31
Bus Conductor Calculations Instruction: 1 Use combo boxes to fill in data. 2 If uneven span length fill in L1 and L2 values. 3 Red numbers will fill in from formulas. DO NOT FILL IN RED NUMBERS WILL DELETE FORMULAS 4 Printing margins are preset and do not need to be changed.

Bus Conductor Calculations

Embed Size (px)

Citation preview

Page 1: Bus Conductor Calculations

Bus Conductor CalculationsInstruction:

1 Use combo boxes to fill in data.2 If uneven span length fill in L1 and L2 values.3 Red numbers will fill in from formulas.

DO NOT FILL IN RED NUMBERS WILL DELETE FORMULAS4 Printing margins are preset and do not need to be changed.

Page 2: Bus Conductor Calculations

Bus Conductor Calculationspage 1 of 7

Owner : Alliant EnergyProject :Date : ###Calcs By:Subject : ANSI/IEEE Std 605-1998

Input Parameters

S : 4 inBus Conductor Profile ID : 2Gust Factor (Large >125 ft) Gf : 1.3

Dampened : yes yes/no dampening cable : 4 % of bus weight (10%-33% OK) : 26.4 %

Insulator Data T.R. : 216Symmetrical Short-Circuit Current Isc : 8000 A, rms***Fault Type Rho ID : 2Proposed Span Length (Equal Spans) Lp : 25 ftPhase Spacing (Center to Center) D : 120 inExposure Factor Exp F : 3

Bus Support Information Bus ID : 4 P = pivot, F = fixed, C = continuous **Use L1 and L2 for unequal span lengths.

L1 : 20 ftL2 : 30 ft

Solution quick checkConductor Problems : no yes/no

Insulator Problems : no yes/no

Conductor Gravitational ForcesConductor Unit Weight Fc : 3.733 lbf/ftDamping Material Unit Weight Fd : 0.9873 lbf/ftForce of ICE F1

(Eq 7) Fi : 3.11 lbf/ft

Total Grav. Forces Fg : 7.83 lbf/ftTotal Grav. Forces w/o ice Fg/wo : 4.7203

(Eq 13)

Notes: * >30 Hz change bus length

Bus Conductor Size (Add 80 for sched 80)

F i=12∗π∗W 1∗r1∗(d+r1 )

FG=FC+F I+FD

Page 3: Bus Conductor Calculations

Bus Conductor Calculationspage 2 of 7

Owner : Alliant EnergyProject : 0Date : ###Calcs By: 0Subject : ANSI/IEEE Std 605-1998

Conductor Wind ForcesNESC Heavy Case

(Eq 9) r1 (ice-in) 0.5V (wind-mph) 80

Kz : 1 Exposure factor (structure < 30ft)Wind Force on Conductor Fw : 11.22 lbf/ft Kz 1,2,3 1

Kz 4 1.16Conductor Short-Circuit-Current Forces

*(Eq 10) Fsc : 1.275 lbf/ft

Conductor Strength Condition

Allowable deflection Ya=0.5*D Ya : 2.25 inFg : 7.83 lbf/ft with ice load

Two Pinned Ends Fgwo : 4.7203 lbf/ft without ice load(Eq 14) Ld : 372 in

Ld : 31 ft with ice loadLdwo : 422.2 inLdwo : 35.18 ft without ice load

Two Fixed Ends(Eq 16) Ld : 556.3 in

Ld : 46.36 ft with ice loadLdwo : 631.3 inLdwo : 52.61 ft without ice load

One Pinned, One Fixed End(Eq 18) Ld : 463.4 in

Ld : 38.62 ft with ice loadLdwo : 526 inLdwo : 43.83 ft without ice load

Notes: * Formula is decremented to account for system impedance See (Eq 10)

Fw=2 .132∗10−4∗CD∗K Z∗GF∗V

2∗(d+2∗r1 )

FSC=27 .6∗ΓI

SC2

107∗D

LD=[384∗E∗J∗Y A5∗( FG12 ) ]14

LD=[384∗E∗J∗Y AFG12 ]

