203
By Robert C. Johnson NAT ONAL AERONAUTICS AND SPACE ADM NISTRATION "

By Robert C. Johnson

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

By Robert C. Johnson

NAT ONAL AERONAUTICS AND SPACE ADM NISTRATION "

NASA SP- 3046

REAL-GAS EFFECTS IN CRITICAL FLO'_

PROPERTIES OF NITROGEN AND HELIU/_

NEWTONS PER S()UARE METEI

(APPROX. 300 ATM)

By Robert C. Johnson

Lewis Research Center

Cleveland, Ohio

e_ A

Scientific and Technical Information Division

OFFICE OF TECHNOLOGY UTILIZATION 1968

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C.

SUMMARY

A critical-flow factor for gaseous nitrogenand helium flowing through critical-flow

nozzles has been calculated. This factor provides a convenient means for determining

the mass-flow rate of these gases through critical-flow nozzles. In addition, the results

include the nozzle throat velocity, the compressibility factor, the entropy, the enthalpy,

the specific heat, the specific-heat ratio, the speed of sound, and the critical pressure,

density, and temperature ratios. These results are tabulated as functions of the plenum

pressure and temperature. The pressure range is to 300x105 newtons per square meter

(approx. 300 atm). For nitrogen, the temperature range is from 100 to 400 K. For he-

lium, the range is from 15 to 400 K.

The FORTRAN IV subroutines used to calculate these results are also included.

These routines permit three different sets of independent variables. In addition to the

plenum pressure and temperature, the other independent variable is either the nozzle

exit pressure, the nozzle exit Mach number, or the nozzle exit temperature.

INTRODUCTION

In recent years, a number of methods have been developed for calculating the mass-

flow rate of nonideal gases through nozzles. These methods assume the flow to be one-

dimensional and isentropic. In reference 1, the authors present tables of the compres-

sible flow functions for the one-dimensional flow of air. Reference 2, using the state

equations of reference 3, presents tables for air, nitrogen, oxygen, normal hydrogen,

parahydrogen, and steam that permit the calculation of the isentropic mass-flow rate of

these gases through critical-flow nozzles. A critical-flow nozzle is one that operates

with a throat Mach number of 1. Reference 2 refers to a number of other reports that

describe other methodsfor making this type of calculation.Recently there has beena needto calculate the mass-flow rate of helium andnitro-

gen at pressures greater than havebeenpreviously reported. This needarises from theuse of these as driver gasesfor the propellant feed in vernier-control space thrusters.These gasesare commonly stored at pressures of the order of 250×105newtonspersquare meter. Nitrogen is one of the gasestreated in reference 2, but the pressurerange is only to 100xl05 newtonsper square meter. Helium is one of the gasestreatedin reference 4, but again the pressure range is only to 100×105newtonsper square meter.

This report presents a critical-flow factor that permits the isentropic mass-flowrate of nitrogen andhelium through critical-flow nozzles to be calculated from plenumconditions. For the caseof nitrogen, the temperature range is from condensationto400 K. For helium, the temperature range is 15to 400 K. For both gases, the pressurerange is from 0 to 300×105newtonsper square meter.

As a result of these calculations, two groups of quantities are tabulated. The firstgroup consists of quantities that dependonboth the plenum conditions andthe conditionsin the nozzlethroat, where the Mach number is 1. Thesequantities are

(1) Critical flow factor(2) Nozzle throat velocity(3) Ratio of throat to plenumpressure(4) Ratio of throat to plenum density(5) Ratio of throat to plenumtemperatureThe secondgroup consists of thermodynamic point functions that dependonly on

plenum conditions. Theseare(1) Compressibility factor(2) Enthalpy(3) Entropy(4) Specific heatat constantpressure(5) Specific-heat ratio(6) Speedof soundIn addition to these tabulations, a description of the calculation procedure is given

in appendixB. Appendix C presents a description of the FORTRANIV subroutines thatwere usedto make these calculations. The listing of these subroutines is presented inappendixD. All symbols are defined in appendixA.

ANALYSlS

Basic Equations

The calculations in this report make use of three basic relations. The first relation

describes the pressure-temperature-density behavior ef the gas. This is represented by

a compressibility factor Z which is a function of density and temperature and is defined

as

Z = Z(p, T) - p (1)pRT

The second relation describes the specific heat of the gas at vanishing density where the

compressibility factor equals 1. This specific heat is a function of temperature and is

represented by

= ~ TCv Cv (T) = Cp( ) - R (2)

(In this report, an ideal gas is defined as one whose compressibility factor is 1 and

whose specific heat is constant. ) The third relation describes the saturated vapor pres-

sure as a function of temperature. This is represented by

Psat = Psat (T) T _ T c (3)

For temperatures greater than critical, the fluid is always a gas for the pressures in-

volved. (For T _ Tc, the saturation pressure can be considered to be infinite. ) Since

this report is only concerned with the gaseous phase, equation (3) is merely used to con-

firm that the fluid is a gas. This condition is represented by

P < Psat (4)

Working Equations

Nitrogen. - The equations that follow were developed by the National Bureau of

Standards (NBS) cryogenic laboratories in Boulder, Colorado and are given in refer-

ence 5. The equation for the compressibility factor is equation (5) in reference 5 modi-

fied by dividing both sides of the equation by pRT. The equation is further modified by

changing the density units from gram-moles per liter to kilograms per cubic meter.

The following equation results from these modifications:

Z(P,T) = I + i+_+_+_+ O+ + 02

T T 2 T 3 . T5 / 6+ B8p3 +

T

where

+ p2(B..._12 B13+ ----._+

\T 3 T 4

p5

A = -7.135xi0-6

B 1 = 1.2034917×10-3

B 2 = -2.5107891xi0-I

B 3 = -4.9681584×i01

B 4 = 3.7073373xi02

B 5 = 1.496473xi06

B 6 = 2.1027719xi0-6

B 7 = -2.4516046×10-4

B 6 = 2.3102822x10-9

B 9 = 4.9666462

B10 = 1.6771266×103

BII = -1.656225×I05

BI2 = -6.5374809×10-5

B13 = 2.4209106×10-2

BI4 = -I.126389

B15 = 1.1829604X10-12

The equation for specific heat at vanishing density Cv is equation (4) in reference 5

modified by dividing by R and subtracting 1 from the result. The modified equation isas follows:

where T is inKand

V

_ =0_i+R °12T + (_3 T2 + °t4T3 + _5 T4

(6)

(5)

_1 = 2.501146

_2 = -9"720581xi0 -5

_3 = -1"036056×10 -6

_4 = "4"437256×10 -9

_5 = 6"825596×10 "12

4

The relation between the saturated vapor pressure and temperature is equation (1) in

reference 5 modified by changing the units of pressure from atmospheres to newtons per

square meter. The following equation results:

J2

l°gl0Psat = Jl + _ + J3T + J4T2 + J5 T3 + J6T4 + J7 T5

where

Jl = 5.5335216

J2 = -3"0507339xi02

J3 = 1"6441101xi0-I

J4 = -3"1389205xi0-3

J5 = 2"9857103xi0-5

J6 = -1"4238458xi0-7

J7 = 2"7375282xi0-I0

(7)

Helium. - The equation for the compressibility factor is that developed by the NBS

cryogenic laboratories in Boulder, Colorado and is equation (1) in reference 6. This

equation is modified by dividing both sides by pRT. The equation is further modified by

changing the density units from gram-moles per liter to kilograms per cubic meter.

The equation that results from these modifications is as follows:

B2B3B4Z(p,T)= I+ 1 +- +- +- + P + +__ p2 B8p3 B15p4 B16p5

T T2 T3 T5 / 6 + --T + --T + --T

where

p2 BF(] BI0 BII_+p2(BI2+BI3 BI4._IeAp2/T

+ L\T3 + T'_-+ T5/ \-_ T-"_"+ --_-/j

A = -4.057xi0 -4

B 1 = 4.0665013xi0 -3

B 2 = -I.1267764xi0 -I

B 3 = 2.3039266xi0 -2

B 4 = -5.7468818xi0 -2

(8)

5

B 5 = 1.3691368×10 -1

B 6 = 9.7390626xi0 -6

B 7 = 7.0543876×10 -4

B 8 = -5.3854984×10 -6

B 9 = -3.8053762xi0 -3

BI0 = 2.625179xi0 -2

Bll = 7.6742661x10 -2

Bl2 = -8.7904911xi0 -7

Bl3 = 1.9960611xi0 -6

B14 = -8.1300167xi0 -6

B15 = 3.6743583x10 -8

B16 = -3.4049435xi0 -II

Since helium is monatomic, the specific heat at vanishing density is given by

Cv_ 1.5

R(9)

And since the temperatures involved for these calculations are always greater than criti-

cal, the helium is always in the gaseous phase for the pressures involved.

Calculations of Plenum Thermodynamic Functions

These functions are the compressibility factor, enthalpy, entropy, specific heat at

constant pressure, specific-heat ratio, and speed of sound. The basic equations that are

used to evaluate these functions follow. The working equations are listed in appendix B.

Compressibility factor. - This function is evaluated by use of equations (5) or (8).

Enthalpy and entropy. - These equations, which are derived from equations (6) and

(7) in reference 5, are

H dT + - (I0)

S dT in p - - 1 + T(-_--_Z + K S (11)

R W aW/ J

The temperature integrals in equations (10) and (11) are indefinite integrals whose con-

stants of integration are included in K H and KS, respectively. The values of KH and

K S depend on the choice of the fluid reference state; K H and K S are chosen such that

when the fluid is at this reference state the values of enthalpy and entropy are zero. The

reference state for nitrogen is the triple point (i. e., T = 63. 156 K, P = 0. 1253x105

N/m2), which is that used in reference 5. The reference state for helium is the liquid at

a temperature of 0 K and a pressure of 0 newtons per square meter. This reference

state is the same as that used in reference 6.

Specific heat at constant pressure. - This function is given by

(12)

Specific-heat ratio. - This function is given by

CpV- -I+

C v

(13)

Speed of sound. - This function is given by

(14)

where k is the isentropic exponent and is defined by

k--P- op _-t + ap aTP S p p T

(15)

Calculation of Nozzle Throat Thermodynamic Functions

These quantities are the critical-flow factor, nozzle throat velocity, ratio of throat

to plenum pressures, ratio of throat to plenum densities, and ratio of throat to plenum

temperatures.

Critical-flow factor.

tion:

- The critical-flow factor C* is defined by the following equa-

c*-Gt R_° (16)

PO

The mass-flow rate per unit area Gt is determined by the methods of reference 2. The

assumptions involved in this calculation are

(1) The flow from the plenum to the nozzle throat is isentropic.

(2) The flow is one-dimensional.

(3) The Mach number in the nozzle throat is 1 (i. e., the nozzle is choked).

If, in addition to these assumptions, the specific heat of the gas is constant and the

compressibility factor of the gas is 1 (i. e., the gas is ideal), the ideal-gas, critical-flow

* is constant for a given gas and is represented byfactor Ci

* [7 _. 2 ._(7i+1)/(_i-1)11/2 (17)

* has a value of 0.6848 for nitrogen where 7i = 1.4 and 0. 7262 for heliumwhere C i

where T i = 5/3.Nozzle throat velocity. - The nozzle throat velocity is also equal to the speed of

sound in the nozzle throat since the Mach number is 1. This is evaluated by use of

equation (14).

Throat to plenum pressure, density, and temperature ratios. - These ratios are

directly calculated through knowledge of the pressure-density-temperature state of the

gas at both the plenum and the nozzle throat locations.

Although these functions are calculated by the methods of reference 2, the iteration

procedures for calculating the plenum density, the nozzle throat density, and the nozzle

throat temperature are different. A description of these procedures is given in appen-

dix B. The procedures in this report permit calculation at pressures close to those that

cause condensation. This calculation could not be done by the methods of reference 2.

RESULTS AND DISCUSSION

Calculations were performed for nitrogen and helium.

tions yielded

For both gases, the calcula-

8

(6)

(7)

(8)

(9)

(lO)

(11)

(1) Critical-flow factor, C* - Gt R_f_°

Po

(2) Nozzle throat velocity, v t in m/sec

(3) Critical pressure ratio, pt/Po

(4) Critical density ratio, pt/Po

(5) Critical temperature ratio, Tt/T o

Compressibility factor, Z o = po/PoRTo

Enthalpy, Ho/R in K

Entropy, So/R

Specific heat, Cp, o/R

Specific-heat ratio, ro = Cp, o/Cv, o

Speed of sound, a o in m/sec

The values of the specific gas constant R is 296. 774 square meters per square sec-

ond per K for nitrogen and 2077.15 square meters per square second per K for helium.

The tables for the critical-flow f actor permit the calculation of the isentropic mass-

flow rates per unit area by means of equation (16). This factor is plotted in figure 1 for

1.1

1.0

.g

"y

.7.__%- .....

"- Ideal-gas

f

_r

value

Temperature,K

175

2OO

250

3OO

40O

5O i00 150 200Pressure, N/m2

Figure 1. - Critical-flow factor for nitrogen.

250 _OxlO.s

9

the case of nitrogen to indicate the extent of deviation of this factor from the value it

would have if nitrogen were an ideal gas with a specific-heat ratio of 1.4. The actual

mass-flow rate _n of a gas through a critical-flow nozzle of geometric throat area A t

is given by

l:n = CDAtG t (18)

The discharge coefficient C D mainly represents the effects of the nonisentropic and

non-one-dimensional flow in the boundary layer of the nozzle. The discharge coefficient

is generally determined by a nozzle calibration and is usually plotted as a function of

Reynolds number. Typical values of CD are between 0.96 and 1. The results for the

nozzle used in reference 7 indicate that C D is independent of Mach number in the range

from 0.2 to 1. Since this indicates that compressibility effects on the discharge coeffi-

cient are negligible fer flows up to critical, the real-gas effects on the discharge coeffi-

cient should also be negligible for flows up to critical.

The maximum nozzle throat pressure to maintain critical flow in the nozzle can be

easily determined by multiplying the plenum pressure by the tabulated values of the

critical pressure ratio. The pressure-temperature-density state of the gas at the noz-

zle throat can be determined from the plenum conditions by use of the tables of the criti-

cal density and temperature ratios. The speed of sound in the nozzle throat is the same

as the tabulated value of the nozzle throat velocity.

All the tables in this report contain at least one nonsignificant figure, which aids in

tabular interpolation.

The results for the two gases are discussed in the following paragraphs.

Nitrogen

The results for nitrogen are presented in tables I(a) to (k) for pressures up to

300x105 newtons per square meter and temperatures that range from 100 to 400 K. The

state equation (eq. (5)) used in this report was developed in reference 5 from pressure-

volume-temperature data representing pressures up to 300x105 newtons per square

meter and temperatures up to 350 K. The root-mean-square error in calculating the

compressibility factor is quoted as 0.2 percent in reference 5. This error would, of

course, be larger if only regions near saturation were considered. The errors in de-

rived functions such as specific heat are estimated to be under 5 percent.

