=x2−

1 2,

H(x

)=x2−

3√2,

an

dm

an

yoth

erfu

nct

ion

sare

an

ti-d

eriv

ati

ves

of

afu

nct

ionf

(x).

Gen

-er

all

y,fo

rth

efu

nct

ionf

(x)

=2x

,th

efu

nct

ionF

(x)

=x2

+c

isth

ean

ti-d

eriv

ati

vew

her

ec

isan

arb

itra

ryco

nst

an

t.

Exam

ple

48

Fin

dth

ege

ner

al

form

of

the

an

ti-d

eriv

ati

veoff

(x)

=6x

5.

(2)

Ind

efi

nit

eIn

tegra

ls

Ind

efi

nit

eIn

tegra

ls

Defi

nit

ion

6L

etf

bea

con

tin

uou

sfu

nct

ion

on

an

inte

rvalI

.T

he

indefi

nit

ein

tegr

al

off

(x)

isth

ege

ner

al

an

ti-d

eriv

ati

veof

f(x

)onI

an

dsy

mbo

lize

dby

∫ f(x

)dx

=F

(x)

+c.

The

fun

ctio

nf

(x)

isca

lled

the

inte

gran

d,

the

sym

bol

∫ isth

e

inte

gral

sign

,x

isca

lled

the

vari

abl

eof

inte

grati

on

an

dc

isth

eco

nst

an

tof

inte

grati

on

.

(3)

Pro

pert

ies

of

Ind

efi

nit

eIn

tegra

lsL

etf

an

dg

be

inte

gra

ble

funct

ion

s,th

en

1.

∫ ( f(x

)±g(x

)) dx=

∫ f(x

)±∫ g

(x)dx.

2.

∫ kf

(x)dx

=k

∫ f(x

)dx

,w

her

ek

isa

con

stant

Basi

cIn

tegra

tion

Ru

les:

1)

∫ xndx

=xn+

1

n+1

+c

wh

eren6=−

1.

Sp

ecia

lca

se:

∫ 1dx

=x

+c.

Exam

ple

49

Eva

luate

the

foll

ow

ing

inte

grals

:

1.

∫ x+

3dx

2.

∫ 4x3

+2x

+1dx

Page 25: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

23

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

2)T

rigo

nom

etri

cF

un

ctio

ns:

∫ cosdx

=si

nx

+c

∫ sinxdx

=−

cosx

+c

∫ sec2

xdx

=ta

nx

+c

∫ csc2

xdx

=−

cotx

+c

∫ secx

tanxdx

=se

cx

+c

∫ cscx

cotxdx

=−

cscx

+c

Exam

ple

50

Eva

luate

the

foll

ow

ing

inte

grals

:

1.

∫ 2si

nx

+3

cosxdx

2.

∫ √ x+

sec2xdx

3)N

atu

ral

Log

arit

hm

ican

dE

xp

onen

tial

Fu

nct

ion

s∫ 1 x

dx

=lnx

+c

∫ exdx

=ex

+c

Exam

ple

51

Eva

luate

the

foll

ow

ing

inte

grals

:

1.

∫ 2 x−

csc2xdx

2.

∫ 3ex

+1

1+x2dx

3.

∫ 1 x+

1 x2dx

4)

Inve

rse

Tri

gon

om

etri

cF

un

ctio

ns

∫1

√1−x2dx

=si

n−1x

+c

wh

ere|x|<

1∫

1

1+x2dx

=ta

n−1x

+c

∫1

x√x2−

1dx

=sec−

1x

+c

wh

ere|x|>

1

Exam

ple

52

Eva

luate

the

foll

ow

ing

inte

grals

:

1.

∫ 31+x2dx

2.

∫1

√1−x2

+1 √xdx

Page 26: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

24

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(4)

Defi

nit

eIn

tegra

ls:

Defi

nit

eIn

tegra

ls

Defi

nit

ion

7L

etf

bea

fun

ctio

ndefi

ned

on

acl

ose

din

terv

al

[a,b

].Iff

isin

tegr

abl

eon

that

inte

rval

an

dF

(x)

isth

ege

ner

al

an

ti-d

eriv

ati

ve,

the

defi

nit

ein

tegr

al

off

is

∫ b a

f(x

)dx

=[ F

(x)] b a

=F

(b)−F

(a).

The

nu

mbe

rsa

an

db

are

call

edth

eli

mit

sof

the

inte

grati

on

.

Exam

ple

53

Eva

luate

the

foll

ow

ing

inte

grals

:

1.

∫ 2 −1

2x

+1dx

2.

∫ 3 0

x2

+1dx

3.

∫ 2 1

1 √x3dx

4.

∫π 2

0

sin

(x)

+1dx

5.

∫ π π 4

sec2

(x)−

4dx

6.

∫ 1 0

2x

+exdx

7.

∫ 1 2

1 x+√xdx

Page 27: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

25

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(5)

Inte

gra

tion

by

Su

bst

itu

tion

:

Su

bst

itu

tion

Met

hod

Th

eore

m3

Letg

bea

diff

eren

tiabl

efu

nct

ion

on

the

inte

rvalI

wher

eth

eder

ivati

veis

con

tin

uou

s.L

etf

bea

con

tin

uou

son

an

inte

rvalI

invo

lves

the

ran

geof

the

fun

ctio

ng

.IfF

isan

an

ti-d

eriv

ati

veof

the

fun

ctio

nf

onI

,th

en

∫ f(g

(x))g

′ (x)dx

=F

(g(x

))+c,

x∈I.

Ste

ps

of

Inte

gra

tion

by

Su

bst

itu

tion

:F

orsi

mp

lici

ty,

the

sub

stit

uti

onm

eth

od

can

be

sum

mari

zed

inth

efo

l-lo

win

gst

eps:

Ste

p1:

Ch

oos

ea

new

vari

ableu

.S

tep

2:

Det

erm

ine

the

valu

eofdu

.S

tep

3:

Mak

eth

esu

bst

itu

tion

i.e.

,el

imin

ate

all

occ

urr

ence

sofx

inth

ein

tegr

alby

mak

ing

the

enti

rein

tegr

alis

inte

rms

ofu

.S

tep

4:

Eva

luat

eth

en

ewin

tegr

al.

Ste

p5:

Ret

urn

the

eval

uat

ion

toth

ein

itia

lva

riablex

.

Exam

ple

54

Eva

luate

the

inte

gral

∫ (x+

1)3dx

.

Exam

ple

55

Eva

luate

the

inte

gral

∫ 2x(x

2+

1)3dx

.

Exam

ple

56

Eva

luate

the

inte

gral

∫ x2√ x3

+1dx

.

Exam

ple

57

Eva

luate

the

foll

ow

ing

inte

grals

:

1.

∫ 3co

s(3x

+4)dx

2.

∫ xse

c2(x

2)dx

3.

∫ cosxes

inxdx

4.

∫2x

x2

+1dx

Page 28: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

26

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(6)

Inte

gra

tion

by

Part

s:In

tegr

atio

nby

par

tsis

am

eth

od

totr

ansf

erth

eori

gin

al

inte

gra

lto

an

easi

erin

tegr

alth

atca

nb

eev

alu

ated

.P

ract

icall

y,th

ein

tegra

tion

by

par

tsd

ivid

esth

eor

igin

alin

tegr

alin

totw

op

art

su

an

ddv.