14

LD=[185∗E∗J∗Y A

FG12 ]

14

Page 4: Bus Conductor Calculations

Bus Conductor Calculationspage 3 of 7

Owner : Alliant EnergyProject : 0Date : ###Calcs By: 0Subject : ANSI/IEEE Std 605-1998

Conductor Strength Condition (Cont.)Horizontal Orientation

Total Unit Force(Eq 22) Ft : 14.75 lbf/ft

Exposure factor (structure < 30ft)

Angle of Force(Eq 23) Theta : 32.08 degrees

Vertical OrientationTotal Unit Force

Ft : 14.45 lbf/ft(Eq 24)

Angle of Force(Eq 25) Theta : 42.01 degrees

Conductor Fiber Strength

Two Pinned Ends(Eq 26) horizontal Ls : 723.3 in

Ls : 60.27 ftvertical Ls : 730.6 in

Ls : 60.89 ftTwo Fixed Ends

(Eq 27) horizontal Ls : 885.8 inLs : 73.82 ft

vertical Ls : 894.9 inLs : 74.57 ft

One Pinned, One Fixed(Eq 28) horizontal Ls : 723.3 in

Ls : 60.27 ftvertical Ls : 730.6 in

Ls : 60.89 ft

FT=[ (FW+FSC )2+FG2]

12

θ=tan−1( FGFW+FSC )

FT=[FW2+(FG+FSC )2]12

θ=tan−1( FG+F SCFW )

LS=[ 8∗F A SFT /12 ]12

LS=[12∗F A SFT /12 ]12

LS=[ 8∗F A SFT /12 ]12

Page 5: Bus Conductor Calculations

Bus Conductor Calculationspage 4 of 7

Owner : Alliant EnergyProject : 0Date : ###Calcs By: 0Subject : ANSI/IEEE Std 605-1998

Insulator Strength ConsiderationsEffective Span Length Le : 31.25 ft

Bus Short Circuit Current Force(Eq 30) Fsb : 39.836 lbf

Bus Wind Force(Eq 31) Fwb : 350.6 lbf

Insulator Wind Force(Eq 32)

Fwi : 39.19 lbfInsulator Gravitational Force

(Eq 34) Fgb : 244.7 lbf

Vertical Insulator Cantilever Load(Eq 35)

Where K1 : 2.5 Suggested*K2 : 1 Suggested*

Hf Bus insulator Height above Insulator Hf : 4.5 in

Fis : 1103 lbf

Horizontal Insulator Cantilever Load(Eq 36)

K3 : 2.5 Suggested*

Fis : 848.1 lbf

Notes: * Overload factors K1,K2, and K3 are from Standard

FSB=LE FSC

FWB=LEFW

FWI=1 .776∗10−5CDK ZGFV

2 (Di+2 rI )H i

FGB=LE∗FG

F IS=K1 [ FWI2 +(H i+H f )FWB

H i]+K2 [ (H i+H f )FSB

H i]

F IS=K3 [ FGI2 +(H i+H f )FGB

H i]+K2 [ (H i+H f )F SB

H i]

Page 6: Bus Conductor Calculations

Bus Conductor Calculationspage 5 of 7

Owner : Alliant EnergyProject : 0Date : ###Calcs By: 0Subject : ANSI/IEEE Std 605-1998

Determine Natural Frequency of bus

(Eq 5)

For 2 fixed ends : 11.93 Hz* Natural FrequencyFor 2 pinned ends : 5.231 Hz*

Wind Induced Vibration: 10.87 Hz** Wind Induced

(Eq 6)

** > fb add bus dampeners *** If Isc of future is unknown use interrupting capability of substation equipment.

f b=πK 2

24∗L2 (E∗JM )12

f bf b

f a=3.26∗Vd

f a

Page 7: Bus Conductor Calculations

Bus Conductor Calculationspage 6 of 7

Owner : Alliant EnergyProject : 0Date : ###Calcs By: 0Subject : ANSI/IEEE Std 605-1998

Results

S : 4 inDampened : yes yes/noInsulator Data T.R. : 216 (see chart)Symmetrical Short-Circuit Current Isc : 8000 A, rms***