Since the state equation (ref. 5) used for the calculations in this report does not rep-

resent data above 350 K, the functions calculated from this equation in the region from

350 to 400 K represent an extrapolation. A comparison of this data with that tabulated

10

in reference 3 indicates that this extrapolation is goodto within 0.3 percent in both thecompressibility factor and the specific heat at pressures up to 100xl05 newtonspersquare meter. Becauseof the form of the state equationandthe fact that the extrapola-tion is toward higher temperatures, the extrapolation shouldbe valid to 300x105newtonsper square meter.

Helium

The results for helium are given in tables II(a) to (k) for pressures up to 300x105

newtons per square meter and temperatures that range from 15 to 400 K. The state

equation in this report was developed in reference 6 from data representing pressures

up to 100xl05 newtons per square meter and temperatures that ranged from 2.5 to 570 K.

In the temperature range from 10 to 300 K, reference 6 estimates that the calculated

values of enthalpy and entropy are accurate to within 3 percent, and the specific heat is

accurate to within 5 percent.

Since the state equation (ref. 6) used for the calculations in this report represents

data whose pressures extend only to 100xl05 newtons per square meter, the functions

calculated from this equation at pressures greater than 100x105 newtons per square

meter represent an extrapolation. For temperatures greater than 20 K, reference 8

states that this extrapolation is good to 1300x105 newtons per square meter.

A comparison of the compressibility factor calculated from the experimental data

in reference 8 with the compressibility factor calculated from equation (8) indicates that

this extrapolation is valid for temperatures greater than 15 K and pressures up to

300x105 newtons per square meter.

Subroutines

In addition to the tables presented in this report, the FORTRAN IV subroutines used

to compute these tables are described in appendix C and are presented in appendix D.

While the tables in this report are for critical flow, the subroutines used to compute

these tables are more versatile. In fact, they can be used to compute either subsonic

or supersonic isentropic flow functions for three different sets of independent variables.

All three sets of these variables include the plenum pressure and the plenum tempera-

ture. The third independent variable is one of the following:

(1) Nozzle exit Mach number

(2) Nozzle exit pressure

(3) Nozzle exit temperature

11

It shouldbenotedthat for critical flow, the downstreamnozzle reference station is al-ways the nozzlethroat. For supersonic flow this would not be true. Thus, in the de-scriptions of the calculation procedures in appendixesB and C, the downstreamnozzlereference station is referred to as the nozzle exit.

CONCLUDING REMARKS

The tables of the critical-flow factor in this report provide a means for calculating

the one-dimensional isentropic mass-flow rate of nitrogen and helium through critical-

flow nozzles. For nitrogen, this critical-flow factor ranges from its ideal-gas value of

0.648 to a value of 1.196 at 155 K and 140x105 newtons per square meter. For helium

the range is from 0. 483 at 15 K and 300×105 newtons per square meter to a value of

0. 814 at 15 K and 30x105 newtons per square meter. The ideal-gas, critical-flow factor

for helium is 0.726. This indicates that significant errors would occur if the ideal-gas

values of the critical-flow factor were used in mass-flow calculations.

The .subroutines in this report have been used to reduce calibration data for criticai-

flow nozzles. The design of these subroutines permits easy modification for other gases.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, August 22, 1968,

128-31-06-77-22.

12

APPENDIXA

a

C*

C D

Cp

Cp

C v

Cv

G

KS

k

M

P

SYMBOLS

nozzle throat area, m 2

speed of sound, m/sec

Psat

critical-flow factor

discharge coefficient

specific heat at constant

pressure, J/(kg)(K)

specific heat at constant

pressure for a gas at

vanishing density,

J/(kg)(K)

specific heat at constant

volume, J/(kg)(K)

specific heat at constant

volume for a gas at

vanishing density,

J/(kg)(K)

mass-flow rate per unit

area, kg/(m2)(sec)

enthalpy, J/kg

constant in enthalpy

equation, K

constant in entropy

equation

isentropic exponent

Mach number

R

S

T

T c

Tsat

V

Z

Z I, • . . , ZVI

Y

P

Subscripts:

e

i

O

t

mass-flow rate, kg/sec

pressure, N/m 2I,...,n-l,n

minimum pressure at

which condensation oc-

curs for given temper-

ature, N/m 2

gas constant, m2/(sec 2) (K)

entropy, J/(kg)(K)

temperature, K

critical temperature, K

maximum temperature at

which condensation oc-

curs for fixed pres-

sure, K

velocity, m/sec

compressibility factor

functions of compress-

ibility factor as defined

in appendix B

specific-heat ratio

density, kg/m 3

nozzle exit conditions

ideal gas

plenum conditions

nozzle throat conditions

when Mach number is 1

estimate in an iteration

process

13

APPENDIX B

CALCULATIONS

The following functions of the compressibility factor are used in the calculations:

ZI = Z(p,T) - ppRT

(B1)

ZII=Z+ TfaZ_l\a._.T]p-_ a(__)pm2).

ZIII= Z +p a(._p) _ 1 a(._p)T RT W

(B3)

(B4)

Z V f0 __(_ ®m

kaT]p p

(B5)

C v - Cv

R(B6)

In terms of these functions, equations (10) to (13) and (15) become

H=/Cv dT+ T(Z IRZ v) + K H (B7)

where K H is 508.31 K for nitrogen and 6. 98973 K for helium.

f_s.. dT ZIv+KsR JR T

(B8)

14

I

where K S is 0. 77124 for nitrogen and 4. 75063 for helium.

¢p Cv z 2_ IIR R ZVI +

ZIII

(z7 - - - III+ '

E z,. Zv,/

(B9)

(B10)

(Bll)

The calculation of the isentropic flow functions from the plenum to the nozzle exit

involves the following equations:

PO =

PO

ZI(P o, To)RT o

(B12)

2

ae = PeR k(Pe' Te)

Pe

(B13)

2v e

R

So- Se f T° Cv dT

=0=j% -_¥-

PO

In -- - Ziv(Po, To) + ZIV(Pe, Te)Pe

(B14)

If T° Cv=2

R

_'T edT+ TO [ZI(Po, TO)- Zv(Po, TO)_- Te[Zi(Pe , Te)- Zv(Pe , Te)]t

(B15)

15

The independentvariables for the plenum conditions are the pressure and tempera-

ture. The calculation of the plenum thermodynamic functions involves density. It is,

therefore, necessary to solve equation (]312) for density. Since this equation involves

density implicitly, an iterative procedure is necessary for solution. A description of

this procedure follows:

First estimate of plenum density:

Succeeding estimates:

Po, n

Po (B16)Po, 1 -

RT o

= Po, n-1 + O(_P)T (Po - Po, n-1 ) (B17)

where

T RToZIH(Po, n-I' To)

When the last two density estimates agree to within one part per million, the compu-

tation is considered complete. For certain cases of helium at high pressures and low

temperatures, this procedure failed to converge. For these cases, the iteration proce-

dure is restarted with the following initial estimate:

_ Po (B19)Po, 1

3RT o

This restart permitted convergence for all tabulated cases.

If the nozzle exit independent variable is the temperature, the nozzle exit density

can be determined by solving equation (B 14) for Pe" Since Pe is involved implicitly in

equation (B14), an iterative procedure for solution is used. This procedure is as follows:

First estimate of nozzle exit density:

16

lnPe, 1 = InPo-/_e T° Cv dTR T

T

(B20)

Succeedingestimates:

r S(in Pe ) ]

In Pe, n = In Pe, n-1 + _(So _ Se)jT (So - Se) (B21)

where

_. a(ln pe ) I = 1 (B22)

__(S--o --SeiJT Zii(Pe, n_l, Te)

and

A(So_ Se )=__Te T°CvR dTT+ ZIV(Po' To) - ZIV(Pe, n-1' Te) (B23)

When the last two density estimates agree to within one part per million, the computation

is considered complete.

For physically valid solutions for either Po or Pe' ZI' ZII' and ZII I must be

positive. That is, the density has to be positive, the pressure has to increase with tem-

perature at constant density, and the pressure has to increase with density at constant

temperature. These conditions were verified for all tabulated cases.

Once the thermodynamic state of the gas is known at both the plenum and the nozzle

exit, isentropic flow quantities can be calculated. For example, the nozzle exit Mach

number can be calculated from equations (B13) and (B15), and the nozzle exit mass-flow

rate per unit area from the nozzle exit density and equation (B15).

If the nozzle exit Independent variable is either pressure or Mach number rather

than temperature, a nozzle exit temperature has to be estimated such that the calculated

pressure or Mach number agrees with the prescribed pressure or Mach number. This

temperature estimate is then used in equations (B20) to (B23) to calculate the nozzle exit

density. (This procedure always assures that the nozzle exit entropy is equal to the

plenum entropy. ) The procedures for these two cases are discussed separately.

If the nozzle exit pressure is the independent variable, the first estimate of the noz-

zle exit temperature is less than the plenum temperature and either greater than the

saturation temperature for the case of nitrogen or greater than the critical temperature

for the case of helium. These conditions take precedence over the following equation

for the first temperature estimate. This estimate represents the nozzle exit tempera-

ture that would exist if the gas were ideal.

17

';i-=T "e

Te, 1 o0

(B24)

The second temperature estimate is given by

Te, 2 (Pe - Pe, 1) (B25)

where

\ ?'i ]\Pe, l]

(B26)

The other estimates are given by

(Te, n-1 - Te, n-2_ (pe _

Te'n= Te'n-l+ \Pe, n-1 Pe, n-2/Pe, n- 1) (B27)

For all estimates, a check is made to determine that the temperature is either

greater than saturation for the case of nitrogen or greater than critical for the case of

helium. When the calculated nozzle exit pressure Pe, n agrees with the prescribed noz-

zle exit pressure Pe to within one part per million, the nozzle exit temperature is con-sidered to be known.

If the nozzle exit Mach number is the independent variable, the first estimate of the

nozzle exit temperature is made on the basis of the gas being ideal. This estimate is

W o= (B28)

Te, 1 Ti - 1 21+_

2 Me

The second estimate is given by

(M e - Me, 1) (B29)

18

where

taT : (_i- 1)Me

i To /

(B30)

The succeeding estimates are given by

fTe, n_ - Te, n_2_

Te, n = Te, n_ I + \Me, n-I Me, n-2/ (M e - Me, n_ 1) (B31)

For all estimates, a check is made to determine that the temperature is either above

saturation for the case of nitrogen or above critical for the case of helium. When the

calculated nozzle exit Mach number agrees with the prescribed nozzle exit Mach number

to within one part in ten thousand, the nozzle exit temperature is considered to be known.

19

APPENDIX C

DESCRIPTION OF FORTRAN IV SUBROUTINES

The subroutine used to calculate the thermodynamic properties of nitrogen is refer-

enced by the following statement:

CALL CNIT (KKK, PA, TA, AM, PB, TB, FLOW, KODE)

For a valid computation, the following conditions must be satisfied:

55 K<T<501K (c1)

P < Psat (c2)

p < 351×105 N/m 2 (C3)

The subroutine used to calculate the thermodynamic properties of helium is refer-

enced by the following statement:

CALL CHEL (KKK, PA, TA, AM, PB, TB, FLOW, KODE)

For a valid computation, the following conditions have to be satisfied:

5.4 K< T < 501K

p < 305x105 N/m 2

(C4)

(C5)

For both subroutines, certain variables are returned through labeled common.

These are referenced by the following statement:

COMMON/OUTPUT/OUX(15), Z (6, 2), KODI(5)

The following symbol definitions apply to both subroutines:

KKK Controls entry to and exit from the subroutine. If KKK=0, just the plenum proper-

ties are calculated. If KKK=2, both the plenum and the nozzle exit properties are

calculated. If KKK=l, just the nozzle exit properties are calculated. For a given

set of plenum conditions, at least one reference has to be made for KKK=0 or 2

before a reference can be made for KKK=I.

20

PA

TA

AM

PB

FLOW

KODE

OUX(1)

oux(2)

oux(3)

oux(4)

oux(5)

oux(6)

oux(7)

Plenum pressure, Po' N/m2

Plenum temperature, To, K

Nozzle exit Mach number, M e

Nozzle exit pressure, Pe' N/m2

Nozzle exit mass-flow rate per unit area, Ge, kg/(m2)(sec)

Indicates the independent variables to the subroutine. If KODE=I, the inde-

pendent variables are PA, TA, and PB. If KODE=2, the independent varia-

bles are PA, TA, and AM. If KODE=3, the independent variables are PA,

TA, and TB.

Actual mass-flow rate Ge divided by ideal mass-flow rate Ge, i" The idealmass-flow rate is defined as follows:

2 (pe_2/Yi _ :Pe_(Yi- 1)/Y_ 1/2

Ge'i _i -1 RTo \_oo,] \_oo: _J (C6)

for Me _ 1

_y : 2 ._(Yi+l)6:i-l)ll/2 Uo for Me=Mt=l

Ge' i = [ i\_-_/ ]

where 7i = 7/5 for nitrogen and yi

Nozzle exit specific heat, Cp, e/R

Nozzle exit specific-heat ratio, Ye

Nozzle exit isentropic exponent, k e

Plenum enthalpy, Ho/R , K

Plenum specific heat, Cp, o/R

Plenum specific-heat ratio, 7o

= 5/3 for helium.

(C7)

21

ocx(8)

oux(9)

oux(10)

OUX(ll)

OUX(12)

OUX(13)

Plenum isentropic exponent, k o

Plenum pressure as calculated from plenum density and temperature, N/m 2

For KODE=I, this is the nozzle exit pressure in newtons per square meter

as calculated from nozzle exit density and temperature. For KODE=2, this

is the nozzle exit Mach number as calculated from nozzle exit thermodynamic

gas state. For KODE=3, this is set equal to zero.

Indicates the degree of convergence achieved in calculating the plenum den-

sity and is defined by

OUX(II) = 1 Po, n (C8)

Po, n- 1

Indicatesthe degree of convergence achieved in calculationof nozzle exit

density and is defined by

OUX(12) = ln{-e'n-tl_/P '\ Pe-A'n--1 1

\ Pe, n / Pe, n

Ratio of plenum pressure to saturation pressure, or

(C9)

OUX(13)- Po

Psat

(CIO)

OUX(14) Ratio of nozzle exit pressure to saturation pressure, or

OUX(14)- Pe (Cll)

OUX(15) Plenum entropy, So/R

Psat

The following symbols refer to functions of the compressibility factor.

tions are defined in appendix B.

These func-

22

Z(1, 1) Z(1, 1) = ZI(Po, To)

Z(2, 1) Z(2, 1) = ZII(Po, To)

Z(3, 1) Z(3, 1) = ZIII(P o, T o)

Z (4, 1) Z(4, 1) = ZlV_ o, To)

Z(5, 1) Z(5, 1) = Zv(Po, To)

Z(6,I) Z(6,I)= ZVI(Po,To)

Z(1,2) Z(1,2)= Zi(Pe,Te)

Z(2,2) Z(2,2)= Zii(Pe,Te)

Z(3,2) Z(3,2)= Zill(P,Te)

Z(4,2) Z(4,2)= ZlV(Pe,Te)

Z(5,2) Z(5,2): Zv_Oe,Te)

Z(6,2) Z(6,2)= Zvi(Pe,Te)

The following symbols represent integers that are used to indicate if the calculation

is valid. If all these integers equal zero, a valid calculation has been performed. If

these are not zero, the conditions are as follows:

KODI(1) Equals 1 if the plenum conditions are out of range in either temperature or

pressure. A value of 1 terminates the calculation.