Th

en,

we

try

tofi

nd

thedu

by

der

ivin

gu

andv

by

inte

gra

tin

gdv.

Inte

gra

tion

by

Part

s

Th

eore

m4

Ifu

=f

(x)

an

dv

=g(x

)su

chth

atf′ (x

)an

dg′ (x

)are

con

tin

uou

s,th

en

∫ udv

=uv−∫ v

du.

Pro

of.

We

kn

owth

atd dx

(f(x

)g(x

))=f

(x)g′ (x

)+f′ (x

)g(x

).T

hu

s,

f(x

)g′ (x

)=

d dx

(f(x

)g(x

))−f′ (x

)g(x

).B

yin

tegr

atin

gth

eb

oth

sid

es,

we

hav

e

∫ f(x

)g′ (x

)dx

=

∫ d dx

(f(x

)g(x

))dx−∫ f

′ (x

)g(x

)dx

=f

(x)g

(x)−∫ f

′ (x

)g(x

)dx.

Sin

ceu

=f′ (x

)an

ddv

=g′ (x

),th

en

∫ udv

=uv−∫ v

du.�

Th

eore

m4

show

sth

atth

ein

tegr

atio

nby

par

tstr

an

sfer

sth

ein

tegra

l∫ u

dv

into

the

inte

gral

∫ vdu

that

shou

ldb

eea

sier

than

the

ori

gin

al

inte

gral

.T

he

ques

tion

her

eis

,w

hat

we

choose

asu

(x)

an

dw

hat

we

choos

eas

dv

=v′ (x

)dx

.It

isu

sefu

lto

chooseu

as

afu

nct

ion

that

sim

pli

fies

wh

end

iffer

enti

ated

,an

dto

choos

ev′

as

afu

nct

ion

that

sim

-p

lifi

esw

hen

inte

grat

ed.

Th

isis

exp

lain

edin

acl

eare

rsi

ght

thro

ugh

the

foll

owin

gex

amp

les.

Exam

ple

58

Eva

luate

the

foll

ow

ing

inte

gral

∫ xco

sxdx

.

Exam

ple

59

Eva

luate

the

foll

ow

ing

inte

gral

∫ xex

dx

.

Rem

ark

11.

Rem

embe

rth

at

when

we

con

sider

the

inte

grati

on

bypa

rts,

we

wan

tto

have

an

easi

erin

tegr

al.

As

we

saw

inE

xam

ple

59,

ifw

ech

ooseu

=ex

an

ddv

=xdx

we

have∫ x2 2

exdx

whic

his

more

diffi

cult

than

the

ori

gin

al

on

e.

2.

When

con

sider

ing

the

inte

grati

on

bypa

rts,

we

have

toch

oosedv

afu

nct

ion

that

can

bein

tegr

ate

d(s

eeE

xam

ple

60).

3.

Som

etim

esw

en

eed

tou

seth

ein

tegr

ati

on

bypa

rts

two

tim

esas

inE

xam

ple

s61

an

d62.

Page 29: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

27

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

60

Eva

luate

the

foll

ow

ing

inte

gral

∫ lnxdx

.

Exam

ple

61

Eva

luate

the

foll

ow

ing

inte

gral

∫ exco

sxdx

.

Exam

ple

62

Eva

luate

the

foll

ow

ing

inte

gral

∫ x2ex

dx

.

Exam

ple

63

Eva

luate

the

foll

ow

ing

inte

gral

∫ 1 0

tan−1xdx

.

Page 30: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

28

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(7)

Inte

gra

lsof

Rati

on

al

Fu

ncti

on

s:

We

stu

dy

rati

onal

fun

ctio

ns

ofth

efo

rmq(x

)=

f(x

)g(x

)w

her

ef

(x)

andg(x

)

are

pol

yn

omia

ls.

Th

ep

revio

us

tech

niq

ues

like

inte

gra

tion

by

part

sis

not

enou

ghto

eval

uat

eth

ein

tegr

alof

the

rati

onal

fun

ctio

ns.

Th

eref

ore

,w

en

eed

tokn

owa

new

tech

niq

ue

toh

elp

us

toev

alu

ate

the

inte

gra

lof

the

rati

onal

fun

ctio

ns.

Th

iste

chn

iqu

eis

call

edd

ecom

posi

tion

of

the

rati

onal

fun

ctio

ns

into

asu

mof

par

tial

frac

tion

s.

Th

ep

ract

ical

step

sof

inte

gral

sof

rati

onal

fun

ctio

ns

can

be

sum

mari

zed

asfo

llow

s:

Ste

p1:

Ifth

ed

egre

eofg(x

)is

less

than

the

deg

ree

off

(x),

we

do

pol

yn

omia

llo

ng-

div

isio

n,

oth

erw

ise

we

mov

eto

step

2.

Fro

mth

elo

ng

div

isio

nsh

own

onth

eri

ght

sid

e,w

eh

ave

q(x

)=f

(x)

g(x

)=h

(x)

+r(x

)

g(x

),

wh

ereh

(x)

isca

lled

the

qu

o-ti

ent

andr(x

)is

call

edth

ere

mai

nd

er.

h(x

)g(x

)) f(

x)

......

r(x)

Ste

p2:

Fac

tor

the

den

omin

atorg(x

)in

toir

red

uci

ble

poly

nom

ials

wh

ere

the

resu

ltis

eith

erli

nea

ror

irre

du

cib

lequ

adra

tic

poly

nom

ials

.

Ste

p3:

Fin

dth

ep

arti

alfr

acti

ond

ecom

pos

itio

n.

Th

isst

epd

epen

ds

on

step

2w

her

eif

deg

ree

off

(x)

isle

ssth

anth

ed

egre

eofg(x

),th

enth

e

frac

tion

f(x

)g(x

)ca

nb

ew

ritt

enas

asu

mof

par

tial

fract

ion

s:

q(x

)=P1(x

)+P2(x

)+P3(x

)+...+

Pn(x

),

wh

ere

eachPi(x

)=

A(ax+b)m,m∈N

orPi(x

)=

Ax+B

(ax2+bx+c)m

ifb2−

4ac<

0.T

he

con

stan

tsA,B,...

are

com

pu

ted

late

r.

Ste

p4:

Inte

grat

eth

ere

sult

ofst

ep3.

Exam

ple

64

Eva

luate

the

foll

ow

ing

inte

gral

∫x

+1

x2−

2x−

8dx

.

Exam

ple

65

Eva

luate

the

inte

gral

∫x

+3

(x−

3)(x−

2)dx

.

Page 31: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

29

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

66

Eva

luate

the

inte

gral

∫ 2x3−

4x2−

15x

+5

x2

+3x

+2

dx

.

Rem

ark

21.

The

nu

mbe

rof

con

stan

tsA,B,C,...

iseq

ual

toth

edeg

ree

of

the

den

om

inato

rg(x

).T

her

efore

,in

the

case

of

repe

ate

dfa

ctors

of

the

den

om

inato

r,w

ehave

toch

eck

the

nu

mbe

rof

the

con

stan

tsan

dth

edeg

ree

ofg(x

).

2.

Ifth

eden

om

inato

rg(x

)co

nta

ins

on

irre

du

cibl

equ

adra

tic

fact

ors

,th

en

um

erato

rsof

fract

ion

dec

om

posi

tion

shou

ldbe

poly

nom

ials

of

deg

ree

on

e.