Proposed Span Length Lp : 25 ftPhase Spacing (Center to Center) D : 120 in

10 ftNatural Frequency Two Fixed Ends : 11.9273 Hz* Two Pinned Ends : 5.23102 Hz*Wind Induced Vibration : 10.8667 Hz**

Max, bus span, vertical deflection **** w ice w/o ice Two Pinned Ends Ld : 31 ft 35.1821 ft Two Fixed Ends Ld : 46.3564 ft 52.6096 ft One Pinned, One Fixed Ld : 38.6207 ft 43.8303 ft

Max, bus span, Fiber Strength ****Horizontal orientation Two Pinned Ends Ls : 60.2729 ft Two Fixed Ends Ls : 73.8189 ft One Pinned, One Fixed Ls : 60.2729 ftVertical orientation Two Pinned Ends Ls : 60.887 ft Two Fixed Ends Ls : 74.571 ft One Pinned, One Fixed Ls : 60.887 ft

Ld> Proposed Length w/o ice good : yes yes/noLd > Proposed Length w ice good : yes yes/noLs > Proposed Length good : yes yes/no

Insulator information on next page

Notes: * >30 Hz change bus length ** > fb add bus dampeners *** If Isc of future is unknown use interrupting capability of substation equipment. **** Use Pinned ends for end conditions and fixed for mid-supports.

Bus Conductor Size (Add 80 for sched 80)

f bf a

f bf bf a

Page 8: Bus Conductor Calculations

Bus Conductor Calculationspage 7 of 7

Owner : Alliant EnergyProject : 0Date : ###Calcs By: 0Subject : ANSI/IEEE Std 605-1998

Results (Cont)

Insulator Cantilever Load Vertical Fis : 1102.79 lbf Horizontal Fis : 848.081 lbf

Rated Strength 50% Rated Strength * Vertical Fv : 1500 lbf 750 lbf Horizontal Fh : 1500 lbf 750 lbf

Fis <= Fv Vertical good : yes yes/noFis <= Fh Horizontal good : yes yes/no

Notes: * Per IEEE, use 50% max loading for all cases.

Page 9: Bus Conductor Calculations

Bus Conductor CalculationsIndex

Owner : Alliant EnergyProject : 0Date : 2/14/2002Calcs By: 0Subject : ANSI/IEEE Std 605-1998

Variable listA Cross sectional area, in^2 Hs Mounting structure height, inC Temperature, C I Current, A, rms

Cd Drag Coefficient Isc Symmetrical short circuit current, A, rmsD Condutor spacing, center to center, in or J Moment of inertia of cross sectional area, in^4Di Effective insulator diameter, in K Constant used in span natural frequency d Conductor outside diameter, in or cm calculationE Modulus of elasticity lbf/in^2 Ki Insulator cantilever spring constant, lbf/inF Temperature, F Kf Mounting structure flexibility factorF Skin effect coefficient Ks Mounting structure cantilever spring

Fa Maximum allowable stress, lbf/in^2 constant, lbf/inFc Conductor unit weight, lbf/in^2 Kz Height and exposure factorFd Damping material unit weight, lbf/ft K1,K2,K3 Insulator overload factorsFg Total bus unit weight, lbf/ft Lp Span length, ftFi Ice unit weight, lbf/ft La Max. allowable bus span length, ft

Fsb Short circuit current force transmitted Ld Max. allowable bus span length based on to bus support fitting, lbf vertical deflection, in