KODI(2) Equals 1 if the nozzle exit conditions are out of range in either temperature

or pressure. A value of 1 terminates the calculation. For the case of nitro-

gen, the computation is permitted to continue if pe/Psa t is between 1 and 3.

If this is the case, KODI(2) is set equal to 2.

KODI(3) If KODE=I, this quantity equals 1 if the calculated nozzle exit pressure fails

to converge to the prescribed nozzle exit pressure. If KODE=2, this quan-

tity equals 1 if the calculated nozzle exit Mach number fails to converge to

the prescribed nozzle exit Mach number.

KODI(4) Equals 1 if the iteration procedure for the calculation of the plenum density

fails to converge.

KODI(5) Equals 1 if the iteration procedure for the calculation of the nozzle exit den-

sity fails to converge.

23

APPENDIX D

FORTRAN IV SUBROUTINES

$1RFTC

C

IO

11

CNITS LIST,DECK

SUBROUTINE CNIT (KKK,PA,TA,AM,PB,TBtFLOW,KOI)E)

EQUIVALENCE (R,RR)

COMMQN /I)UTPUT/ OUX(15),Z(6,2),K[]Dl(5)

COMEON /CONV/ MMgM,NN

I)ATA AI,A2,A3,A4,A5/Z.50II46,-9.720581E-5,1.O36056E-6,-4.437258E-9

1,6.82559hE-12/DATA R,GAMA,GAMB,GAMC,GAME/296.774,.2R5714286,.2,1.42857143,7-O/

CP(S)=AI+(A2+(A3+(A4+AS*S)*S)*S)*S

CS(S)=AI_ALQG(S)+(A2+(A3/2.0+(A4/3.0+AS_S/4.0)*S)*S)_S

CH(S)=(AI+(A2/2.0+(A3/3.O+(A4/k.O+AS_S/5.0)_S)_S)=S)*S

IF (KKK.EO.I) GO TO ]0

I)U I N=I,5

KUDI(N)=O

DO 2 N=I,12

OUX(N)=O.O

OUX( lb)=O.O

[)[/ 3 NX=I,2

O0 3 N=I,6

Z(N,NX)=O.O

CALL LEJGIC (PA,TA,OUX(I3),KOOI(I))

IF (KODI(1).EO.2) Kr)Dl(1)=t

IF (KLII)I(I).EO.I) RETURN

THE ITERATION PROCESS FOR CALCULATING THE PLENUM DENSITY FOLLOWS.

A=PA/(R*TA)

RHIJA=A

CALL ZETA (I,RHOA,TA,ZtI)

DO 7 MM=I,50

OUX(II)=(RHOA-PA/IZ(I,I)mR*TA))/RHOA

IE (ABSIOUX(II)).LT.I.OE-6) GO TO 8

AAA=(Z(I,I)-A/RHOA)/Z(3,1)

IF (I.O-AAA) 5,5,6

AAA=AAA/2.0

GO TO 4

RHOA=RHDA*(I.O-AAA)

CALL ZETA (I,RHOAgTA,Z,I)

KOOI(4)=I

CALL ZETA (3,RHOA,TA,Z,I)

IF ((Z(I,I).GT.O.).ANO.(Z(?,I).GT.O_).ANO.(Z(B,I).GT.O-)) 60 TO 9

KOD1 ( I ) = t

RET[JRN

THE PLENUM THERMOL)YNAMIC FUNCTIONS ARE CALCULAIED BY THE FOLLUWING

STATEMENTS

CV=CP(TA)-Z(h,I)

GA=Z(3,] )+Z(2,1)*_2/CV

OUX(7)=GA/Z(3,I)

OUX(_)=GAIZ(I,I}

OUX(6)=CV_L)OX(7)

t]UX(5)=CH(TA)+TA*(Z(1,I)-Z(5,I))+50_.31

OUX( tb )=CS( TA )-AL 06 (PHOA)-Z (4_ t ) +0o 77t24

OUX(9)=Z( l, I )_:TA:;:R_H{JA

IF (KKK.EO.O) R_T{JRN

(;O TI) (II,IS,I6),KOE)E

AM=().(_

B4

12

13

14

15

C

C

C

C

C

16

17

18

19

2O

Pl

27

73

24

C

THE INITIAL ESTIMATE OF T:HE NOZZLE EXIT TEMPERATURE WHEN THE NOZZLE

EXIT PRESSURE IS GIVEN IS MADE BY THE FOLLOWING STATEMENTS,

I B:TA*(PB/PA)**GAMA

IF (TB.GE.126.36) GO TO 14

IF (PB-3.39S4E6) 12,12,13

X=ALOGIO(PB)-5.0057166

TBI=77.A635+(19.5407+(5.33082+(I.41895+.309IO6*X)*X)*X)*X

IF ((TB.LT.TBI).ANO.(TA.GT.I.OOI*TBI)) TB=TBI

GO TO 14

IF (TA.GT.126.48) TB=126.36

TBI=TB

IF (PA,GToPB) GO TO 17

KODI(2)=I

RETURN

PB=PA*(I.O+GAMB*AM**2)*m(-3.5)

THE INITIAL ESTIMATE OF THE NOZZLE EXIT TEMPERATURE WHEN THE NOZZLE

EXIT MACH NUMBER IS GIVEN IS MADE BY THE FOLLOWING STATEMENTS.

TB=TA/(I.O+GAMB_AM**2)

TBI=TB

GO TO 17

PB=PA=(TB/TA)**(3.5)

IF (TA.GT.TB) GO TO 17

KODI(2)=I

RETURN

KODI(3)=O

NN=I

DO IR N=I,4

OUX(N)=O.O

OUX(IO)=O.O

OUX(12)=O.O

DO 19 N=I,6

Z(N,2)=O.O

FLOW=O.O

KODI(5)=O

CALL LOGIC (PB,TB,OIJX(I4),KODI(2))

IF (KOOI(2).EO.I) RETURN

THE ITERATION PROCESS FOR CALCULATING THE NOZZLE EXIT DENSITY

FOLLOWS.

AL=ALOG(RHOA)+Z(4,1)+CS(TB)-CS(TA)

ALA=AL-Z(4,1)

CALL ZETA (2,EXP(ALA),TB,Z,2}

DO 21 M=I,50

OUX(12)=ALA-AL+Z(4,2)

IF (ABS(OUX(12)).LT.I.0E-6) GO TO 22

ALA=ALA-[)UX(12)/Z(2,2)

CALL ZETA (2,EXP(ALA),TB,Z,2)

K001(5)=I

RHQB=EXP(ALA)

IF (RHI)A-RHOR) 23,23,24

KOOI(2)=I

REIURN

CALL ZETA (3,RHUB,1B,Z,2)

25

C THE THERMODYNAMIC FUNCTIONS AT THE NOZZLE EXIT C()NDITIONS ARE

C CALCULATED BY THE F(}LLOWING STATEMENTS.

CVV=2.0_(CH(TA)-CH(TB)+TA_(Z(I,I)-Z(5,I))-TB_(Z(1,2)-Z(5,2))}

CV=CP(TB)-Z(6,2)

GA=Z(3,2)+Z(2,2)_:_Z/CV

OUX(3)=GA/Z(3,2)

OUXi4)=GA/Z(I,2)

OUXiZ)=CV_OUX(3)

C

25

GO TO (25,29,33),KODE

AM:ASORT(VV/(Z(1,2)*OUX(4)*TB))

IF (NN.NE.1) BI=OUX(IO)

DUX(IO):RHOB*Z(I,2)*R*TB

PERR=PB/OUX(IO)-I.O

IF (A6S(PERR).LT.I.OE-6) GO TO 34

IF (NN.GT.2O) GO TO 28

NN=NN+I

C

C THE SUCCEEDING ESTIMATES OF THE NOZZLE EXIT TEMPERATURE ARE MADE

C BY THE FOLLOWING STATEMENTS FOR THE CASE OF A GIVEN NOZZLE EXIT

C PRESSURE.C

IF iNN-2) 27,26,27

26 TB=TB*(I.O+GAMA*PERR)

IF (TB.GE.TA) TB=.999_TA

TB2=TB

(;0 TO 20

27 TB=TB+(TB2-TBI)_(PB-OUX(IO))/(OUX(IO)-BI)

TBI=TB2

TB2=TB

C

GO TO 20

2R KODI(3)=I

GO TO 34

29 PB=Z(1,2)*TB_:R_RHOB

IF (NN.NE.I) BI=OUX(IO)

OUX(IO)=ASORT(VV/(Z(1,2)*TB_OUX(4)))

IF (ABS(I.O-OUX(IO)/AM).LT.I.OE-#) GO TO 34

IF (NN.GT.20) GO TO 32

NN=NN+I

CC THE SUCCEEDING ESTIMATES OF THE N_ZZLE EXIT TEMPERATURE ARE MADE

C BY THE FOLLOWING STATEMENTS FOR THE CASE OF A GIVEN NE]ZZLE EXIT

C MACH NUMBER.

C

IF (NN-2) 3t,30,31

30 IB=TB_(I.O-O.4OO_TB*AM_(AM-OIJX(IO))/TA)

IF (TB.GE.TA) TB=.999_TA

TB2=TB

GQ TO 20

31 1B=TB+(TB2-TBI)_(AM-()UX(IO))/(OUX(IO)-BI)

IBI=TB2

TB2=TB

C

G[) lO 2O

32 K[II)I ( 3 ) = 1

(;[) lO 34

33 AM:ASORT (VV/ (7 ( l ,2 )_;OUX(4);: TB) )

Pr_: 7 ( ] , 2 ) :::_ =::_',HI)_,::: T R

26

34

C

C

C

C

35

36

37

C

OUX(IO)=O.O

CALL L()GIC (PB,TB,EHIX(I4),KODI(2))

IF ((VV.GT.O.).AND.(Z(2,2).GT.O.).ANO.(Z(3,2).GT.O.))KUOI(2)=I

RETURN

GO T_)

THE ISENTR[)PIC FLOW PROPERTIES ARE CALCULATEI) BY THE FOLLOWINGSTATEMEN1S.

FLOW=PB*SORT(VV/RB)/(Z(I,2)*TB)

TBF=(PB/PA)*_:GAMA

IF ((AN.EO°I°O).AND.(KODE.EO.2)) GO TO 36

FLOWI=PA*SORI(GAME*(PB/PA)*_GAMC*(I.O-T_F)/(RB,TA))GO T(} 37

FLOWI=PA*SORT(I.b7985E-3/TA)

OUX(1)=FLOW/FL[)W|

RE tURN

END

35

$IBF1C NZET LIS[,OECK

C

C THE FUNCTIONS OF THE COMPRESSIBILITY FACTOR ARE CALCULATED IN THEC FOLLOWING SURRL]UT [NE °

C

SUBROUTIf_E ZETA (K,P,T,Z,J)

OIMENSIQN Z(6,2)

DATA A,B1,B2,B3,B4,B5,B6,B7,BS,B9,BIO,BlI,BI2,B13,BI4,BIS/-7.135E-

IE,I.2034917E-3,-2oSIO789E-I,-4.9681584EI,3.7073373E2,1o496473EE,

22-IO27719E-6,-Z.4516046E-4,2°3tO2822E-9,4°9866482,1o6771286E3,

3-I°656225ES,-6°5374809E-5,2.420910RE-2,-I°I26389,1°]g29604E-]2/CO(X,Y,Z)=X*S3+Y*S4+Z*S5

SI=t.O/T

S2=SI*S]

S3=SI*S2

$4=$1_$3

SS=SI*S4

P2=P*P

EXP[]=EXP(A*P2)

AA=I.O/(2.0*A)

BB=I.O/A

CI=CO(Bg,BIO,_LI)

C2=CO(R]2,B13,BI4)

IF (K.EO.2) GO f(] 1

BAI=BI+R2*SI+B3*S2+B4*S3+_5*S5

BA2=BE+B7*SI

ZA=I.O+(BAI+(BA2+(BS+B15*SI*P2)¢P)*P)*P

ZB=EXPO_:P2*(CI+C2*P2)

Z(1,J)=ZA+Z_

ZA=I.O+(2.0*BAI+(3.O*BA2+(4.0*I_8+6.0*BIS_SI*P2)_P)_P)*p

ZB=P2*EXPt)*(3.0*CI+(2.0_A*CI+5.0*C2+2.0_C2*P2*A)*P2)

Z(3,,I)=ZA+Z_

IF (K.EO.I) REFtJRN

_T=B 1-B3_$2-2,0*B4*S3-4.0*Bb*S5

CIP=-CO(3.0:_9,4.0*_I(),b.O*Bll)

C2 P=-C(t( 3.0*B 12,4. O_B I 3,5.0*B 14)CC I=C ] +CIP

CC2=C2+C2P

ZA=I.O+(_T+(_6+BR*P)*P)_P

27

ZB=P2_EXPO*(CCI+CC2_P2)

Z(2,J)=ZA+ZB

ZA=(BT+IB6/2.0+BS*P/3.0)_P)*P

ZB=AA*(EXPO*(CCI+IP2-BB)*CC2)+BB*CC2-CCI)

Z(4,J)=ZA+ZB

IF IK.EO.2) RETURN

CIPP=CCI(g.O_B9,16.0*_LO,25.0_BII)

C2PP=CU(9.D_BI2,16.0*BI3,25.0mbI4)

ZA:-((B2*SI+2.0*B3*S2+3.0#B4*S3+5.0*B5_SS)+(B7mSI/2.0+BI5*SI*P**3/

Ib.O)*P)mP

ZB=AA*(EXPO*(CIP+(P2-BBI*C2P)+BB_C2P-CIP)

Z(5,J)=ZA+ZB

CCIP=CIP+CIPP

CC2P=C2P+C2PP

ZA:(2.O*B3*S2+6.0*B4*S3+20.O*BS*S5)*P

ZB=AA*(EXPO*(CCIP+IP2-BB)_CC2P)+CC2P_B-CCIP)

Z(6,J)=ZA+ZB

RETURN

END

$IBFTC NLOG LIST,DECK

C

C THE FOLLOWING SUBROUTINE IS USED TU DETERMINE WHETHER OR NUT THE

C FLUID IS A GAS, AN[) WHETHER OR NOT IHE PRESSURE ANO TEMPERATURF LIES

C WITHIN THE RANGE OF THE STATE EOUATION.

C

SUBROUIINE L{IGIC (P,T,R,J)

LUGICAL TNH,PNH

TNH=T.GT.501.O

PNH=P.GT.351.0E5

J=O

R=O°O

IF((T.GT.126.26).ANO..NOT.TNH.AND°.NOT.PNH) RETURN

J=!