Exam

ple

67

Eva

luate

the

foll

ow

ing

inte

gral

∫ 2x2−

25x−

33

(x+

1)2

(x−

5)dx

.

Exam

ple

68

Eva

luate

the

foll

ow

ing

inte

gral

∫ 2x2

+3x

+2

x3

+x

dx

.

Page 32: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R4:

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

30

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Hom

ew

ork

(4):

Qu

est

ion

1:

Eva

luat

eth

efo

llow

ing

inte

gral

s:

1.

∫ sec2

(3x−

5)dx

2.

∫dx

√16−x2

3.

∫ xexdx

4.

∫ xco

sxdx

5.

∫ sin−1xdx

6.

∫dx

x2−x−

2

7.

∫ x(2x2−

3)8dx

8.

∫ cos

3√x

3√x2

dx

Qu

est

ion

2:

Eva

luate

the

foll

owin

gin

tegra

ls:

1.

∫ secx

+ta

nx

cosx

dx

2.

∫ xln√xdx

3.

∫ 3 1

x2

+1dx

4.

∫ 5 e

1

x−

2dx

5.

∫ 6 3

1

x−

2+

2

x+

1dx

6.

∫ π/2

0

(1+√

cosx

)2si

nxdx

Page 33: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

31

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(1)

Are

aIn

tegr

atio

nca

nb

eu

sed

toca

lcu

late

area

su

nd

erb

ou

nd

edgra

ph

s.In

gen

eral

,w

eco

nsi

der

the

follow

ing

case

s:1.

the

area

bet

wee

na

curv

e,th

ex-a

xis

or

y-a

xis

,an

dtw

ogiv

enor

din

ates

,2.

the

area

bet

wee

na

curv

e,th

ex-a

xis

ory-a

xis

,and

two

ord

inate

sgi

ven

by

cros

sin

gth

ecu

rve

the

axis

,3.

the

area

bet

wee

ntw

ocu

rves

.

1.Ify

=f

(x)

isco

n-

tinu

ous

on[a,b

]an

df

(x)≥

0∀x∈

[a,b

],th

ear

eaof

the

re-

gion

un

der

the

grap

hoff

(x)

from

x=a

tox

=b

isgi

ven

by

the

inte

gral

:

A=

∫ b a

f(x

)dx

xa

b

R

y

y=f

(x)

Iff

(x)

and

g(x

)ar

eco

nti

nu

ous

and

f(x

)≥g(x

)fo

rev

ery

x∈

[a,b

],th

enth

ear

eaA

ofth

ere

gion

bou

nd

edby

the

grap

hs

off

andg

isgi

ven

by

the

inte

gral

:

A=

∫ b a

( f(x)−g(x

)) dxa

b

f

g

R

x

y

3.

Ifx

=f

(y)

isco

n-

tinu

ou

son

[c,d

]an

df

(y)≥

0∀y∈

[c,d

],th

eare

aof

the

re-

gio

nu

nd

erth

egra

ph

off

(y)

fromy

=c

toy

=d

isgiv

enby

the

inte

gra

l:

A=

∫ d c

f(y

)dy

x

R

y abx

=f

(y)

4.

Iff

(y)

an

dg(y

)are

conti

nuou

san

df

(y)≥

g(y

)fo

rev

-er

yx∈

[c,d

],th

enth

eare

aA

of

the

re-

gio

nb

ou

nd

edby

the

gra

ph

soff

an

dg

isgiv

enby

the

inte

gra

l:

A=

∫ d c

( f(y)−g(y

)) dycd

f

g

R

x

y

Exam

ple

69

Ske

tch

the

regi

on

byth

egr

aph

ofy

=x

on

the

inte

rval

[0,3

],th

enfi

nd

its

are

a.

Page 34: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

32

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

70

Ske

tch

the

regi

on

byth

egr

aph

ofy

=x2,

then

fin

dit

sare

a.

Exam

ple

71

Ske

tch

the

regi

on

byth

egr

aphs

ofy

=x3

an

dy

=x

,th

enfi

nd

its

are

a.

Exam

ple

72

Ske

tch

the

regi

on

byth

egr

aphs

ofx

=√y

fromy

=0

an

dy

=1,

then

fin

dit

sare

a.

Exam

ple

73

Ske

tch

the

regi

on

byth

egr

aphs

ofy

=−x

+6,y

=√x

an

dy

=0,

then

fin

dit

sare

a.

Page 35: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

33

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(2)

Volu

mes

of

Soli

dof

Revolu

tion

Inth

isse

ctio

n,w

ew

ills

tart

look

ing

atth

evol

um

eofa

soli

dofre

volu

tion

.W

esh

ould

firs

tdefi

ne

just

wh

ata

soli

dof

revolu

tion

is.

Soli

dof

Revolu

tion

Defi

nit

ion

8T

he

soli

dof

revo

luti

on

(S)

isa

soli

dge

ner

ate

dfr

om

rota

tin

ga

regi

onR

abo

ut

ali

ne

inth

esa

me

pla

ne

wher

eth

eli

ne

isca

lled

the

axi

sof

revo

luti

on

.

Exam

ple

74

Letf

(x)≥

0be

con

tin

uou

sfo

rev

eryx∈

[a,b

].L

etR

bea

regi

on

bou

nded

byth

egr

aph

off

an

dx-

axi

sfo

rmx

=a

tox

=b.

Rota

tin

gth

ere

gionR

abo

ut

x-axi

sge

ner

ate

sa

soli

dgi

ven

inF

igu

re74.

Exam

ple

75

Letf

(x)

bea

con

stan

tfu

nct

ion

,as

inF

igu

re75.

The

regi

onR

isa

rect

an

gle

an

dro

tati

ng

itabo

ut

x-axi

sge

ner

ate

sa

circ

ula

rcy

lin

der

.

Exam

ple

76

Con

sider

the

regi

onR

bou

nded

byth

egr

aph

off

(y)

from

y=c

toy

=d

as

inF

igu

re.

Rev

olu

tion

ofR

abo

ut

y-axi

sge

ner

ate

sa

soli

dof

revo

luti

on

.

Volu

mes

of

Soli

dof

Revolu

tion

On

eof

the

sim

ple

stap

pli

cati

on

sof

inte

gra

tion

isto

det

erm

ine

avo

lum

eof

solid

of

revolu

tion

.In

this

sect

ion

,w

ew

ill

stu

dy

thre

em

eth

od

sto

evalu

ate

volu

mes

of

revolu

tion

kn

own

as

the

dis

km

eth

od

,th

ew

ash

erm

eth

od

an

dth

em

eth

od

of

cyli

nd

rica

lsh

ells

.

(A)

Dis

kM

eth

od

Letf

be

conti

nu

ou

son

[a,b

]an

dle

tR

be

are

gio

nb

ou

nd

edby

the

gra

ph

s,x-a

xis

an

dth

ep

oin

tsx

=a,x

=b.

LetS

be

aso

lid

gen

erate

dby

revo

lvin

gR

ab

ou

tx-a

xis

.A

ssu

meP

isa

part

itio

nof

[a,b

]an

dwk∈

[xk−1,xk]

isa

mark

er.

For

each

[xk−1,xk],

we

form

are

ctan

gle

,it

sh

igh

isf

(wk)

an

dit

sw

idth

is∆xk.