Ft Total unit force on the bus, lbf/ft L1,L2 Adjacent bus span lengths, ftFte Thermal force, lbf Le Effective bus span length, ftFw Wind unit force on the bus, lbf/ft Ls Max. allowable bus span lenth based on Fsc Short circuit current unit force, lbf/ft fiber stress, inFis Total cantilever load acting at end of Li Span length at initial temperature Ti, ft

insulator, lbf Lt Span length of load tap, ftFgi Weight of insulator, lbf lbf pound forceFgs Weight of mounting structure, lbf lbm pound massFwi Wind force on insulator, lbf m Mass per unit length, lbm/ftFwb Bus wind force transmitted to bus r1 Radial ice thickness, in

support fittings, lbf S Section modulus, in^3Fgb Effective weight of bus tranmitted to Tf Final conductor Temperature, C

bus support fitting, lbf Ti Initial conductor Temperature, CFbs Tap load weight, lbf t Time, sfa Maximum aeolian vibration frequency, Hz V Wind speed, mi/hfb Natural frequency of bus span, Hz Wi Ice weight, lbf/in^3fi Natural frequency of insulator together Ya Max. allowable deflection, in

with mounting stucture, Hz Yb Max. allowable deflection as a fraction G Conductivity, % IACS of span lengthg Gravitational constant a Coefficient of thermal expansionGf Gust Factor Theta Angle of total force below horizontal, degreesHf Bus centerline distance above top of Rho Multiplying factor based on type of short

insulator, in cricuit currentHi Insulator hieght, in

Page 10: Bus Conductor Calculations

Bus Conductor CalculationsIndex

Owner : Alliant EnergyProject : 0Date : 2/14/2002Calcs By: 0Subject : ANSI/IEEE Std 605-1998

Page 11: Bus Conductor Calculations
Page 12: Bus Conductor Calculations

4/20/2023Bus Conductor Calculations

IndexOwner : Alliant EnergyProject : 0Calcs By: 0Subject : ANSI/IEEE Std 605-1987 Annex C

Thermal Considerations for Outdoor Bus-Conductor DesignConductor Characteristics: Copper or Aluminum mat : 2 (cu=1,al=2) Shape ID Conductor Length (Square) l : 2 in Round Tube 1 Conductor Width (Rectangle) w : 1 in Bar Square Tube 2 Conductor Diameter (Round) d : 4 in Rectangular Tube 3 Conductor Shape (See Table) ID : 1 (table) Universal Angle 4 Conductor Conductivity C' : 0.65 (%IACS) Double angle 5

(Two Univ. Angles)Channel 6Double Channel 7Integral Web 8

a : 3 inb : 1 inc : 0.5 inii : 0.2 ing : 3.4 =2*ii+a

S : 0.4 Double angle spacing, ine : 0.5 (Table) emissivity ID

Temperature Considerations: weathered alum. 0.5 Ambient Air temperature Ta : 40 degrees C weathered copper 0.85 Conductor Temperature Rise Tr : 65 degrees C other range 0.3-0.9 Conductor Temperature T2 : 105 =Ta+Tr Change in Temperature Delta T : 65 =Tr Conductor Cross Section A2 : 3.3379 in^2

Conductor Location Considerations: Degrees North Latitude lat : 35 Aprox. Iowa Clear or industrial Atmosphere at : 0 (0=clear, 1=industrial) Time of Day (10 a.m., 12 n., 2 p.m.) : 12 (10,12,2) Altitude above sea level alt : 1000 ft

l

w

d

Rect.Tube l

w

Universal Angle

ii

b

l

g

a

c

Integral Web

ii

Single channel

Double channel

l

w

w

l

ii ii

Page 13: Bus Conductor Calculations
Page 14: Bus Conductor Calculations

Bus Conductor CalculationsIndex

Owner : Alliant EnergyProject : 0Calcs By: 0Subject : ANSI/IEEE Std 605-1987 Annex C

Thermal Considerations for Outdoor Bus-Conductor Design

Resistance of copper

Resistance of Aluminum

Conductor resistance R Cu : 0.0003762 Ohms, copperR alum : 0.0003768 Ohms, aluminum

Qc : 56.297706 watts/ftQr : 2780 watts/ftQs : 48 watts/ft

R : 0.0003768 Ohms/ftF : 1.3147678

Max Current for allowable temperature rise

I : 2412.9864 Amps

R=8.145∗10−4

C ' A2 [1+ 0 .00393C '100(T 2−20 )]

R=8.145∗10−4

C ' A2 [1+ 0 .00403C61(T2−20 )]