IF((T.LT.55.0).OR.TNH.[)R.PNH) RETURN

XLIM=IO.O**(-305.O7339/T+5.5335216+(.1644110I+(-3.1389205E-3+(2.98

157103E-5+(-I.423B45BE-7+2.7375282E-ID_T)_T)*T)_T)*T)

R=P/XLIM

IF (R.GT.3.O) RETURN

J=O

IF (R.LE.I.O) RETURN

J=2

RETURN

END

28

$1RFTC

4

5

6

7

R

9

C

C

C

C

I(3

C

II

12

C

CHELS LIST,DECK

S_)_RNIITINE CHEL (KKK_,PA,TA,Am,P_,TF_,FLOW,KODE)

EOUIVALFNCF (R,RS)

C(-)_If"i[)r't /OUTPIJT/ OtJX(15),Z(6,2),KOO1(5)

COM_'iON /CONV/ MM,M,NN

f_ATA R, C,AMA, GA_F_,GAh_C,GA_E/2077.15, .4, . 333333333, I .2,5.01

IF (KKK.EO.I) GO TO II

DO I ,,o=],5

KOf)l (Jx_) =0

DO 2 N=I,12OHX(N)=O.O

OIIX( 15 )=0,0

DO 3 NX=I,2

_)0 3 N=I,6

Z(N,NX)=O.O

CALL LF]GIC (PA_,TA,,O(IX(13),KO!31(1))

IF (KF]!)I(]).EO.]) RETI!RN

THE ITERATION PROCESS FOR CALCIILATIIqC, THE PLENIIM DENSITY FOLLOWS.

A=PA/( R,X:TA )

RH(]A=A

DO 9 NX=I._2

K[]OI (z+) =0

CALL ZETA (I,RHOA,TA,Z,I)

OUX(II)=(RI-_OA-PA/(Z(I,I)_RmTA) )/RHDA

IF (AF_S(qUX(II)).LT.I.OE-6) GO TO R

AAA={7(I,I)-A/RHOA)/Z(3,1)

IF (I.O-AAA) 5,5,6

AAA=AAA/2.0

G_} TO 4

RM[)A =RN{]AX= { I .O-AAA )

CALL ZETA (I._RH(]A,TA._Z_,I)

KOF)I (z,-)=1

CALL ZETA (3,,RHOA,TA,Z,I)

IF { (Z{I,I).GT.O.).AND.{Z(2,1).C_T.O.).AND.IZ(3,1).GT.O.))

RHt-IA=AI 3.0

KOF)I (I)=I

RETIJRN

THE PLENIPM THERMODYNAMIC FUNCTIONS ARE CALCtlLATFD BY THE

STATEMENTS

CV=I.5-Z(6,1)

GA=Z ( 3, i )+Z (2, L )*_2/CV

F)UX( 7)=GA/Z ( 3,,i )

l_IJX(R) =GA/Z ( !, i )

O_)X (6) :CV_-OUX (7)

(I_!X(5)=TAX:(I.5+Z(1,1)-Z(5_,I})+6.qR973

OUX( 15 )=I .5_ALOG( TA )-AI_OG( RHOA)-Z (4_, i )+4. 75063

OIJX(g) =Z ( 1, I )*TA_RX-'RHOA

IF (KKK.EO.O) RETIIRN

GO Tn (12,13,14),KOI)E

A_=O.O

GO TO

FElL LOW ING

I0

29

C

C

C

13

C

E

C

C

C

1A

17

C

c

(.

] ()

21

22

C

C

c

c

"IHF T,'ITTTAL t"%1 T'_ATt- tiF IHI-: I,q]7ZLl- FXTI TF',.PFI_nTIIRF ,,iHFi,t Till- _\kFIZZLF

I-_ ! I- PRpS%I!I.41- IS GI\/P"I", IS r,ihi/F FrY [HF FflLClll4lt\,f:, STAIF-i,'Fi\tlS.

1I_ = TA;:-" ( P14/PA ) -",-";:-'(:, l\ I,+ h

IF ((Tk. LT.'-J.4_)} ).i_t,il).(T/_.ql.5..':,.f1A)) I-_',=h.4()1.

Tt-- (I->A.(:T.PH,) f_li [ti ]_J

Klit)l (2):]

RI- |liRki

PR = PA ;'.: ( I . ()+G Af'ti_,;'.: A,'_::_';: 2 ) ;;:-':: ( -2 ._ )

TH_ I,\IIT)AL ,c:.C:,T1f,_ATF IIF IHF i\lfiZZI F F×!T TFr. PF_AlltPf- Wl-tPi',l THE r,lrlZZI F

I-Xf[ ,.IhCFt _,,:lli,iHbq t_ (:,!\/P,xt l'_ ,<_AIIP H,y It-ii-: PllLL(i;41lixif; <-,IATI-i<,Fr,,TS.

T H,: I A / ( 1 . ()+(:,A :.i, _,;:: A,< ;::;: 2 )

i P,1 = 1 ix

G(I lit 1 5

P P,= t)A;i: ( I vii TA ) .i:;:: ( 2.5 )

IF (IA.C:,T.Tv',) Gii ti_ l'fl

Klllil (2)=l

Klll)} (4) :,)

_Hr,!= 1

I!fi !;-> ,i:'l , A

tlIIX ( ix, ) :(; .(1

fI!IX( l(i)=(i.(/

IIIIX ( ]2 i =i;.ft

Fill } / "=l ,pt:,

/ (,,i,2)=r;,()

i-I_i ll.I--( , oil

ChLL LItC. T(: (P_,lP:,ltliX(],'_),Kiit)i(7))

l;- (Killil (2)°t-,i.l) _Ti-{ll_,,i

K!!l)] (h ) ={)

rHF IIF_;_A-fIr],\I PPlICFR, (-, FliP, CAI_CIILAIIr, u-_ ll-IF f\if]7ZL l: FXIT I_Ft\ISITY

bill. I ill,,I,c:,.

AI =A!., v; ( _ i_l I/I)+/ ( 4-, l. ) + } . Li;::At_I IG.

AI_A=AI -7 (L_, I )

f:t\ll_ 7_-i-h (2,pb'(F'(nl_i\),Tl4,/,2)

I)li 1 c-) I.,=l_.h(t

I'ii_7( } 2 ) =ALM-t/I +7 (;_,2)

IlL ( h _-,<q ( !)1]7 !7))ol .1 .()F--_) f:

ill i'l= 1! I. A--I I! I_ "!2)/i( ,2)

Cr,.l_l /t ] A ( ,,-{u(A A),T,4,7,2)

P hi ti',=l 7_'( AI )

Iv ( _'i411A--k't411,* ) )J , I • _")

K!,nl (::):I

_'_ P I I II. >, ,

!'ALl ?t IA ("_._+'4_1.-_,_ ",,7._2)

[_,/ IA )

1 r! ;r;

TI'!: itIF,e',dl,lYn, M,,ll. FI,I, CTlll,,Ic, :\-I- ll-IF i\q/771 P _-)'<l] (;ll,'l II lilt 'xi<': Ai<l--

;:/',1C,ILA I_-Ii tV I [_ l-_il t_ti'.ll"U:, _ I/_/b.i',-,,,I c-,.

uW--2.,,;;: ( fll;:( I .'_+I ( 1 . 1 )-/ ( b. 1 ) )-i_:;:( 1 .':-,+7 ( 1 , 2 )-7r,j= 1 .,,_;(_,._ )

,:.,_: 7 ( 4. :-) ) + 7 i .-' . .-' ) ;;:;:. /_.

iiii'x (4) =r:.t 7 (4.))

,,,_)))

30

24

25

C

2_

P7

pR

2q

C

-_

31

li_I×(I,)=AA/Z( 1._,2

fit,× ( 2 ) =CV=',:tll I_ ( 3

A,,I=A%0_ I ( V\/l ( / ( i , 2 ]:',-'!]II×(4) =_I'_ ) )

TF (k,l,i.i,4_.]) _}=[HIX(]O)

rlli×( ] _)) =P,Hi _4:'.-'Z( i, 2 );'.:P_','-T _,

P_Rq:PH,/(ilIX ( ] (i)-] ,(i

IF (8i_S(PERP).LT.].()e-6) Cd) 1II _,2

IF (u,U\I.AT.2()) G() lli 2_

KIi\_= i',h'4+ I

IHF S!!CCI-FOIAH:, FSFT_'4ATFS F)F TI-4F I,,JI7ZLF #XIT TE_,,PFRAFI_RF AR# MAI)F

BY THE FF_LIFIWII,_G STATF,'_#k, TS F{IR T_4F CASF nF A C_TVFN i_q-IZZLF I:XIT

P# F-SSIIRF.

IF (i,!_'+-2) 2b,24,25

TB=TR;:-'(] .n+AAr._A=I-'PF-PR)

IF (TR.C_F.TA) F_=.999;;:TA

T P.2=TP,

G(_ T_) 1

II4=TP,+ (TP,2-TR 1 );;:( PP--I HIX ( 10 ) ) I ( (il!X( ] 0 )-B } )

TBt=IB2

TK2=TR

C_FI T() I R

KI)!)I ( 3 ) =i

r,lj Ttl 32

PB=Z ( ].,2 )='.:TB=;:q;:-'R_I-]H

IF (I,,k_.N_F.]) P,I=_!IX(I())

DIIX(IO)=ASnRT(VV/(7(I,2):;:TR=:-'[HIX(4-) ) )

IF (ABS(I_oO-I-,!X(]n)/Ar_).I_T.].OE-z_} C_F. Tii 32

TF (_\:,._.C_T.2r)) G[) TIJ 3P.

_\IN = N i_+ 1

T_II: SIICCEFI)Tf,,,C_ E:STT,:_AFFS QF TI4F NF/7Z[_F PXTT TF_PFRATf_RE: ARF ,-_Af)E

BY T_I_ E:t}l_Lf)WTr,_C_ S.TATF,_IENTS E:flR THE: CASE FiF A GIVFN _,.IQZZI_F fSXTTi,,_AC,M N!IMRFR,

IF (k,i,_-2) 2c).2_,29

T B: T K;',:( ]..0-0.887 ;:-"T _4=;:A,',i-';:(Ai4-fH IX ( tO

IF (TR.C_E.TA) T_,=.999,'.-'TA

TBZ=TR

Gll TF) 1 £

I'B=TB+ ( 1 BZ-T, _,t ) ;',: ( l_,_,-f/LIX ( [(1 ) ) / ( I1l IX

TRI=TF{2

TRZ=TR

)ITA)

In )-_1 )

r_(1 T[! ]R

KOn] ( 3)=}_

Au,=A S(:_R-f (VVl (Z ( 1,2 ) ;','-!1._× (4 )=;:T6) )

P#,=7 ( i ,2 );:-'_;',:Pwl ]_=;:TF_

Iit_X(] A)=O.A

CALl_ LF)GTC, (P;4,TI4,illlX([6),t<lll)}(2)

IF ((vv.r_T.n.).A,,,_.(Z(2,2).{;T.n.).z_r,_n.(7(_,.2).r-l-.().)) r_!_ T(! 33

K_]n] (P)=I

P hlllV i,_

TW# TSEU, IUQPIC I-Li/',i PRi_PFRTTPS ARe CAI_Ciil AIFI) Bv It4F I.:_ILL_IIWT,,IA

31

C

C

33

B4

B5

C

STATEMENTS.

FL[)W=PB:;=S()RTIVV/RF_)/(Z(I ,2); TB)

TBF= ( Pn/PA );'¢GAMA

IF ((A_,I.E().I.O).Ar,IF).(Kr}I/E.FCl.2)) G(I T_} 34

FLOW I =PAx:SORT (GAME=_ ( PR/P A ) ;:_:GA_v,C;= ( 1.0-TB F ) / ( RR;:TA ) )

G(] T[/ 35

FLOW [ = PA;XSOR T ( 2.53£79F-4/TA )

OiIX(1 )=FL(]U/FLDWT

RFTtlRN

E N F)

$IBFTC HZFT LIST,F)FCK

C

C THF FUNCTIFINS file T_4E CCImPRESSIBILITY FACT{1R ARE CALCllLATEI_ IN THE

C FFILLOW I NG SUBRQ!IT I_;E.

C

SUBRF)UTINE ZETA (K,P,T,Z,J)

DIMENSION Z(6,2)

DATA A,BI ,B2 ,RB,B4,BS,B6,B7,BR,Bg,BIO,RII ,BI2 ,B13,BI4,BI_,RI6/

l--4. 057 E-4,4.066_0 [ 3F-3 ,- i • 1267764F-[ , 2. 3039__66E-2 _ -5. 746RR l RE-2,

21.369136_E-I ,9. 7390626 E-A, 7.0543R76F-4,-5. B£54gR4E-6 ,-3 • £053762 E-B

3,2.625179E-2,7.67426AE-2,-£.790491IE-7,I-9960611F-69-R.1300167E-6P

43. 67435R3 E-£ ,-3. 4049435 F-11 /

C[](X _Y _Z ) =X;_SB+Y;:%4+Z_;-'S5

Sl=I .n/T

$2=S1¢S]

S3=S2X:S1

$4=$3;_$1

S 5 = S 4;',-"S t

AA=A'_S l

P2 = P;',:P

EXP()=FXP ( AA ;',:P2 )

CI=CCI(Bg,BIO,B11 )

C2=C(}( BI2 ,e_13 ,R14 )

IF (K.EO.2) GO Til l

RA 1 :R I+R2_S 1 +B3;_S2+B4_ $3+B5_$5

RA2=B6+B7_S1

ZA= 1.0+ ( BA 1+ ( BA2+ (B£:;_S l+ ( B l 5:4:SI+R 16_S I x:p ) _P ) ;',:P)_:P) x,p

ZR= (CI+C2*P2);_PP_EXP(I

Z(1, I)=ZA+ZB

_A=_+(2_BA_+(3_X_BA_+(4_X_S_+_5_B_5_S_+6_=;_B_6_`:`S_*_'_*_

I ),:-'P) _P

ZB=( 3. nx:C 1 + ( 2. O*AAX, C i.5.0.C2+2. OX,AA*C 2;_ P2 ) ;_P2 ) ==P2,_F XPO

Z( 3,_,J ) =7 A+ZR

IF (K.EC_.I) RETI)Rr,_

RT=R 1-R 3_,_$P-2. ():',q4 4_ S 3-4. O;r-B5_4:S 5

CIP=-CD(3.Ox:Rg_4.0_Bl(I_5.0_KII)

C2 P=-C.q ( 3. O:;:R 1 2 , 4. OX:B I 3, _. O;-'R 14 )C[ i=(2.0X_CI+ClP)/AA

C22= (3. ():;:C2+C 2 P ) iAA

ZA=I .0+ ( BT +R 6_::P) ;',-'P

Z H=P2,XF × Pf1:;,(C I+C t P+ (-AAX:C 1+C2_+C2 P-AA_;-'C2 X:P2_)=',_P2_)

ZiZ,,I)=/A+ZB

7A=(RT+H6xPZP.O);_P

7B=C).5_ ( EXP[F (C, 11-C22/AA+(-C1+C22-C2 :P2 )';P2 )-CI 1+C22/AA )

7 ( 4, J ) =Z A+ZB

IF (K°Ffl.2) RFIIIRN

32

CII=(CI+CIP)/AA

C22=(2.0*C2+C2P)/AA

ZA:(-(B2*SI+2.0*B3*S2+3.0*B4*S3+5.0*B5_S5)+(-B7*SI/2.0+(-BR,SI/3.O

I+(-BI5*SI/4.0-BI6*SI*P/5.0)*P)*p),p),p

ZB=O.5*(EXPOm(CII-C22/AA+(-CI+C22-C2*P2)*P2)-CII+C22/AA)

Z(5,J)=ZA+ZB

ClPP=CO(9.0_B9,16.0*BIO,25.0*BII)

C2PP=CO(9.0*BI2,16.0*BI3,25.0*_I6)

CII=(2.0*CI+3.O*CIP+CIPP)/AA

C22=(6.0*C2+5.0*C2P+C2PP)/AA

ZA:(2.0*B3_S2+6.0*B4_S3+2O.*BS_SS)_p

ZB:O.5*(EXPO*(CII-C22/AA+(-2.0*(CI+CIP)+C22+(AA*CI-3.0*C2-2.0*C2P+IAA*C2*P2)*P2)*P2)-CII+C22/AA)

Z(6,J)=ZA+ZB

RETIJRN

END

$IBFTC HLOG LIST,OECK

C

C THE FOLLOWING SIlBROUT.INE IS IJSED TO DETERMINE WHETHER OR N[)T THE

C FLLIID IS A GAS, AN[) WHETHER OR NflT THE PRESSURE AND TEMPERATURE LIES

C WITHIN THE RANGE OF THE STATE EOIJATIflN.