Th

ere

volu

tion

of

the

rect

an

gle

ab

ou

tx-a

xis

gen

erate

sa

circ

ula

rd

isk

.It

sra

diu

san

dh

igh

are

r=f

(wk),

h=

∆xk.

Th

evolu

me

of

each

circ

ula

rd

isk

is

Vk

(f(w

k))

2∆xk.

Th

esu

mof

volu

mes

of

the

circ

ula

rd

isks

ap

pro

xim

ate

lygiv

esth

evo

lum

eof

the

soli

dof

revo

luti

on

:

V=

n ∑ k=1

∆Vk

=li

mn→∞

n ∑ k=1

π(f

(wk))

2∆xk

∫ b a

[ f(x)] 2 d

x.

V=π

∫ b a

[ f(x)] 2 d

x.

Page 36: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

34

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Sim

ilar

ly,

we

fin

dth

evo

lum

eof

the

soli

dof

revo

luti

onab

ou

ty-a

xis

.L

etf

be

conti

nu

ous

on[c,d

]an

dle

tR

be

are

gion

bou

nd

edby

the

gra

ph

s,y-

axis

and

the

poi

ntsy

=c,y

=d.

LetS

be

aso

lid

gen

erate

dby

revo

lvin

gR

abou

ty-a

xis

.A

ssu

meP

isa

par

titi

onof

[c,d

]an

dwk∈

[yk−1,yk].

For

each

[yk−1,yk],

we

form

are

ctan

gle,

its

hig

hisf

(wk)

an

dit

sw

idth

is∆y k

.R

evol

uti

onof

each

rect

angl

eab

out

y-a

xis

gen

erate

sa

circ

ula

rd

isk

as

show

nin

.It

sra

diu

san

dh

igh

are

r=f

(wk),

h=

∆y k

.

Th

evo

lum

eof

the

soli

dof

revol

uti

ongi

ven

inis

the

sum

of

volu

mes

of

circ

ula

rd

isks

give

s:

V=

n ∑ k=1

∆Vk

=li

mn→∞

n ∑ k=1

π(f

(wk))

2∆y k

∫ d c

[ f(y)] 2 d

y.

V=π

∫ d c

[ f(y)] 2 d

y.

Exam

ple

77

Ske

tch

the

regi

onR

bou

nded

byth

egr

aphs

of

the

equ

a-

tion

sy

=√x

,x

=4,y

=0.

Then

,fi

nd

the

volu

me

of

the

soli

dge

ner

ate

difR

isre

volv

edabo

ut

x-axi

s.

Exam

ple

78

Ske

tch

the

regi

onR

bou

nded

byth

egr

aphs

of

the

equ

a-

tion

sy

=ex

,y

=e

an

dx

=0.

Then

,fi

nd

the

volu

me

of

the

soli

dge

ner

ate

difR

isre

volv

edabo

ut

y-axi

s.

Exam

ple

79

Letx

=y2

on

the

inte

rval[0,1

].R

ota

teth

ere

gion

aro

un

dth

ey-

axi

san

dfi

nd

the

volu

me

of

the

resu

ltin

gso

lid.

Page 37: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

35

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(B)

Wash

er

Meth

od

Th

ew

ash

erm

eth

od

isth

ege

ner

aliz

atio

nof

the

dis

km

eth

od

for

are

gio

nb

etw

een

two

funct

ion

sf

(x)

andg(x

).L

etR

be

are

gio

nb

ou

nd

edby

the

grap

hs

off

(x)

andg(x

)su

chth

atf

(x)>g(x

)fr

omx

=a

to,x

=b.

Th

evo

lum

eof

the

soli

dS

gen

erat

edfr

omro

tati

ng

the

are

ab

ou

nd

edby

the

grap

hs

off

(x)

andg(x

)ar

oun

dx-a

xis

is

V=

∫ b a

[f(x

)]2dx−∫ b a

[g(x

)]2dx,

V=

∫ b a

( [f(x

)]2−

[g(x

)]2) dx

.

Sim

ilar

ly,

letR

be

are

gion

bou

nd

edby

the

gra

ph

soff

(y)

an

dg(y

)su

chth

atf

(y)>g(y

)fr

omy

=c

to,y

=d.

Th

evo

lum

eof

the

soli

dS

gen

erat

edfr

omro

tati

ng

the

area

bou

nd

edby

the

gra

ph

soff

an

dg

arou

nd

y-a

xis

is

V=

∫ d c

[f(y

)]2dy−∫ d c

[g(y

)]2dy,

V=

∫ d c

( [f(y

)]2−

[g(y

)]2) dy

.

Exam

ple

80

Eva

luate

the

volu

me

of

the

soli

dge

ner

ate

dby

revo

luti

on

of

the

bou

nded

regi

on

bygr

aphs

of

the

foll

ow

ing

two

fun

ctio

nsy

=x2

an

dy

=2x

abo

ut

x-axi

s.

Page 38: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

36

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

81

Con

sider

are

gionR

bou

nded

byth

egr

aphsy

=√x

,y

=6−x

an

dx-

axi

s.R

ota

teth

isre

gion

abo

ut

y-axi

san

dfi

nd

the

volu

me

of

the

gen

erate

dso

lid.

Exam

ple

82

Rec

on

sider

the

sam

ere

gion

as

inE

xam

ple

81

encl

ose

dby

the

curv

esy

=√x

,y

=6−x

an

dx-

axi

s.N

ow

rota

teth

isre

gion

abo

ut

the

x-axi

sin

stea

dan

dfi

nd

the

resu

ltin

gvo

lum

e.

Page 39: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

37

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(C)

Meth

od

of

Cyli

nd

rical

Sh

ell

s

Th

em

eth

od

ofcy

lin

dri

cal

shel

lsso

met

imes

easi

erth

an

the

wash

erm

eth

od

.T

his

isb

ecau

seso

lvin

geq

uat

ion

sfo

ron

eva

riab

lein

term

sof

anot

her

isn

otso

met

imes

sim

ple

(i.

e.,

solv

ingx

inte

rms

ofy

an

dve

rsa

vis

a).

For

exam

ple

,th

evol

um

eof

the

soli

dob

tain

edby

rota

tin

gth

ere

gion

bou

nd

edbyy

=2x

2−x3

andy

=0

ab

ou

tth

ey-a

xis

.B

yth

ew

ash

erm

eth

od

,w

ew

ould

hav

eto

solv

eth

ecu

bic

equ

ati

on

forx

inte

rms

ofy

and

this

isn

otsi

mp

le.

Inth

ew

ash

erm

eth

od

,w

eas

sum

eth

atth

ere

ctan

gle

from

each

sub

-in

terv

alis

vert

ical

toth

eax

isof

the

revo

luti

on

,b

ut

inth

em

eth

od

of

cyli

nd

rica

lsh

ells

,th

ere

ctan

gle

isp

aral

lel

toth

eaxis

of

revo

luti

on

.

As

show

nin

the

nex

tfi

gure

,le

tr 1

be

the

inn

erra

diu

sof

the

shel

l,r 2

be

the

oute

rra

diu

sof

the

shel

l,h

be

hig

hof

the

shel

l,∆r

=r 2−r 1

be

the

thic

kn

ess

ofth

esh

ell,

r=

r1+r2

2b

eth

eav

erag

era

diu

sof

the

shel

l.