C

SIIBR[]IITINE Li]GIC (P,T,R,J)

J=O

R=O.O

IF ((P.LT.305.0ES).AND.(T.GT.5.4).AND.(T.LT.501.O))J=l

RETURN

END

RETURN

33

34

REFERENCES

I. Jordan: Duane P. ; and Mintz, Michael D. : Air Tables. McGraw-Hill Book Co., Inc.,

1965.

2. Johnson, Robert C. : Real-Gas Effects in Critical Flow Through Nozzles and Tabu-

lated Thermodynamic Properties. NASA TN D-2565, 1965.

3. Hilsenrath, Joseph, et al. : Tables of Thermodynamic and Transport Properties of

Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and

Steam. Pergamon Press, 1960.

4. Johnson, Robert C. : Calculations of Real-Gas Effects in Flow Through Critical-Flow

Nozzles. J. Basic Eng., vol. 86, no. 3, Sept. 1964, pp. 519-526.

5. Strobridge, Thomas R. : The Thermodynamic Properties of Nitrogen from 64 to

300 ° K between 0. I and 200 Atmospheres. Tech. Note 129, National Bureau of

Standards, Jan. 1962.

6. Mann, Douglas B. : The Thermodynamic Properties of Helium From 3 to 300 ° K

Between 0.5 and 100 Atmospheres. Tech. Note 154, National Bureau of Standards,

Jan. 1962.

7. Dudzinski, Thomas J. ; Johnson, Robert C. ; and Krause, Lloyd N. : Performance of

a Venturi Meter with Separable Diffuser. NASA TM X-1570, 1968.

8. Glassford, A. P. M. ; and Smith, J. L., Jr.: Pressure-Volume-Temperature and

Internal Energy Data for Helium from 4.2 to 20 ° K Between 100 and 1300 atm.

Cryogenics, vol. 6, no. 4, Aug. 1966, pp. 193-206.

35

coI I I I II I I I II I I I

It!I!1I I

I1III I

I t I I I I

iliiiI I I I I

! II II II, 1I I I 10000 O000Q 00000 0

I I

I 1I II I

" i!zl:, 111,I I I l I I II I I 1 I I 1

IIII II

IIII IIIIII II11tl 11

0

!IiIIII I I

II IIII_ #4 I

Illll I1 I! 11111 II

_ III_I II II ll]tl IIa Iltli II 11 1I II IIIIIII II II lllll II

oggd gggg, gdooo ooooo....

h- I_-I_h-I_h- f_-_.._.h-h- I_h-P,-h-I_ P..h-h-I',-I_ I',.

1o d_dgd &gggo og_o_ d_gg_ d

!

I I I ! I

1111 Ifill II I I I I

! I

II1 1

36

0

o• ** **** !,1., I**1. ,101* IQI*¢

_oo o0ooo o0oo0 o000o 00o0o 000o0

I ! Ii ! II i i

4"!I I I 0I l I •I I I ,._

_o_ ®_ _ _ _ __00 00000 000_0 00000 00000 00000

0_D

I I

I II Ii II I

,oo_

o

OD

IIII

1111IIIIIIIIIIII

I II II I

NO_ 0_

d ; godg oeddg ggggd dgggo gggdg gdggg

IIIII

N l_IIIltillIIIIIIIIII

I I I

; ! I

ggggg g ggodd oogog gggdg oggdo ogdgg gddd_

_g; 1t II I

I !I I og ggggg d

_N_ _ 000 O00__ ..ggooo g ooo ggggg g oo ,gggg ggggg

o

0oooo ooooo ooooo ooooo ooooo ooooo

0

dd ggggg gg&gg d0

ggogg oo&_g ggggg ogggo ogggg ggggg

3?

_o_o_ NN_ 0_ _N

0

oeo , 0** ****e eeoe* ***oe 0*le,_ _0000 00000 00000 00000 00000

*** * ,l, e* •

! °0

0

i

_-- oogdg gdodo g_gdg ddddd o_dd

N_

*ggdgo o_ooo o -_-, ooddd d&odo gdgdd ddgdg oodgg

ooooo oooo0 o

o_

_-_o ooooo d_ogo gdgdg dJggg oogdd

00000 00000 0

38

_ o®=_ o

d;_gg gggdglee* e,eel eoee* e*eee eeeee e*eee eeeee eeeeo •

_0 00000 00000 00000 00000 00000 00000 00000 0

_ee*eoooo _

e*e*_ •00000 00000 0

e*oo_ _'''ooo

_°_ _ _ ......... _ • ...... ooooo ooooo ooooo ooooo ooooo ddgg_ d_d_g _

gd_g_ _gggg g

ee*** ele*e *00000 00000 0

E_ _o_ _o_o_ _ ooooo

39

_|l f||li !

t Ill Itltl !J IJl IJJil !

IIt II !t A

_I IIiII I IIII J It

IIIII I

J J JJ!I I |llt, : ill| ! Ill

i II Ii Ii il i

| I! I

III I

II|Illllllli

II I_.9_._. _._._._._.°_®_

0 II i illll IIII

I!1 I ilill I|tlIII I lilll Illl

II llli

IIIll II II IlllIIIII II II IIII

;_'; g''_ ..............

g_ .......

4O

It It !

fill IIIII I ofill IIIII IIIll Illll t

I !

11! I

IIII IIIII _.

I I | I I I

II IIIII IIIII

O0

II II|ll Illl_

II IIIIl fill ",, ,,_,, ,,,,_II lllll Illl_

II IIIII Ill _ _ o _..... _°_..... _°_°_...._.. . ., _:_ ...._ II IIIII III _ _ © _o_ _ _ _ _ _oo°_°_ _°_°o~_ _°_

_ _ _ ° ._._ .......... _. _ .........

I

I I

E3 _3 ooooo

41

otl

42

0 .... _ ..... eee •

_3_3 •

eeee •

eee •• eee. eel e ee.e loeeo eeel

N

eee

43

o

I !

!i

II III! i!I! II

I1 ,IIi! I!

! !I I

!i! !

I I! I! It

III !

ooeo eeeot

I ; !iII,

!i!

II IIIII

'' IIIIItl

II IIIIItl Illtl

I !I I

Iit !

_ NN_NN NN_N

_ ooooo _&_ _ _

II! tI II I

I II Ii tI II !I I

I I! 1I 1I

I II I

11I I

II! I

! I! It I

tiI I

NN_N NN N_N

ddggd ..............oodoo doooo =dddd odood ddggo ogeoo......... ooooo o

44

0L-- 0

o

r_4-

o

oo_

o o,co

I ,,1"I

c_oo

I

I

I|ol

|ill

;L[L

:$ o! •

0

! ! i r_NNr,,JN

gdgdo g

It ll)O0 00000

I

!!I

ll_i ei i

00000 00000 0000 O0

gg ggggg ggggg g0 NNNNN NNNBN NNNNN NNNNN NNNNN N_NNN NNNNN

ggd''oo ggogg ooggg ggogg ooooo.... ogggo gggoo

I.i l-i

............. ...................................

45

ggggg g

gg_gg g

ggggg g

P. 0,_l,,_qr ,,0

oooo& g

Z

{J

[.-,

o .......x gggdd g x

NNNN_I ¢¢1

I t •g dog oo g g

E _gdgd d

0

o

_DI

ggggg &

o_gog o

ogo g

ooogo g

odgg ggggd ggdgg ggg&g goggg ggggg ggg°°

'' o ogoog oddoo ooggd g_ggd dgdooooog gddd ........

d_dg 0ooo_ oedoo oOodo 0_ooo ooooo oo0oo

.... ooo ooooo ogg0o ....gogg ooggg ggggg go ........... oooo

oogg doggg gggog ooooo ggogo oog''oo ggggg

_9_/'_ .,0 I',,- eO 8"

46

_o_c_ 0000 00000 00000 00000 00000 00000 00000 00000

o_o oooo

_o_ 0000 000-00 00000 00000 00000 00000 00000 00000

0

og dogdo oogoo ooooo ooooo oo ........ "00000 000 00000 0

00000 0

=M 00000 _0_ _ _ 0_0_ _0 _0_0_ 0 0000

_7

IIII! IIII

° l_lll ''''tt1_ ! _:_,,,ItOlt lit|

I I I I

! ! ! II 114

lel eQele leele •I00 00000 00000 0

!Ii! " I I I I I

I I I I I !! is_ _= _.. . _O0 000*00 00000

I I I I I I I I I I t I I I I I I I I I

,,,,, IIIII ,,,,,

_m

| • • •,o ogodd ddodd ooddd

r_

o o

i _ !! i!! I I !

"!!i! ,,

"I Ip I_

I

II! I

IIIII I

IIIII II1411 1IIIII I

I.It II I

! I

iiltl iiiit !IIIII IIIII I! ! ! I I I ! I I I I III 0 000 O000O 00000 000 00000

I'I l! t11!

: _ _ II II IIII

II IIII

!

I

I _% %_%_% _ %_%_% _%_ _

, ooo odooo oooo_ ododd doodd dod_o

dd dddd& ogooo odood ododd doodd dodgo g

ooooo ooooo .°°°°°ooddd ooooo.........ooood odooo odoog o&odd ooooo ooooo o

48

L_- 0

o

I

II!

0 0oo

I, g d

I

a I,_ ,! I

N It

® II

I II }I t L

i I

ItII! !

[oo d _ ' ' ' " o0_oo ooooo o_oOo ooooo ooooo ooooo00000

I 1 _ . .. _ _ _" _ _ _II-I _I} _}, ,Iooo d _ oo0o_ ooggg dgd&g oo_oo........ ooooo g&_dd ddg_;

_, ,oooo g N *od*d ddggd gggg_ dogdg dgdgd gd_dg dg_gd

!if! i _N_I I _0_,o,o

I l

_ II

!i • el. I •I |00 000o0 0

II I0000 00000 0 ooooo o_o;o ooo;o ooo_ _ooo ooo_o _;ooo

49

og_o

ooo0o o

0

0

oi

o&_gg dddd oodoo .......ooooo oddgd ggogd ddoog odood

o._l00000

o00000 0 ddd ...................... d '

gg_gg gg_ gg' '_ .............. _ 'O0 0 0 0 00000 00000 00000 0 000

ooooo

50

_ _ _ ---- _i_- ii"_--oo o oo ooooo o ooo o o ooooo o o oo

OON_

ee_oe -e0o0_0 o ........................ _ ....00_ 00000 0000_ 00000 00000 0_000 00000 0

O0

gog& doooo.... ggdd& dgd''oo dgogo gdodo gdddd ooogo g

0_0_0

eeeee •00000 0

• e eee_ ,ee_o _e,e, _eeeo ee • eegooo ooooo ooooo ooooo ooooo ooooo ooggg ooodo d

d gd ....................... ggdg" ' '0 00000 00000 00000 00000 00000 _ 00000 0

g&dg gdddd doogg ogooo ooogo ooo&o dd&go ooooo o

o

51

I I I I

illI I I

t II! ! !I I !I t !

I1I II II II I

! !I II I

tl! !

N_ N_NNN N_NNN N

lee otell Ittte +tOO OOOOO 0OOOO O

ili,i ii il ,if, ,,!lit! iii liti "++++°++'"'i" I i.,.,.,_ _,_.,_ +,,++_ .(_INNP_I t_INNP_IN P4NN_IN N

I I I I I I 0000 00000 00000 0

I

I

1

I I I I

Ill II I ! I

li+ 1

III'''i ,,,Ill I+ I I IIII_ _ _++++ _

llI llIll !Ill I IIII ®. _®_. ®®®®®..,,.®®®®®. ®,,I ,,, e, ,,, ,,,,o oooo_ ooooo _o g

tI

o I

Ill Ill

!ii t,

! !

IIII! !

_1_11

Illl iI III I

Itl]lNN_

I 1 I I I I I I I

I', ItiI I III I I I I

++M _°_ +®'++It + +++++ +++++ +++++ +++++

,,_ ogdgd ddggg ogooo oozed d

"ii'11

"'_ _ !!!!!i!!!!l!_It"'"" "'"" "'°+""'"" ""',,'',,, &+ogo -og&g@ ggt+g+ ogooo oooog

o_-,,,,_;:;" ,,,, : ;_._,__++++ ++,..,..:+,,,o.,o o,.,+.,,.• . _.®®® ®®®®co _._._,_ ,_,,,,, I II I I o_o ,_oooo o_ _ o_ooo oo_ ,_

m

A

0

I

, II II II I

dg+ +gg+d d+gg+ dgo+o o++&+ dggg+ o+ooo ooogd g

m,+_ee ,e,,, eeeee ,, •

ooooo ooooo ooooo ooooo o@_ _@@_ _@ooo ooog_

52

0

I Nt co

I 0

0o_

0000 00000 0_000 00000 00000 00000 00000

0_D

! I I

I I II I I 0

t

Il

I Ill I

I III 1t tll i

I IN

o g

'i ii i °'"

o _ ooo.-. -NPdNN N

_N

I I0000 00000 0

_ _; _ .......... ,...... _®_

O0 00000 00_00 0

53

_NNNN N

00000 0

gg_gg

oooo oogdo ddood ooooo ooooo ooooo ooooo

ggggg g_ ..... _ _ _ _ ,oogo oodgo ooooo "'' oo d .... 0000000000 000 0000

_ oooo o _ _ _:_ :_o_ _o_o_ ooooo

54

oo_0000 00000 00000 00000 00000 00000 00000 00000 0

®®®® ®®®®® ®®®®® ®®®®® _®®®® ®®®®® ®®®®® _• • e_ • eeeee e_oeo

®_®® ®®®®® ®®®®® ®®_0®® _®®® ®=.=.®_ ®®®®® =.==. =.g_dd ggdg_ _gddg ddggd gd_dg ooooo .....0C3000 00000 _3

0000 00000 0000

dgddd g _ dggd _dg&d &g_ dd_d& ddodd oggog gdggg gg_dg d

z

55_5 ®®®'® ®®®® ®=®®=e • _ • . • e • • • • _ • o •dgdgd ; _ d goooo oeoo o o oooooooo ooooo g d g d d ..... good_M

®_ _®_ _°°°° ooooo oooooddg_d g N _d_d ogodg gdgdd dgddd .... gdo oooooooooo o g ...... ggddg d

_O_N

N_N

e0_e_00000 ooo ooogo g_ddd ooood goooo ooooo o ....oooo 0ooo0 o

_00000_0c0 00

55

oo_

OQO0 QOOO0 _0_ _ _

1

0

I000 00000 00000 00000 00000 00000 0

; I ! 00_ 00000 00000 00000 00000 _0000 00000 0

I0 00000 00000 00000 000_0 _CO00 00000 00000 0

O00C 0_000 00000 00000 00000 00000 00000 0000_ 0

o ooooo o cooo

56

o

ddg ddddg d_ddg d

o

Iddg gggdg dgdgd ;

o _ _ _o_ _

I I

i i

fillIIII

IIII_$ _°_ _g_ mmm

0oo 0o00o oo0oo 0

i 0

• !

E 'I

ו OOO OO0(DO 00000 0

L I 000 00_00 00000 0

ooo ooodg g _ ogd o0_000 0000000000

000 00000 00000 0

ele ee,*e ,e_000 00000 O0 O0 0

oe._ .eeee ,eeO0 00000 00000 0

o

! !

tt |I ! 000_0 0000 0 00000 0000_ 0

"' ' gooog ggogooogo gg_g_ g_gg .....

57

_ _ _oo_ o_ 00000 00000 0

e_ eo.o ee • •

_-_-r _ _-_-_-r,-_ r_-_t _-

_' '_ .....

o0 l,q

i

dgg ooooo..... ggoog o

_ oo_..... _oo& o

_00 00000 00000_o oeee ee • •

ee eee_.... oooo gdodo d

_ _ " . .

"_ 0

o

i

[...,

ddd g&&dg _god o

e_eooo dgddd ddggg o

_7

l.'_X,lO OOr_O_lOM ' OOO_"_t"_XJ "-_

O_(y_O" 0_0_0_0_0_ 0_ 0_0 _

O0 000C)(3 C)_)O00

gdd dgggd gggdd g

o0o eo 6oe0eoo_oo

o

Q010 10_e_oooo ooooo

5B

................... dd gddgg di._" _ .....00000 00000 00000 00000 000 ,-_ ,-_ _,_ _,,_ _'_

00000 00000 00000 00000 00000 00000 000_ _

ooooo ooooo ooooo ooooo ooooo oo_oo ooooo ooooo o00000 00000 00000 0_000 00000 0_000 000_0 00_00 0

0 00000 00000 000_ 00000 00000 00000 00000 00000 000000 00000 00000 00000 00000 0_000 00000 00000 0

_°_0_ o°_°_ ° _0 o _co°_ ooooo_ _0°°° °o

59

_0

ggg; g;ggg ggg;g gdgg ..................

.... ggggg gggg ......... .

..... ggg g ........

6O

00000 00000 _00_ _ _.............. 25??5............. _._ ................

o o ooooo ooo_g _o_ _o0000_

doddo d_d ................. 3 .....

t** " • • • ** ***,_ *

61

o . ._ _

I II II II I! II I

............ _. .

0

o_............ _ _ o .. __ 2_ _dj .......... 2 ' 'J d_J_ '" '

_..._ ..................... _ .............

• '_ tJ • o o_o _ooQJ oot_, •

o _z_ • .............. j~_ _'

62

o

0_o

o

I ...........

u_ I I

zI l I

I II II II II I

: l III I I II I I II, I 11 ,o I'.- l-- r.- i-.. _o _o co co _o co co _,

o t,-.

6

63

o

o_ _N_ _0 _ N

0

uI

_ _._ _-_ __, .__° _:o ...... _. _. .o. •

• l _,oo ooeoo •

.. __._

64

Ez

N g'''; ............... 42_gg g;2Jd g_'J .... gg '

65

_ ...........................

...... _ ............ _....... _

66

• • • • • • • • • • • • • • , • • • • • • • • • • • • • • • • • • • e •

_ _ _ -o_ _ ._....... _..... C_.. . _.

,eeee eeeee **eee eee,* ,ee*e eee,, ,*,e° eoeee •

•_ .........._._ _ ...........................

g ............ Z_ ................

6'/

it i

• emewe e_ee

I e,o ,eeoc eewo e_, ,0 ee,, •

0

_g_g g

M

............ g ..... ;g.g •

_0_mm

............. g

" dd_g_" dgddg dgggg &_ggg 'gooo........ oooo d .......oooo-

o

..... 22 .... 3 "2 .......... _ "_ ....

ff

_ u

N_

68

eee ee ee leeeo •

0 • • • • • • • •

0 • ee eeeel oeeeo •

ee. •

111| [

lilt

_ IIIIfillIIII

Ill

m _ III

Ii!!!zI, I I I I

IIII_+_. _ +°'''... _.

• + e • • i • • • • e 6 • •

oI I I

I IIIII IIIII III I

+;

tl+! +++0+++++:-_+_+++++o+.++_+o+++'++++"o+++++++_.,,_, +++++++.

"' ................. or''r,,- P,,. P,- i,,-- a_ QO ao co ao co co a:_ ao a_ _o _o _ co QO coao o" _"

<_

++ +--+ o-''+ "+m-m o ,,,,+ o,++., o

69

ee • e • • e • e • •

_J j_J_j J_jJJ

_g j_J_j J.jJJ

0

jj ........ ._j j.,g._j j '''

oe, • • eee

_e, _e,e, *,eee • ,ee ee, _

"/0

71

eeoeo oeeee eoeeo eeoc eoeeo • ooo oooee eoeee

[._ OJ

.,., v

0

r.jI

r_,..]

................. _,g "'ggg gg ..............

72

N.... _ _ _2_2_ _ _®_=_ ................

_J _...................... ggg ggggg g d d

73

0 III1! IIIII Illll I_ _N_ N_ _00 N_ _ 0

Ico I

III

! . !I I II I |I I II I I

iliiIIIIIIIIIIIIIIII

IIIli

'74

oI I I

litI ! !I I I

I ! I I I t I I I

I IIIII

N

o _i il _I....._ _._

t_

x

iI_ II _ : ,, ........ _;_; ;I III I I1_._ .._N-- _

I I I

Illt I !

Ill...... ......... • . _ _

• e eee_e eel_ e

..... g ' ' '; ...... d

_T

'/5

oeQ

ee _e •

[-'

0 "_v

I

,-I

<

eo • • eo

2_d dJJJ_ JJJJJ

'16

e_e_e • • • • • • •

.................................... _g_

:= ,6"rl

== o._ r_

0 '-'

0i

.................... _ g_gg ..... g_ .....

78

oooo_ _ _ _ _ _o.._.. ......... ,.. _ ........... _ _ _

79

o¢,I

II1•1 •1•tl !!!1, I!!11 ,!,!, •

o•,M

I:I iI II I

I iI !t I

oooo ooooo ooo_o ooo_o oooo ooooo

Z ....................... _ '_

8O

llll

lit!lilt

I u I

I I

till liltIttl lilt

© 111l I111IIll till

eee eeee* @*eee •

@Nh NNNQN QNO_O

"? Io o :

,e_

N

II III II I I

II II I I

It I

I t I t t o _ _ _ - _ a gtitlt II_m_ _m_ _m_,m_ N _ NNN NNNNN mmmmm m

zm _

.00 .°.°0 ..,°0 • mm_°--

N ! III IIII t

I111 I

II:I I I

m

444 4_444 44444 4

III II II I 11 .................

81

io • • _eoo • t_o ooo_i oooo_ •

lee foe •

_e _eeee eo_e •

o _o _o_ _2_%%

82

83

• • • • oo t • ,oloo • •

............ _ ......... - ......... _ ..........

wD ".0 wD wD _D ,.0 _ur_ or. ,,1"

_ .................. . .......................

_ _ z

6 _ ..................

• • • • , • • • • • , , • ° • • • • • ° • • • • • • • • , • • • • , • • • • • •

0

I

,-1_Q

Q;

84

eeeee ee • • ee • • ee • •

................. 2"2 .......

z

N

N

......................... . . . . • ._._ - ._..

" "_ ................ _ ........ _. _~_2. ......_._. _ .....

85

CO

,o eee,, ee_.e ,_e_o eeeee ee ee

I

.,_

oI

,-1

000

86

IIII IIIIIfill IIIIIIJll t1111

• • • • • • • o . .

t f_ _m{M NNC_OJCJ N

I I I I I I I I

ilil iiliI I I I I I I I

el leltl ee... •

I :i :Ill: .............

Q • / * el,,t ee,el •

fill IIIII Ililt tltlt I

IIII IIIII I,e, e,,,, ,,... , tl. e..,. . ..e •

o ox

r_

......... o _ _ • ...... _

eel eee,e ,I,., •

I It Illll II_ e_O0 _M

llll

• .. ...e. 0il.. .

• i . ..e • ...

! II fill _ _ _ .... o_ _II fill _ _z _ __ _oco_ _

I II IIII

• e • • • • • • • • • • • • • • ° . . . •

I_"_0 0D _ _ 0_ 0_ 0_ 0_ o _Q_,_ ,_1P_ Oj C_ I0 _ I::i_l cO _" _D _0 _D

87

• _ O_N_ °• • e_t ,,i •

_ N

o_o _

0

0

......... o _ ........

88

,eeee ,e,ee e,e°e eee,e e,,e, e,ee, ee,,e e_eee ,

.................. _ ...... _ ........ _ ......

89

o 0__, o _,i.1o _ ._.o.. ,0 ......................i_- o

o'_ _-_._o o ....... _-,_ "i ._, .......... _. .......

o ......-_-; o_oo_ _ _ ._ o_............. } ....m__ mm _mme_m m m 4- -.,r 4- ,.tmm_ mmmmm mmm _ e_mm_m

_ 0

o

i

90

91

0O0

_0000 o0000 00000 00000 00000 00000 00000 00000 0

A

I

92

NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN N

@ _NN NNNNN NN NN NN NN NN

93

goggg &gggd dggdd dd_gd odgdg gggog ggg_g _ggdo o

o x goggd gd''ooo dgggd ogddd odggg gdgog gdggd dgg&o g

o _ ooogg gggog goggg ogggg gogog gggog gggog dgggo g

_ _ gogdg ggdgg doggg ogggg oggog ddgod ddggd gggdo d

o

0

!

ggggg ggggg goggg ogggg oggog gggog ggggg ggggo g

ggggg ggggg goggg ogggg oggog gggog ggggg ggggo g

ggggd gdggg goggg ogggg oggog gggog ggggg ggggo g

_ _oo_ _oogg_gg ggggg goggg ogggg oggog gggog ggggg ggggo g

94

0O_

95

0 00000 00000 00000 00000 0_ _ _ __

• ,,_ _ _ _ _ _ _ _ __00000 00000 00000 00000 00000 00000 00000 00000 0

o

0

!

96

0 _ _ _0000 00000 _0000 00000 00000 00000 0

0 _000 00000 00000 00000 00000 00000 00000 00000 0

97

oggoo ggggg ''ggg ggggg goggg ...... g, oogggQO OOOO0 O00 O

gg .................... g "'gg .....0 O0 00000 00000 00000 00000 0000 O0 0 00000 0

oo_go ooooo ooooo ooooo oogoo oooog ooogo ggg_g o

..................... g . .g .g . .g . . g0000_ 00_00 00000 00000 00000 0000 O0 0 O0 O0

OOdO0 gOOJg OgOJO dC''O00 JO000 O00CC 00000 00000 g

98

ggggg g&ggg ggggg ggggg ggggg ggggg ggggg ggg&g g

ggg&g Sgggg ggg&& ggggg ggg&g ggggg ggggg ggggg g

ggggg ggggg gg&gg &ggo_ ggggg ggg&g ggggg ggggg g

x &ddgg dgdgd gdd&d dggo& ggg&& d&&gd dddgg ddgdd &

o_ggg ggog_ ggggo gggog ooooo ooooe ooooo ggggg g

N ggggg ggggo ggggd gggog ggg&g ggggg dgggg ggggg g

ggggg gggSo ggggg S_goS sgggg ggggS ggggg sgggg g

ggggg ggggo ggggg gggog ggggg ggggg ggggg ggggg g

... ........ __ . .ooooo ooooo _oo0o ooooo _oooo ooooo o0ooo oooco o

........... ggg ..........................00000 00000 O0 0_000 CO000 _000_ O_OCO OCCO0 0

99

_o ooooo_ ooooo__ ooooo oo oo _°°_ _

0

odogg oodoo oooo= ooooo ooooo =ooog ooggd _ogoo g

100

emcee eooee eoooe oeee

0 _ _ _000 00000 00000 00000 00000 0000_

00000 00000 00000 00000 00000 00000 00000 00000 0

_ o__o_oo_o_o _o_ _o _o_® o_ o oo ooo o 00o0 o

I01

0

........ ° ............ _ _ ....

!

102

...... _

103

oo

.<

104

0 eeeee eeeoo eeeee eeeeo

0 eeeee eeele ellee eeee teeee eeee

0 eeeee eeeee eeeee eeee

eelee eeee

105

_eeee eeeel eeeoe eelee eoeee eoeoe eoeol eeeee •

P_

0 _ u_ N ,_ (_, u_ tXl ;'- exl _ O_ N _n ,0 r-- oO oo oo _',- ,0 ,,1" e,a O, ,0 r,,I O, ,,t" 0 _r, O_ -,1" i'-- ,-w ,_- r,- 0 N ,,I- W) co O" 0 O

_ ' ........... 3 3-:J .; _;J_;JJ .;" "_: .........

m ._ _; . _._.-:.o:_. .... _. _.._.-:._. _._._. _._

Q;P

e • i • • • o • • e • • • • • • e ,i • • i • • • • e • • • .e I .e

o _j_J

106

@oooo oeoeo oeoo@ oeooe eeoee oooee elooo oeeoe

eoooo oooeo oooee oeeoo eoooo eoeoo ooeoo oeeoe

• • • • • -o • • • • • • ._e • o e e • _ • • • o e • • • • • e o • • • • • • • •

• e • • • • • • e • e • • • • • • • • e • • e • e • • _ o • e • • e • • e • •

eeeee eeeee eoee. eeeee • eee oeeee eeeee eeoee

o ................................... _

107

0 • eo Qee • • • •

E_

o 0

DQ

E_

0 • I • ee _e •

o ....." " d j ..... X ...........