Th

evol

um

eof

the

cylin

dri

cal

shel

lis

V=πr2 2h−πr2 1h

(r2 2−r2 1

)h

(r2

+r 1

)(r 2−r 1

)h

=2π

(r 2

+r 1

2)h

(r2−r 1

)

=2πrh

∆r.

Now

,co

nsi

der

the

grap

hgi

ven

inth

efi

gure

bel

ow.

Th

ere

volu

tion

of

the

regi

onR

abou

ty-a

xis

gen

erat

esa

soli

dgiv

enin

the

sam

efi

gu

re.

LetP

be

ap

arti

tion

ofth

ein

terv

al[a,b

]an

dle

twk

be

the

mid

poin

tof

[xk−1,xk].

Th

ere

volu

tion

ofth

ere

ctan

gle

abou

ty-a

xis

gen

erate

sa

cyli

nd

rica

lsh

ell

wh

ere

the

hig

h=f

(wk),

the

aver

age

rad

ius

=wk

an

dth

eth

icknes

s=

∆xk

.

Hen

ce,

the

volu

me

of

the

cyli

nd

rica

lsh

ell

Vk

=2πwkf

(wk)∆xk.

To

evalu

ate

the

volu

me

of

the

wh

ole

soli

d,

we

sum

the

volu

me

of

all

cyli

nd

rica

lsh

ells

.T

his

mea

ns

V=

n ∑ k=1

Vk

=2π

n ∑ k=1

wkf

(wk)∆xk.

Fro

mR

iem

an

nsu

m

n ∑ k=1

wkf

(wk)∆xk

=

∫ b a

xf

(x)dx

an

dth

isim

pli

es

V=

∫ b a

xf

(x)dx.

Sim

ilarl

y,if

the

revolu

tion

of

the

regio

nab

ou

tx-a

xis

,th

evo

lum

eof

the

soli

dof

revo

luti

on

is

V=

∫ d c

yf

(y)dy.

Page 40: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

38

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

83

Ske

tch

the

regi

onR

bou

nded

byth

egr

aphs

of

the

equ

a-

tion

sy

=2x−x2

an

dx

=0.

Then

,by

the

met

hod

of

cyli

ndri

cal

shel

ls,

fin

dth

evo

lum

eof

the

soli

dge

ner

ate

difR

isre

volv

edabo

ut

y-axi

s.

Exam

ple

84

Ske

tch

the

regi

onR

bou

nded

byth

egr

aphs

of

the

equ

a-

tion

sx

=√y

an

dx

=2.

Then

,fi

nd

the

volu

me

of

the

soli

dge

ner

ate

difR

isre

volv

edabo

ut

x-axi

s.

Page 41: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R5:

AP

PL

ICA

TIO

NS

OF

INT

EG

RA

TIO

ND

ate

:/

/D

ay:

Page:

39

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Hom

ew

ork

(5):

Qu

est

ion

1:

Ske

tch

the

regi

onby

the

grap

hs

ofy

=√x

an

dy

=x2,

then

fin

dit

sar

ea.

Qu

est

ion

2:

Ske

tch

the

regi

onby

the

grap

hs

ofy

=si

nx

an

dy

=co

sx

onth

ein

terv

al[0,π 4

],th

enfi

nd

its

area

.

Qu

est

ion

3:

Ske

tch

the

regi

onby

the

grap

hs

ofx

=y

+2,x

=y2

inth

efi

rst

qu

adra

nt,

then

fin

dit

sar

ea.

Qu

est

ion

4:

Eva

luat

eth

evol

um

eof

the

soli

dgen

erate

dby

revo

luti

on

ofth

eb

oun

ded

regi

onby

grap

hs

ofth

efo

llow

ing

fun

ctio

nsy

=−x

+2,

x=

0an

dy

=0

abou

ty-a

xis

.

Qu

est

ion

5:

Eva

luate

the

volu

me

of

the

solid

gen

erate

dby

revolu

tion

of

the

bou

nd

edre

gio

nby

gra

ph

sof

the

foll

owin

gtw

ofu

nct

ion

sy

=x2

an

dy

=x

ab

ou

tx-a

xis

.

Qu

est

ion

6:

Eva

luate

the

volu

me

of

the

solid

gen

erate

dby

revolu

tion

of

the

bou

nd

edre

gio

nby

gra

ph

sof

the

foll

owin

gtw

ofu

nct

ion

sy

=x3

an

dy

=x

fromx

=0

tox

=1 2

ab

ou

tx-a

xis

.

Page 42: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R6:

PA

RT

IAL

DE

RIV

AT

IVE

SD

ate

:/

/D

ay:

Page:

40

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(1)

Fun

cti

on

sof

two

vari

ab

les:

Anti

-deri

vati

ves

Defi

nit

ion

9A

fun

ctio

nof

two

vari

abl

esis

aru

leth

at

ass

ign

san

ord

ered

pair

(x,y

)(i

nth

edom

ain

of

the

fun

ctio

n)

toa

real

nu

mbe

rw

.f

:R

2−→

R

(x,y

)−→

w

Exam

ple

85

1.f

(x,y

)=x2

+y2

2.f

(x,y

)=

xx2+y2

Part

ial

deri

vati

ves

of

afu

ncti

on

of

two

vari

ab

les

Ifw

=f

(x,y

)is

afu

nct

ion

oftw

ova

riab

les,

then

:1.

Th

ep

arti

ald

eriv

ativ

eoff

wit

hre

spec

ttox

isd

enote

dby∂f∂x,∂w∂x,f x

orwx,

and

itis

calc

ula

ted

by

app

lyin

gth

eru

les

of

diff

eren

tiati

on

tox

and

rega

rdin

gy

asa

con

stan

t.

2.T

he

par

tial

der

ivat

ive

off

wit

hre

spec

ttoy

isd

enote

dby∂f∂y,∂w∂y,f y

orwy,

and

itis

calc

ula

ted

by

app

lyin

gth

eru

les

of

diff

eren

tiati

on

toy

and

rega

rdin

gx

asa

con

stan

t.

Exam

ple

86

Calc

ula

tef x

an

df y

of

the

fun

ctio

nf

(x,y

)=

x2y3

+xyln

(x+y)

(2)

Fu

ncti

on

sof

thre

evari

ab

les

:

Anti

-deri

vati

ves

Defi

nit

ion

10

Afu

nct

ion

of

two

vari

abl

esis

aru

leth

at

ass

ign

san

ord

ered

pair

(x,y

)(i

nth

edom

ain

of

the

fun

ctio

n)

toa

real

nu

mbe

rw

.f

:R

3−→

R

(x,y,z

)−→

w

Exam

ple

87f

(x,y

)=x2

+y2

+z

Part

ial

deri

vati

ves

of

afu

ncti

on

of

thre

evari

ab

les

Ifw

=f

(x,y,z

)is

afu

nct

ion

of

thre

eva

riab

les,

then

:1.

Th

ep

art

iald

eriv

ati

ve

off

wit

hre

spec

ttox

isd

enote

dby∂f∂x,∂w∂x,f x

orwx,

an

dit

isca

lcu

late

dby

ap

ply

ing

the

rule

sof

diff

eren

tiati

on

tox

an

dre

gard

ingy

an

dz

as

aco

nst

ant.

2.

Th

ep

art

iald

eriv

ati

ve

off

wit

hre

spec

ttoy

isd

enote

dby∂f∂y,∂w∂y,f y

orwy,

an

dit

isca

lcu

late

dby

ap

ply

ing

the

rule

sof

diff

eren

tiati

on

toy

an

dre

gard

ingx

an

dz

as

aco

nst

ant.

3.

Th

ep

art

iald

eriv

ati

ve

off

wit

hre

spec

ttoz

isd

enote

dby∂f∂z,∂w∂z,f z

orwz,

an

dit

isca

lcu

late

dby

ap

ply

ing

the

rule

sof

diff

eren

tiati

on

toz

an

dre

gard

ingx

an

dy

as

aco

nst

ant.

Exam

ple

88

Calc

ula

tef x

,f y

an

df z

of

the

fun

ctio

nf

(x,y

)=z2y3−

y2(x

3+z)

Page 43: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R6:

PA

RT

IAL

DE

RIV

AT

IVE

SD

ate

:/

/D

ay:

Page:

41

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Secon

dp

art

ial

deri

vati

ves:

Ifw

=f

(x,y

)is

afu

nct

ion

oftw

ova

riab

les,

then

:

1.∂2f

∂x2

=∂ ∂x

(∂f∂x

)=

∂ ∂xf x

=f xx

2.∂2f

∂y2

=∂ ∂y(∂f∂y

)=

∂ ∂yf y

=f yy

3.∂2f

∂x∂y

=∂ ∂x

(∂f∂y

)=

∂ ∂xf y

=f xy

4.∂2f

∂y∂x

=∂ ∂y(∂f∂x

)=

∂ ∂yf x

=f yx

Note

:S

econ

dp

arti

ald

eriv

ativ

esof

afu

nct

ion

of

thre

eva

riable

sare

defi

ned

ina

sam

em

ann

er.

Anti

-deri

vati

ves

Th

eore

m5

Letf

(x,y

)be

afu

nct

ion

of

two

vari

abl

es.

Iff

,f x

,f y

,f xy

an

df yx

are

con

tin

uou

s,th

enf xy

=f yx.

Note

:Iff

(x,y,z

)is

afu

nct

ion

ofth

ree

vari

able

sandf

has

conti

nuou

sse

con

dp

arti

ald

eriv

ativ

es,

then

f xy

=f yx,fxz

=f zx

an

df yz

=f zy.

Exam

ple

89

Letf

(x,y

)=x3y

+xy2sin

(x+y)

,ca

lcu

latef xy

an

df yx.

Exam

ple

90

Letf

(x,y

)=z3x

+y2(x

+yz)

,ca

lcu

latef xy

an

df yx.

1.f x

,f y

an

df z

at

(1,1,1

).

2.f xx,f yy

an

df zz.

3.f xy,f yz

an

df zx

at

(0,−

1,1).

Page 44: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R6:

PA

RT

IAL

DE

RIV

AT

IVE

SD

ate

:/

/D

ay:

Page:

42

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Ch

ain

Ru

les

1.Ifw

=f

(x,y

)an

dx

=g(t

),y

=h

(t),

such

thatf

,g

an

dh

are

diff

eren

tiab

leth

en

df dt

=dw dt

=∂w∂x

dx dt

+∂w∂y

dydt

2.Ifw

=f

(x,y

)an

dx

=g(t,s

),y

=h

(t,s

),su

chth

atf

,g

an

dh

are

diff

eren

tiab

leth

en

∂f∂t

=∂w ∂t

=∂w∂x

∂x∂t

+∂w∂y

∂y∂t

∂f∂s

=∂w∂s

=∂w∂x

∂x∂s

+∂w∂y

∂y∂s

3.Ifw

=f

(x,y,z

)an

dx

=g(t,s

),y

=h

(t,s

),z

=k(t,s

),su

chth

atf

,g,h

andk

are

diff

eren

tiab

leth

en

∂f∂t

=∂w ∂t

=∂w∂x

∂x∂t

+∂w∂y

∂y∂t

+∂w∂z

∂z∂t

∂f∂s

=∂w∂s

=∂w∂x

∂x∂s

+∂w∂y

∂y∂s

+∂w∂z

∂z∂s

Exam

ple

91

Letf

(x,y

)=xy

+y2,x

=s2t,

an

dy

=s

+t

,ca

lcu

late

1.∂f∂t

2.∂f∂s

Exam

ple

92

Letf

(x,y,z

)=x

+sin

(xy)

+cos(xz),x

=ts,y

=s

+t

an

dz

=s t,

calc

ula

te

1.∂f∂t

2.∂f∂s

Page 45: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R6:

PA

RT

IAL

DE

RIV

AT

IVE

SD

ate

:/

/D

ay:

Page:

43

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Imp

licit

diff

ere

nti

ati

on

1.S

up

pos

eth

atth

eeq

uat

ionF

(x,y

)=

0d

efin

esy

imp

lici

tly

as

afu

nct

ion

ofx

sayy

=f

(x),

then dy

dx

=−Fx

Fy

2.S

up

pos

eth

atth

eeq

uat

ionF

(x,y,z

)=

0im

pli

citl

yd

efin

esa

fun

ctio

nz

=f

(x,y

),w

her

ef

isd

iffer

enti

able

,th

en

∂z

∂x

=−Fx

Fz

and∂z

∂x

=−Fy

Fz

Exam

ple

93

Lety2−xy

+3x2

=0,

fin

ddydx

.

Exam

ple

94

LetF

(x,y,z

)=x2y

+z2

+sin

(xyz)

=0

,fi

nd

∂z∂x

an

d∂z∂y

.

Page 46: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R6:

PA

RT

IAL

DE

RIV

AT

IVE

SD

ate

:/

/D

ay:

Page:

44

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Hom

ew

ork

(6):

Qu

est

ion

1:

Iff

(x,y

)=

2x4y3−xy2

+3y

+1,

fin

d1)f x

2)f y

3)f xy

4)f xx

Qu

est

ion

2:

Iff

(x,y

)=

4ex2y3

,

fin

d1)f x

2)f y

3)f xy

4)f xx

5)f yy

at(1,1

).

Qu

est

ion

3:

Ifx

=2s

+t,y

=s

lnt,w

=x2

+2xy

at

(1,1

)fi

nd

1)∂w∂s

2)∂w∂s

at(1,1

).

Qu

est

ion

4:

By

usi

ng

the

imp

lici

tfu

nct

ion

diff

eren

tiati

on

,fi

nddydx

1)x3−

3xy2

+y3

=5

2)x−√xy

+3y

=4

3)

2x3

+x2y

+y3

=1

Page 47: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R7:

DIF

FE

RE

NT

IAL

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

45

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Defi

nit

ion

of

ad

iffere

nti

al

equ

ati

on

Defi

nit

ion

11

An

equ

ati

on

that

invo

lvesx,y,y′ ,y′′,y′′′,y

(4),...,y

(n)

for

afu

nc-

tiony(x

)w

ithnth

der

ivati

vey(n

)ofy

wit

hre

spec

ttox

isan

ord

inary

diff

eren

tial

Equ

ati

on

of

ord

ern

.

Exam

ple

95

1.y′

=x2

+5

isa

diff

eren

tial

equ

ati

on

of

ord

er1.

2.y′′

+x

(y′ )3−y

=x

isa

diff

eren

tial

equ

ati

on

of

ord

er2.

3.

(y(4

))3

+x2y′′

=2x

isa

diff

eren

tial

equ

ati

on

of

ord

er4.