0 • • •

108

0 eee eee eee • •

_" _ " _ _ _ _ _= _

......... _2 g_ _g Jg _ '_" "_ ........

e i t° _ .... _ ....... _ _ '

......... j .... _j ...... jj.j ........

ee eo•

109

II0

eeeee eeeee eeeee oeeee eeeoe eeeee eeeee eeeee e

o .............................. j_j_ _

o ................................... _

| 0 oeoee ooeee oeoee eeoc eee

0 eeee eeoee eeeee oeeee •

o ................... _j._. 3._j3 _..3j _._3_

eoooo oeeee eeeoe eoee eeoe

eeeee eeeeo eeeee eeee _ _•

0 eeeee eeeee eeeee eeee •

_ O_ _0_0_ 0_0_0 _0_0_ 0_0_0 _0_o_ 00000 00000 0

111

0

• o • • e oeee eleoe •_&o_ _o _o_o _oo_& _oo_ _o_ ooooo o°ooo o

0

ooooo ogddd ddd4d gdodg ggggg ogogo ogooo ooooo o

112

_N_ _0

g dod deggd ddgg ..........................

I

× doggg ogdgd ggggo gdggg ggdgg dgggd gg&d& gggdg g

zm_mo_ _o_

g gdd 'dgg dggg ..........................0 O0 _ _000_ 00000 00000 00000 00000 0

N dogdg o;&S; dd;;o ;gdg; gd;;; &g&;d ;&;&; ;g;g& ;

• ee e_ ee ee • oo •oooo_ ooogg ooooo.......... ooooo _gggg &oogg oogo& g_goo o

Q0eee 0e0ee e_ • eooooo ooooo oog&o _ .... _''g_oo Sgg;_ g_''o0000

113

• 00000 ol00Q io00o •_o_ &_ _ _ _o_oo ooooo ooooo ooooo o

ogood ogddg odddo ogdgd gogoo ggogo ooooo ooooo o

ff_ odoog oodod oddod ggddd dogdo dgddd ogggg dddgg d

_ _ z

OOOOd O,_doO o0000 0000o gO_,do gddog ooooo _oooo o

_ ooood" oodoo oddoo ooddg"" doddo oodgo'' " odgod" ooddo" d

"dF., ¢_

I

¢¢

odood oodoo odooo ooodo doggo ooSdd oo&dd god_o d

ooooo oodoo ooooo dgood ddgdo ggodg ood&d &odoo d

. . _ ........... _ ...........0 000 00000 0 CO 0000_ 00000 O0 O0 _00_0 00000 0

o_oo& oo_oo o_oo _ _o ooooo......... ooooo _o

114

0 _ 0 0

00000 00000 00000 00000 00000 00000 00000 00000 0

eeeee eeoee eeoee eo e'e eoe_e eeooe ee_ee • ee_ •

00000 000_0 _000 00000 0_000 00000 00000 00000 0

dgdgg ggggd dgggg ggogg gdggg gdggd dgggd doooo o

115

_o&_ _3_ _''_ _o ooooo ooooo ooooo ooo _ _& ..........

dooog goooo ooodd odo&g gogoo ooooo oodog ogooo o

116

• • eel0 • e0e •ggggg ggogg ggooo ogggg ggogg ogggo goooo ooooo o

oeooo eo eo oo • eooe eeooe coo oeoeo o oeo •

gggg_ ggogg ogooo oggog ooogg oeogo ooooo ooooo o

117

dgddo ooooo doooo ooooo ooooo ogooo ooooo ooooo d

dddd ddgg" ddO .................... d 0 g0 O0 00000 00000 00000 00000 0 0 0

0

0 0

!

dd " d d ................... d

ee e, eleoe e •ggooo gogoo ooooo gg_oo ooooo gggg_ ggogo ooooo o

m_m

ooooo ooooo oogoo ogggd oggoo....ooggg ggd'"O0 00000 0

118

00000 00000 00000 00000 00000 00000 00000 00000

x dgddd oodgd ggdd& dgogg ododd oddgo dgddd gdggo d

Zm_ f

dgggo ooooo o_ood ggggo dooooo ooooo ooodd oggoo0

N &dgdo ooodg dgddd Sdo&d o&od& odgoo gdddg ggdgd g

_g .... g_.._ .. _g ...... _ ...........000 00000 O0 000 00000 O0 O0 00000 00000 0

"ggd .............................0 0 _0000 00000 00000 00000 00000 00000 00000 0

g_ogo oooog ogogg o_ogo oooo_ oo_oo o_ooo ooooo o

119

odogg ggggg ogg&d gdggg dggdg ggggg ggggg ooooo o

• • • • • • • • • • • • • • • • • • • • • • • • • • e • • •oooog ggggg ooooo ooooo ooooo ooooo ooooo ooooo o

0 o_ o _ _._-_- _-_-_-_-_- .... _- _-

_. _x ggoog ggoog ogggo ggdgg ggggd goggg o&ogg gooog g

__ __ odooo ggggg ogggg ooggg ogooo gdggg oggoo googg g

o N _ _ _ _ ...._ N °good dgggg ogggg gdodg gggdg gggdg ogogo goooo o

o

0I

ogoog ggggg o_gg ggggg ggggg gggg_ ogggo _oogg g

ogoog ooooo oggoo oggoo dggoo .......ooooo .gggo ooooo o

.... oooo o00000 00000 00000 000_0 00000 00000 00000

............................. gd g ....00_00 00000 00000 0_000 00000 00000 O0 0 0000 0

120

oooJe eeeel eeeee eeoeeooooo ooooo ooooo ooooo oo_ _ _ _

ddddd dgddg dd&go do&dg ood&o gd&gg gd&&g &&g&& g

o88o& dSd&d dggog do48& oog&_ dg&;o &oo&d doSdo 8

.................. ddgg " dd _ Og d00000 00000 00000 0_000 00000 0 000 _0 0

ooooo ooooo o0ooo ooooo ooooo ooooo ooooo ooooo o

Zgdo& ddgoo gdooo dogog ooodo o&dgo ooooo ooooo o

121

eeee ee0ee eeeee e0eee eeeee eeeee eeeee eeeee •00000 00000 00000 00000 00000 00000 00000 00000 0

e ee • .ee oeoe eee • .ee.e .eeee •ogogd oogdo ooogg dodgg ooooo ooooo ooooo ooooo o

D_

0

00000 0 0 0 O0 0 00000 00000 00000 00000 0

.... j_ E&_ .......x ooo_& o &_ &o_o oo_&o _ooo E&_ _oo_o

..... _.j._ ....... _'j_ ............00000 0 0 00000 00000 0 0 00000 00000 00_00 0

..... _ ......... _ _ & ...........ooooo oooo ooooo _oo o o_ _ oooo ooooo ooooo o

0

122

ogdog g .... dooo_ g '''dd g&oo_ _'oo_o go''& .... g ggoo oooO0 0_00

123

tolll IIIIQ Iilll llolo iiIil Iol,l iiilo IIiii •00o00 OQO00 0o0o0 000oo 000o0 00000 00000 OOOO0 0

• .._G _ ..... _ ...... _ G_ '_ ._ ._ .....ooo ooo oo _o ooooo ooo& _o o o o _ooo o=

i

-_. oo _(_ X ocoee ogeoo _oogo _ocoo ooooo..... gggoo oogoo gdodg o

°,-I _

i (_ OC) 00000 (_0000 0000 O00{DO 00000 00000 OOC) O0 _)

E ooooo dgooo ooooo goodo d&ogd odgdo ooooo ooooo o

o

0 v

C)!

dggdg gdddd &&gdg goodo _gggd ggdgd dgdgg gdggg o

ggggg gg ''g ...........................

00000 0000_ 000_0 0000_ 00000 0_0_ 0000_ 00000 0

124

x ogggd ooooo ogoog ooogg oogod oddgg g''do ddooo gd d

Z

g'dg g ...........................0 0 O0 O0 00000 00000 0_00 0000_ 0_000 00_00 0

N odoog ooooo ooddo oogod dodod odgdo ooood oodgg d

eeee eee eeee_ eeee, •ooooo oo_oo o_&_ oo''_o_ _ o_ooo ooooo ooooo o

_o _

• &_' _ _'_' _j" • _ ..................._0 0 O0 O0 0 0 0 000 000_ 00000 00_0 000_0 0

ogggg ooooo ooggg oooog ggg''oo od&oo ..........00000 00000 0

125

eeeee eeeee eelee eeeee eeeoe eleee eeeee eeeee •00000 00000 00000 00000 00000 00000 00000 00000 0

• ee..................... 0000000000 0_000 ..... 0000 0 00000 0000_ 00000 00000

ggg_g oo'"goo'' ggggg oooo'" " g gg'gg ogogo ooogg oooog g

0

o_ "_ ggggg ggggg ogggg ggggg gdggg dgdgg ggggg doogg oM c_

_ C_ _CDO CDO0_O C_O00 0_0_ 0 0_00_ CO00_ 00000 _0000 0

Z _

(.) E ........... g " ' ' dd ' 'g ........... g .........00000 00000 0 000 O0 00000 00000 _ 000 00000 0

0

0 v

I

ggoooo00 ooo0o 0oooo ooooo ooooo ooooo ooooo

ooooo ooggo ogooo ooo_o oogg& ooooo googg oocoo g

................. g 'g ......... g ...........

126

_0

127

ggggg ggggg dggg& ggggg ggggg ggggg ggggg ggggg o

0

_ x °,go°° og ''g go oo oo goo oo_ g goooo ' god ooo''go ggggo o g

_ = zr,- t_.. P,.. r-- P-- r,,- _-- _

%

_) .................... -_, ....N ooooo ooooo ggggg ooood ooooo ogogg oooog ggggg o

0

o.,_

0 "_

0 vI

#3_4

ooogg ggoog oEg_o ooooo o00000

IIitl !!111 IIill lllll IIIII Illlt !1111 I/Itl

128

e..e • • i. ii • i. • • o0 .l.t*ooooo ogggo ogoog ooggo ooggg oooog ogoog ooooo g

it • ee 00 • • • _11_. .e01. •ooogg ogggg oggoo _oggg gggog ooooo ooooo ooooo o

00000 O0 0 O0 00000 OCO Oooo ooogg ggogg ggggo og dg

d o mmmmm mmmmm mmmmm mmm mmmmm mmmmm mmmmm mmmm

00000 00000 0 0000 0_000 00000 00000 00_00 _000_ 0

0

N ggooo ooooo ooooo ggdgg ooooo..... ooooo oooog ooogo o

Itllt III! lllll Iltti tllll III!! Itlll iillt

00000 00000 00000 00000 00000 00000 00000 00000 0

• .g ....... gg ............ g .... g..gg .....O0 _0 00000 0 O0 000_0 00000 0000 O0 O00OO 0

000 000 000 000 0 00000 O0 OOOO0 0

: ....... j ...... g "g _ .......... g "g . .g .... gOOCO _0 0 00000 0 _0 00000 0000 0 CO O0 O0 0

_0_0oo_oo ogooo ooooo o_ooo go_gg _oo:_ goo_ o

129

00000 00000 00000 00000 00000 00000 00000 00000 0

_0 _0_ _

odogg googg oggoo ogggg ooooo ooooo ooooo ooooo o

130

d&gdd ddggg &gogg gggog ggoog ggggg oogdg gggJo d

N

× gdgd& dd&g& dgodg &gdo_ gdoog dggdd oo&gd gg_go g

odddg gdg_g dgo;d dgd_d _goo_ ooooo ooooo ooooo o

N gddgd ddddg dgogd gddog &goog odddd oodgg &gddo g

;;;_o ooo;; o;o_ _;;o_ _oooo o_o;; oo;&; ooooo

gggdd gdggo ooogg ggdgo ogooo ooooo ooooo ooooo o

ooggo ooggo ggooo gg,_go ggoog _&og oggog dd''ooo g

131

O0 _ _ _ _ _ ,_ _t _u_u_

ogggg ooooo..... gogoo gogoo ggogo oggoo goooo ooooo o

0

ggggg ggggg o_goo ggggg ggggo ggggg ggggg goooo o

t_. I_- _.1 _ ,

ooo oo ooooo oooo o ooooo ooooo _ooo0 ooc_oo oooo o

N oddoo ooogo ooooo ooooo ooooo ogggg ggggg doooo o

gggoo _dogo oogoo ggggg googo ogooo ooooo goooo o

oggod dgggo oogoo goooo..... oooog ooZ_''oo 00000 00000 0

:n

0

I

0 • ! • 01 _00 • l0 • • •oggog ogogo oggoo ooggg ooogo oggoo ogogg ogooo o

ggoog gggoo oogoo gggoo oogoo _ggoo oogoo googg goo o_ oo oo oo oo oo _g oo _ oo

.......... _ ...... g ............ gg00000 00000 O0 O0 _0000 0 000 00000 00000 00_ 0

132

x gdogd gdo ''oo ogodo ......ooooo ddodo odggo goddo ddodg g

z

go_go' ddogg" ooooo"" " " ' ggooo' " " ggeoo" " " _dgdo gdooo" ggod'o o0

N ggogo g&dgg gggdg &dg&g ggggg o&ggo gggoo ggogg o

&dodo gddgd ddd&& dddgg d&gdg oddgo dgdoo &dodg o

dgodo &oggo og_oo oogog d&ggd oog'oo ggooo doodg o

.................. _ _'" .& ._00000 00000 OOCO0 00000 00000 O0 0 0000 0 O0 0

_00 000oog_ g_goooo ooogg _g_g_ _gg_g gOOoo__ oo_oo°°°°° ooOOOooo_oOo

dgogo ggdgg dgggd ggdgg &gggg ggggo dggog ggogg o

133

L'- r'.- (o ¢o _0 ao ao ao _ _o _o _o _o aD O, 0 _ _ O_ CI_ Ch O• O_ O_ O_ O_ O_ C_ O'OOO OOOOO 0 "_ ,_ _ '-_ ,.a

d ..................... ggg &dd "d dO _OO OOOC) O C) O C) O G) OOC) OO OOOOC) OG) OOO C,O O

o

o_x o&odd dddog oo&&o ddood oogod gdod& oggd& gdogg o

z

ooooo ooooo ooddo odood oogog ododd &gdod googd g

• _ _0 ,0 _D ,_) _D _ID ,0 _0 _ _D _ID ,0 _0 _D _D _ _0 I_- _ i'- _'- _'- t_. h. f_. _- _. _. _-- I_. _ I_- _. I_. I_. _- _- I_.

ododd ddg©d oog_o odood oogoo dgodd odgod gdggd d

0

I

odo_g dddog ooggo odood oodod ddodd ogdod ddddd d

_m

et o _ _ eeeogodd dgdo_ ooooo oooog oggog doodo og&od ooogd g

134

ooooo ooooo ooooo ooooo ooooo ooooo ogggg gggog

x ggddd gdddd ddodg gdddd ggddg gdgdg odggo o dddg g

........ 2_ 22_2_ 2_ _ _ _ __ ooooo _oooo ooooo ooooo oo=oo _oooo ogdgg ogggg o0

m_

N gdggg ggggg ggogg ggggg ggggd ggggg oggdg ogggg g

gg.g .00000 00000 00000 00000 00000 0000_ 00000 0 0 0

135

ooooo ooooo ooooo ooooo ooooo ooooo ooooo _g_ o

_ '" _ _ _ ..... goo go0000 0o00o 00000 oo00o 00oo0 00000 o0o00 O0

,e • e| • * e e eooooo ooooo ooooo =oooo ooooo oooog oogog gg&go o

OOCO0 _0000 00000 000_0 00000 00000 00000 00000 000000 00000 00000 00000 O_OCO 000_0 OCO00 00000 0

e, • • e_e , • • eeeee • • • ,eoogoo g&ogo &_ooo o_o_o ooooo _g'ooo og_o_ gogoo g