Rem

ark

3y

=y(x

)is

call

eda

solu

tion

of

adiff

eren

tial

equ

ati

on

ify

=y(x

)sa

tisfi

esth

at

diff

eren

tial

equ

ati

on

.

Exam

ple

96

Con

sider

the

diff

eren

tial

equ

ati

ony′

=6x

+4,

then

y=

3x2

+4x

isa

solu

tion

of

that

diff

eren

tial

equ

ati

on

.

Note

:1.y

=3x

2+

4x

isth

ege

ner

also

luti

onof

that

diff

eren

tial

equ

ati

on

.

2.If

anin

itia

lco

nd

itio

nw

asad

ded

toth

ed

iffer

enti

al

equ

ati

on

toass

ign

ace

rtai

nva

lue

forc

then

y=y(x

)is

call

edth

ep

art

icu

lar

solu

tion

of

the

diff

eren

tial

equ

atio

n.

Exam

ple

97

Con

sider

the

diff

eren

tial

equ

ati

ony′

=6x

+4

wit

hth

ein

itia

lco

ndit

iony(0

)=

2,y

=3x2

+4x

+c

isth

ege

ner

al

solu

tion

of

the

diff

eren

tial

equ

ati

on

,

y(0

)=

2⇒

3(0)

2+

4(0)

+c

=2⇒c

=2.

Hen

cey

=3x2

+4x

+2

isth

epa

rtic

ula

rso

luti

on

of

the

diff

eren

tial

equ

ati

on

.

Sep

ara

ble

Diff

ere

nti

al

equ

ati

on

s

Th

ese

para

ble

diff

eren

tial

equ

ati

on

has

the

form

M(x

)+N

(y)y′

=0

wh

ereM

(x)

an

dN

(y)

are

conti

nu

ou

sfu

nct

ion

s.T

oso

lve

the

sep

ara

ble

diff

eren

tial

equ

ati

on

:1.

Wri

teth

eeq

uati

on

asM

(x)dx

+N

(y)dy

=0⇒N

(y)dy

=−M

(x)dx

. 2.

Inte

gra

teth

ele

ft-h

an

dsi

de

wit

hre

spec

ttoy

an

dth

eri

ght-

han

dsi

de

wit

hre

spec

ttox

.

Exam

ple

98

Solv

eth

ediff

eren

tial

equ

ati

ony′+y3ex

=0

.

Page 48: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R7:

DIF

FE

RE

NT

IAL

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

46

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

99

Solv

eth

ediff

eren

tial

equ

ati

ondydx

=y2ex

,y(0

)=

1

Exam

ple

100

Solv

eth

ediff

eren

tial

equ

ati

ondy−sinx

(1+y2)dx

=0

.

Exam

ple

101

Solv

eth

ediff

eren

tial

equ

ati

one−

ysinx−y′ cos

2x

=0

Exam

ple

102

Solv

eth

ediff

eren

tial

equ

ati

ony′

=1−y

+x2−yx2

.

Page 49: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R7:

DIF

FE

RE

NT

IAL

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

47

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Th

efi

rst-

ord

erli

nea

rd

iffer

enti

aleq

uat

ion

has

the

form

y′+P

(x)y

=Q

(x),

wh

ereP

(x)

andQ

(x)

are

conti

nu

ous

fun

ctio

ns

ofx

To

solv

eth

efi

rst-

ord

erli

nea

rd

iffer

enti

aleq

uati

on

:1.

Com

pute

the

inte

grat

ing

fact

oru

(x)

=e∫ P(

x)dx

.

2.T

he

gen

eral

solu

tion

ofth

efi

rst-

ord

erli

nea

rd

iffer

enti

al

equ

ati

on

is

y(x

)=

1

u(x

)

∫ u(x

)Q(x

)dx

Exam

ple

103

Solv

eth

ediff

eren

tial

equ

ati

onxdydx

+y

=x2

+1

.

Exam

ple

104

Solv

eth

ediff

eren

tial

equ

ati

ony′−

2 xy

=x2ex

,y(1

)=e

.

Page 50: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R7:

DIF

FE

RE

NT

IAL

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

48

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

105

Solv

eth

ediff

eren

tial

equ

ati

ony′+y

=cos(ex

).

Exam

ple

106

Solv

eth

ediff

eren

tial

equ

ati

onxy′−

3y=x2

.

Page 51: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R7:

DIF

FE

RE

NT

IAL

EQ

UA

TIO

NS

Date

:/

/D

ay:

Page:

49

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Hom

ew

ork

(7):

Qu

est

ion

1:

Sol

veth

ed

iffer

enti

aleq

uat

ion

s:

1)x2dy

+y2dx

=0

2)co

s2xdy−y2dx

=0

3)xdydx−

2y=x3secx

tanx

4)y′

=x2

+y2

5)y′+

3y

=e−

2x

Qu

est

ion

2:

Solv

eth

ed

iffer

enti

al

equ

ati

ony′+

2y

=x

,y(0

)=

1

Qu

est

ion

3:

Solv

eth

ed

iffer

enti

al

equ

ati

onxy′+y

=si

nx

,y(π 3

)=

2

Qu

est

ion

4:

Solv

eth

ed

iffer

enti

al

equ

ati

ondydx

+y−

1ex+1

=0

Page 52: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R8:

PO

LA

RC

OO

RD

INA

TE

San

dA

PP

LIC

AT

ION

SD

ate

:/

/D

ay:

Page:

50 ==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

(1)

Defi

nit

ion

:

Defi

nit

ion

12

The

pola

rco

ord

inate

syst

emis

atw

o-

dim

ensi

on

al

coord

inate

syst

emin

whic

hea

chpo

intP

on

apla

ne

isdet

erm

ined

bya

dis

tan

cer

from

afi

xed

poin

tO

that

isca

lled

the

pole

(or

ori

gin

)an

dan

an

gleθ

from

afi

xed

dir

ecti

on

.

Rem

ark

4In

the

pola

rco

ord

inate

s(r,θ

),ifr>

0,th

epo

int

(r,θ

)li

esin

the

sam

equ

adra

nt

asθ;

ifr<

0,it

lies

inth

equ

adra

nt

on

the

oppo

site

side

of

the

pole

.M

ean

ing

that,

the

pola

rco

ord

inate

s(r,θ

)an

d(−r,θ)

lie

inth

esa

me

lin

eth

rou

ghth

epo

leO

an

dat

the

sam

edis

tan

ce|r|f

romO

,bu

ton

oppo

site

sides

ofO

.

Exam

ple

107

Plo

tth

epo

ints

whose

pola

rco

ord

inate

sare

give

n:

1.

(1,π/4

)

2.

(2,3π

)

3.

(2,−π/3

)

4.

(−3,π/6

)

(2)

Rela

tion

ship

betw

een

Recta

ngu

lar

an

dP

ola

rC

oord

inate

sL

et(x,y

)b

ea

rect

an

gu

lar

coord

inate

an

d(r,θ

)b

ea

pola

rco

ord

inate

.L

etth

ep

ole

at

the

ori

gin

poin

tan

dp

ola

raxis

on

x-a

xis

,an

dth

eli

ne

θ=

π 2on

y-a

xis

as

show

nin

Fig

ure

.

Fro

mth

etr

ian

gle

OA

P

cosθ

=x r⇒x

=r

cosθ,

sinθ

=y r⇒y

=r

sinθ.

Thu

s,

x2

+y2

=(r

cosθ)

2+

(rsi

nθ)

2,

=r2

(cos2θ

+si

n2θ)

x2

+y2

=r2.

x=

rco

sθ,

y=

rsi

tanθ

=y x,x2

+y2

=r2

Exam

ple

108

Con

vert

the

poin

tsfr

om

the

pola

rco

ord

inate

sto

the

rect

-an

gula

rco

ord

inate

s:1.

(1,π/4

)2.

(2,π

)

Page 53: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R8:

PO

LA

RC

OO

RD

INA

TE

San

dA

PP

LIC

AT

ION

SD

ate

:/

/D

ay:

Page:

51 ==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Exam

ple

109

Con

vert

the

poin

tsfr

om

the

rect

an

gula

rco

ord

inate

sto

pola

rco

ord

inate

s:1.

(5,0

)2.

(2√

3,2)

(3)

Sketc

hof

Pola

rC

urv

es

Cir

cle

sin

pola

rcoord

inate

s1.

Aci

rcle

its

cente

ratO

and

rad

iusa:r

=a

.2.

Aci

rcle

its

cente

rat

(a,0

)an

dra

diu

s|a|:r

=2a

cosθ

.3.

Aci

rcle

its

cente

rat

(0,a

)an

dra

diu

s|a|:r

=2a

sinθ

.

(4)

Are

ain

Pola

rC

oord

inate

sL

etr

=f

(θ)

be

aco

nti

nu

ous

fun

ctio

non

the

inte

rval

[α,β

]su

chth

at

0≤α≤β≤

2π.

Letf

(θ)>

0ov

erth

atin

terv

al

an

dR

be

ap

ola

rre

gion

bou

nd

edby

the

pol

areq

uat

ion

sr

=f

(θ),θ

an

as

show

nin

Fig

ure

.

A=

1 2

∫ β α

( f(θ)) 2 d

θ

Sim

ilarl

y,ass

um

ef

an

dg

are

conti

nu

ou

son

the

inte

rval

[α,β

]su

chth

at

f(θ

)>g(θ

).T

he

are

ab

ou

nd

edby

the

curv

esoff

an

dg

on

the

inte

rval

[α,β

]is

A=

1 2

∫ β α

[( f(θ)) 2 −

( g(θ)) 2] d

θ

Exam

ple

110

Fin

dth

eare

aof

the

regi

on

bou

nded

byth

egr

aph

of

the

pola

req

uati

onr

=2.

Exam

ple

111

Fin

dth

eare

aof

regi

on

lyin

gin

the

firs

tqu

adra

nt

an

din

side

the

circ

lew

ith

pola

req

uati

onr

=2.

Exam

ple

112

Fin

dth

eare

aof

regi

on

lyin

gin

side

the

circ

lew

ith

pola

req

uati

onr

=2

an

dou

tsid

eth

eci

rcle

wit

hpo

lar

equ

ati

onr

=1.

Page 54: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

CH

AP

TE

R8:

PO

LA

RC

OO

RD

INA

TE

San

dA

PP

LIC

AT

ION

SD

ate

:/

/D

ay:

Page:

52 ==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

Hom

ew

ork

(8):

Qu

est

ion

1:

Con

vert

the

poi

nts

from

the

pola

rco

ord

inate

sto

the

rect

angu

lar

coor

din

ates

:1.

(3,π/2

)

2.(2,π 3

)

Qu

est

ion

2:

Con

vert

the

poi

nts

from

the

rect

an

gu

lar

coord

inate

sto

the

pol

arco

ord

inat

es:

1.(4,0

)

2.(6,3

)

Qu

est

ion

3:

Fin

dth

eare

aof

regio

nly

ing

insi

de

the

circ

lew

ith

pola

req

uati

onr

=2.

Qu

est

ion

4:

Fin

dth

eare

aof

regio

nly

ing

inth

efi

rst

qu

ad

rant

an

din

sid

eth

eci

rcle

wit

hp

ola

req

uati

onr

=3.

Qu

est

ion

5:

Fin

dth

eare

aof

regio

nly

ing

insi

de

the

circ

lew

ith

pola

req

uati

onr

=1

an

dou

tsid

eth

eci

rcle

wit

hp

ola

req

uati

onr

=2.

Qu

est

ion

6:

Fin

dth

eare

aof

regio

nly

ing

inth

efi

rst

qu

ad

rant

an

din

sid

eth

eci

rcle

wit

hp

ola

req

uati

onr

=2

an

dou

tsid

eth

eci

rcle

wit

hp

ola

req

uati

onr

=3.

Page 55: (C) - KSUfac.ksu.edu.sa/sites/default/files/mdhkr_qdym_lmqrr_104...c) ertices: V (0 b), V 2 (0; b) 2 b. 2 a ts: W 1 (a; 0), W 2 (a; 0). 7 aph. (a) 9 x 2 25 y 2 225 (b) 16 x 2 9 y 2

M-1

04

GE

NE

RA

LM

AT

HE

MA

TIC

S2

An

swers

of

som

equ

est

ion

sP

age:

53

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

==

CH

AP

TE

R1:

1.F

(1,1

),D

:y

=−

3

2.(y−

2)2

=2(x

+4)

3.(x−

3)2

=8(y−

4)

4.x2

16

+y2 9

=1

5.(x−7)2

25

+(y

+2)2

16

=1

6.y2 4−

x2 9

=1

7.(x−7)2

1−

(y+2)2

8=

1

8.(x

+3)2

5+

(y−4)2

1=

1

9.(x

+1)

2=−

2(y−

3 2)

10.

(y+3)2

5−

(x+4)2

1=

1

CH

AP

TE

R2:

Q3:

1)11

2)73

CH

AP

TE

R3:

Qu

esti

on1:

1.X

=

5 6 7 2.X

=

6 8 10

Q

ues

tion

2:1.

X=

5 6 7

2.X

=

6 4 2

Q

ues

tion

3:1.

X=

7/2

−7/2 7

2.X

=

6 8 10

CH

AP

TE

R4:

Qu

esti

on

1:

1.

tan(3x−5)

3+c

2.

sin−1(x 4

)+c

3.xex−ex

+c

4.x

sinx

+co

sx

+c

5.xsin−1x

+√

1−x2

+c

6.

1 3ln|x−

2|−

1 3ln|x

+1|+

c

7.

(2x2−3)9

36

+c

8.

3si

n3√x

+c

Qu

esti

on

2:

1.

tanx

+secx

+c

2.x2(lnx−1)

8+c

3.

32 3

4.

ln3−

ln(e−

2)

5.

2ln

7−

ln4

6.−

31 2

CH

AP

TE

R5:

Q1.

5 12

Q2.

2−√2

√2

Q3.

27 6

Q4.

64π

3Q

5.

15

CH

AP

TE

R6:

Q2:

1)

8e2)

12e

3)

48e

4)

24e

5)

60e

Q3:

1)

12

2)

12

Q4:

1)−

3x2−3y2

−6xy+3y2

2)−

2√xy−y

−x+6√xy

3)−

6x2+2xy

x2+3y2

CH

AP

TE

R7:

Q1:

1)y

=−x

1+cx

2)y

=−1

c+ta

nx

Q4:y

=1 ex

ln(ex

+1)

+c

CH

AP

TE

R8:

Q1:

1)

(0,3

)Q

2:

2)

(2,π 6

)Q

6:

5π 2