136

• *eee eeeeo •dgdgg dgdgg _gddg odggd dggdd oogdo ooooo ooooo o

ooooo ooooo o++++ ++oo+ o+++o +o++o o+++g +g_++ +

137

ooooo ogggd odoog gogog dgooo dogog ggogg dgogd o

_, °m

i

_ oggog eddgo odegd gdgdg ggdge ggggg ggogg gooog g

_°h=f_,

_ ooooooooooo;o_;oooooooooooooooooo_;;ooo;;r_

0

!

r_

.<

oo "''_o _ _o_ &ooo_

ooooo ooooo d;oo; og;;; og;;o ogoo; d;oo; ;oooo o

138

ooooo oddoo oodgd ooggg doood oooog ooodd ggggo d

ogJog ogggg dgggd oodgg ggoog ooggg gg_gg ggggg d

oo _

oooog ogooo oogog oodoo goood _o'oog oggo_ ooooo..... d

139

oggog oggg& ggg&g ggg&g ggggg &ogog g&ggg &g_go o

b-

'" gg "' "gggg g 'ggg gg''g ' g g d'''g ggg_I--I 00000 0 O0 0 0 O0 O0 0 000 0 0

V; 0 • 0 . _ • • •

I" oo0oo ooddg ooooo..... ooooo docgd dogoo g oooo..... o oooo" " o

d o

o _ ogoo oooog g goooo ooooo dogoo oooog dgg'oo o0 0000

0_ _ N_ ._°_-_-_222 2_2'_- ,-- 2_22_,-- ,.- 2-_-,.- _ _. .... _-_-'_-_-.. _-_-_*_'*_.. _-_-_ _ oogoo ggggg &gggg ggggg ggooS ooooo gogoo ooggo o

°• 0

0

u vi

M

_NN_N NNN_N NNNNN NNNNN NN_N_ _NNNN NNNNN NNNNN Nt1111 !ill i!111 iii ! i i1111ggooo go''o gggggoogoo ooooo g oo ooO 0oooooo ooo0o

00000 00000 00000 00000 00000 O00 O0 00 000 00000 0

140

g&ggg ggggg ggggg ggggg ggggg ggggg gjggg ggggg g

00000 00000 00000 00000 00000 00000 00000 00000

ggdgg gdo&& gggg& ggddg ggdgo dg&gd ggdgd gogdd g

........................ gggg ggggg . &&g00000 _0000 00000 000_0 00000 0 O0

_000

x ggdgd Ggogg ggggg ddggg gddgo dggoo dd&dg &ooog g

Z

%

m e o • ,,el • ,ogggo ggogg ggggg gggoo ooooo goooo ggggg googo g

dgggg gg.gg ggggg Sgggo sgggo gogoo ggdgg gooog g

dgggg ggogg ggdgg ddggo ggggo gogoo ggggg gooog g

ooooo ooooo ogogd ooooo sdggo goooo Soooo ogood g

_ _ _ _ _ _ _ _ _ _ oo

• g ''gg .... g00000 00000 00000 00000 00000 O0 O0 O0 0 00000

ggogg goooo oggoo goggo gg''ooo ooooo gggog ogooo g

141

_0 00000 00000 00000 00000 00000 00000 00000 0

_ 00000 00000 00000 00000 00000 00000 00000 0

_0 O0 _

0

_ _000 00000 00000 00000 00000 00000 00000 0eo ,eee eeeee • • e eeo o o ee ee _eee0 •

00000 O0 _ _ _ _ _ _ _ _ _ _

e_0

0I

_ _ 00000 00000 00000 00000 00000 00000 0

_ _ _0000 00000 00000 00000 00000 00000 0_ _ _0000 00000 00000 00000 00000 00000 0

dd .................... i ....o O0 00000 o_ _ _ _ _ _ _

142

eet • • • • QI •

I eel eee iolei @leit eeeel eeeee oeeel eee e

oo oo_oo _ _ooo _OO_o oo°O_ o°_°: o_ _ °°ooo00 0

*eeee eeeee *eeee .ee*l ee*ee _*,ee eeeee eee*e •

143

0¢o

144

eeeee eeeee eeeee eeeee eeeee eeeee Ioeee eeeee I

............ 2''2 .....

eee_e eee,e eeeee ,e_ei ee_e, ee,ee eeeee ,eee_ •

leeee eeeee eeeee eeele eeeei eeeee eeeel eeeee •

• • • • • , • • • • • • e • • • • , • • • • • * • • • • • . • • • • • • • • ' " • •

145

0

.... " .............. 2"'2

0 o

•o ,o _0

e_ ° "":_= ---oo _o_o_ ooo_._ooooo ooooo ooooo ooooo,o_ _z

oo. o o oo _ o_

N

oo.g gg_go ..... o_. o .o_ . .oooo g

0 0

r_ r,.)

00000 00000 00000 00000 OOCO0 00000 00000 00000 0

...... 2 ............ 2 ........... 2A' Z=''"

"'2 2 .....................

_o oo.o_ oo ooooo _0o

ooo _oo_ _ _ooo o, ***_* 00000 O0o_ _ ..................... °_ _°

146

z

.............. 2" "_ ..... 2_ 2 _2 ....

................ A "AA ..............

............... 2 ....... 2 ............

• ....................... A'ZA .... A

14"/

0

0cO

....... 2" "2 ..... 22 ...........

148

_00 00_0_ 0oo_ 00000 OOO00 0o000 00oo0 0000o oeee ee e eeeee oeee oeoeo eeeeo •

ooooo ooooo ooooo oooo_ _oo_ oo_o _o_o ooooo o0e • oeoee ee • • • • eeo •

00000 00000 00000 00000 00000 00000 00000 00000 0eeeee ee • eeee _ e ,e e, eel, eeee , • •

0 _ g_ggoo _""ooo _o o _oo _oo_ _ooo_ oo_ooo o_•" I_i .......... 1 ............. _-_

O0 O0 00000 O0 0 000 000 0 O0,,,,, e, e eeee , , ,, ee,e ,,_, • • •

= ..... 1 _ .................

O0 O0 O0 O0 O0

00000 00000 O0

000 000 00000 00000 00000 00000 O0 O0 00000

• • _ • • ° 000_ • • • , 0 • 0 • 0 • 0 , • 0 • • •

O0oOooeoee • ee • • • eeeee eee* eeeee# o • 8 • 0 e e •

00000 00000 0000_ 000_0 00000 00_00 00000 00000 0

00000 00000 00000 00000 00000 00000 00000 00000 0

o oo_oo oo-oo _oo_ _oo_ _oo_ ooooo _oo_ oo_o_oo oo_oo oo oo _o ooooo 5o_ oo o_ . . • ..........

149

.. ...... . . .... .... . ... .........

0

0 -_ _ .-_ _ --_ "_ "_ _ '-_ "-_ "-_ _ -_ "_ _ _ _ '-_ "' -_ _ O0 000 0

•_ --4,_000 00000 00000 00000 0

i0

0 _e_ _ ,_,_-_o _o0o, O, o, 0_ 0, o, _ _o oo oo_-_._-_- ,o ,0,o ,0

N ............... " ............

0

o 0

_ _ _00 O0 0 O0 00000 0 000 O0 CO 0

_=~_ _-_o_. _ooo. ooooo ooooo ooooo oooo_ ooooo o

J

150

........... _ ::" ' _ ........ i" '

x " ='" _'I_ .... ' ............ =

" _ ............ I " C i "I Z " " "

........... _'" _" '£ ..... £ .... l ......

151

eoeee eeoee

...... _ ..... _ ...................

• _ _ _ .... _ ...... _ .."

..... _ _ _ _ _

..... _ ......... _ _ . _ _ •

152

ee • • ee e

....... _ _. ._ ........ o__._ "_ ..__ .

153

_i_o

I= oa

¢) 0

°,,,a _

0

r_I

.. _ _j'_ _j_ " _X ............ _ _3_' .

154

oeooe eoeoo oeooe eoeee

oeooo eoeoe ooooo oe_oe eeeoo eooo_ eoeeo eeooo

eoeet • *_o eee_i oeooe oeeee eeoee _oeee eeeo_ •

..... _ _$_ _ o-__ .. _ .......... _.. . .. _._ .

155

_'i ' "_g ...... _

................... j . g g'" g

.................. _ X • . .jj .

156

NN NN NNNN NN N_ _ _ _ _ _ R

157

0

.,-i

0 v

roI

,...1

158

.................... 12Z " I 2_ee_ -e_

o

...., ..... ,.°°. ,.... ,0..° ,,.°. ..... ..... •

o

159

. . ................................. _;..i

160

oo

161

• • e eeeel • • • el •

............. _ ............. _ ..... _ • .

162

_j_ _djJ JJJ.J JJJJ_ J_J _JJ_J ;;JJJ ;J_3_ J

0

_ az _

.... g .......... ; j j" j jj "2 ¢ _2¢ '

W

• • _ _ ...... ¢ "'_ ' '_2 '

gj ......... 2J " 'gg J

0

O_ __0 •

......... _ .... ::..@

d o

163

0

I

ON

I I I I IIIii IIIIi II

.° +_++_.++_°_.+++°_ +++°++°++°oo++++m++-+++° _+++o o+ o_jj ...................

e, • ,el • eeoel Ii • • e •

164

............... gg ' ggg 'g'g ......_ 2 _ _

165

o._ _=_ _o_'_ _ _ "_ .

............... _ ...... j '_ • . _ •

• 0

0

oI

gg .............. g • .

• o ... o,., ....... .. ,, .... ,. oo , ,

166

167

0

168

_ _ _ _ _ _ _ _ •

o • ee

ee_oe eeome eeeee eoeee eeeee oeeoe eeeee ooeee e

eeeee eeeee eeeee eeeee e_eee eeeeo eeeoo eeeee • _"

e_._ ee_ee 9eeee etee_e eee.ee _geee ee_e_ et_ee _

_0 00000 00000 00000 0_ _

eeeee eeeee eeeee eeeee 0eeee ee_ee eeeeo _eeee •

g0

eeeee eeeee eeeee eeeee eeeee eeeee eeeee eeeoe e_

• e • e •_ _ _N NNNNN NNNNN NNNNN NNN_ _

.......... _ _R. . ._ __--e _ee eeee e • • 0_

_ _o _o _o oo_ _o_ o_o o_

169

_ _ _ _C ¸ O0 O0 0 00000 00_

170

O0

• _ _ . _ .... _ .................

_ o_o _o_o_ _o_o _o_o_ o_o_o _o_o_ oooooo o_ooo °o

171

0

ee • oleee eeeeo eoeel •

_z

[-a t:::

o

0!

.<

ggggg goOggoo ggggg ggggg g°°ggoo goOggoo ooooo_°°°° ooooo°°°°° o°

1"/2

I _ ee. I_ _ N _" tl_ ,0 /_ _- i_.- ,0 ,O ,_D u_. .,._" ,,1" _ N e_l .-._ O 0 C_ _0 ¢0 f_ ,0 U'_ ,_ " _"1N N ,--* Cl _ _' ¢_ O0 _

............................. _ ......

_1:30 O0 00000 0000_ 0000(:3 OO00C) 00000 C_ C:) 0 O0 000¢30 00000_ 00'000 00000 _00_0 _0000 0 C;C_O 0 00000 0000'_ 0

173

• _ _'_ .. .

m

• • • • • • • • • • • • e • • • • • • e • • e • • •

_ Z

m _

m4-mmm4-4-,,.,i

N

0 _

I

_ .._ _... ...............................

1'74

z

175

00000 00000 00000 00000 0

176

• e • • • • ee oe ee •

............ g ..... _ .....................

...... _ • . ._ ....... _ ............... _ .....

.. ._ ......................... _ A .... _ .....

178

oo oooo_ o_o_ _'_ _oo o

1'/9

te • • ee • • oe • • • ee

0"C3' _ 0

180

NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN flNNNN NNNNN N

_ o_o_o uno_o_ o_o_o _ o _n o u_ o_o_o _ou_o_ ooooo ooooo o

181

0_3

0 _

e • . • • • • •

182

183

M_ M'_ _,'_ _" _" ,,,_- ,_9 I,_ t,_ M"_ M'_ _'_ tt_ _,0 _0 .,0 _ _ _,0 _O ,_D _D P',- p- I_,. I"_. p,- I'_ I_,- )',,,,- I,,_. ;_- p,- r,,-. p,.. r',-. P',,- ;",- I"_ P'.,.

0

0 _ X "4 • • e o • • e • e • • • • • • • • • • o o • e • • • • o • • • • e • • • • • • • •

!

........................................................._u

0 _

!

184

_o _°_

m

m

II I i I i I I+ ii I i iiii

185

• .... 4 4 44 ....... _ ....... ... ._ 4_ ...........

0

t11tl I !11 !!III II!II liltl II I! IIII !1111 I

._ 0

0

I

0

0

186

....................... Z 'ZZ _ ' "_ZZ _ "_ '_ "

oeeoe. • ._ _ ._ ...... _ ''_ . ._ • _ ._ .. ,_. •

187

• eeoc ooeeo eoeoe oeeee _eeee ooeee ooeee ooooo •

0

g)

-_ ro0

I

188

_, ........... --._- ...... , .........

189

_ Z " 2 Z_ "Z "Z'Z ........... Z ..............

0

_ _ _-_" • • "_2_ "_ ......... "_ ..... 2 ...........

_ °

._ o

0

J

190

• eeoc eeeeo

_ eee,e e,eee • ,, eeoc

x ......... 2" "2" 122"2 25

Z

......................... _''2" _ .....@

................. II'Z _ ..... I'Z IZ ....

191

0

!

0

!

P_

192

eeooe eeooe oeoee eeeoo eleee eeeee eoooo oeooe •

z

eeeee eeeee eoeee eeeee eeeee eeeee eeeee eee • •

O0

eeeee eeeee eeeee eeeee eeeee eeeoe eleee eee • •

193

194

195

196

oeo|o eooeo oeeee eee ooe|e eoooo oooee eoeee •

_ .... _ '

197

oeooo eeoee eeeoe oeeoo eeeeo eooee eeoee eeeeo •

_o s

_o

_e • ._e • ,.4 _e .e _e • ,e ,_o • _e _o _e .4 .o _e • • ._ oe .o _e • ..e ,o .e • _e • .4 ..e ,e .o .o ,o • _e _e

f_

o

0 eeeee eeeee eeeee eeeee eeeee eeeee eeeee eeeee e

...... _ _ .... _ _ _ _ _ _

198

0 oeeee eoooo eoQeo eoeee eeooe eeeee eeeoo eoele

ioeoe eeooo eee_o eee_o oeeoe oo_oo eeooe eoeeo o

199

o I_'11 ....................................

4

_ mo o_ _omo_ o_o_o _omo_ ooooo ooooo o

200

• e. • •

NASA-Langley, 1968 _ 12 E-4512 201