I=√ Qc+Qr−QSRF

From tables sheet

Page 15: Bus Conductor Calculations
Page 16: Bus Conductor Calculations

Bus Conductor CalculationsIndex

Owner : Alliant EnergyProject : 0Calcs By: 0Subject : ANSI/IEEE Std 605-1987 Annex C

Thermal Considerations for Outdoor Bus-Conductor Designmat : Material makup

l : Conductor Length (Square shape), inw : Conductor width (Rectangle shape), ind : Conductor Diameter (Round shape), in

ID : Conductor ShapeC' : Conductor Conductivity, %IACSa : Integral web dimensions, inb : Integral web dimensions, inc : Integral web dimensions, inii : Conductor Thickness, ing : Integral web dimensions, inS : Double Angle Spacing, ine : Emissivity

Ta : Ambient air temperature, degrees CTr : Conductor temperature rise, degrees CT2 : Actual conductor temperature, degrees C

Delta T : Change in Temperature, degrees CA2 : Conductor cross sectional area, in^2lat : Degrees North Latitudeat : Atmosphere conditionsalt : Altitude above see level, ft

R cu : Resistance copper, OhmsR alum : Resistance aluminum, Ohms

Qc : Conductive heat loss, watts/ftQr : Radiation heat loss, watts/ftQs : Solar heat gain, watts/ ft

R : Direct current resistance at the operating temperature, Ohms/ftF : Skin effect coefficientI : Current allowable for the temperature rise, Amps

Page 17: Bus Conductor Calculations
Page 18: Bus Conductor Calculations

Note if you add lines to this table you need to update C54-C60, AF51,Bus Conductor Properties

size (in) ID d(in) Fc(lb/ft) E(lb/in^2) J(in^4) S(in^3) Fa(lb/in^2)error

1 1" Sched 40 AL, 6063-T6 1.315 0.581 10000000 0.0873 0.1328 250001.5 1.5" Sched 40 AL, 6063-T6 1.9 0.94 10000000 0.3099 0.3262 250002 2" Sched 40 AL, 6063-T6 2.375 1.264 10000000 0.6657 0.5606 25000

2.5 2.5" Sched 40 AL, 6063-T6 2.875 2.004 10000000 1.53 1.064 250003 3" Sched 40 AL, 6063-T6 3.5 2.621 10000000 3.017 1.724 25000

3.5 3.5" Sched 40 AL, 6063-T6 4 3.151 10000000 4.788 2.394 250004 4" Sched 40 AL, 6063-T6 4.5 3.733 10000000 7.232 3.214 250005 5" Sched 40 AL, 6063-T6 5.563 5.051 10000000 15.16 5.451 250006 6" Sched 40 AL, 6063-T6 6.625 10000000 25000

81 1" Sched 80 AL, 6063-T6 1.315 0.751 10000000 0.1056 0.1606 2500081.5 1.5" Sched 80 AL, 6063-T6 1.9 1.256 10000000 0.3912 0.4118 2500082 2" Sched 80 AL, 6063-T6 2.375 1.737 10000000 0.8679 0.7309 25000

82.5 2.5" Sched 80 AL, 6063-T6 2.875 2.65 10000000 1.9264 1.3397 2500083 3" Sched 80 AL, 6063-T6 3.5 3.547 10000000 3.8943 2.2253 25000

83.5 3.5" Sched 80 AL, 6063-T6 4 4.326 10000000 6.28 3.14 2500084 4" Sched 80 AL, 6063-T6 4.5 5.183 10000000 9.16 4.271 2500085 5" Sched 80 AL, 6063-T6 5.563 6.086 10000000 20.67 7.431 2500086 5" Sched 80 AL, 6063-T6 6.625 10000000 25000

*IF YOU MAKE CHANGES TO THESE TABLES MUST CHANGE *c54 c60 COMBO BOX INFORMATION ON FIRST SHEET! 1/0 ACSR

4/0 ACSRProfile T *ID Cd 477 ACSRSquare 1 2.03 636 ACSRRound 2 1Bar/I bea 3 2I beam 4 2.04Angle 5 2Angle Te 6 1.99

* Short Circuit CurrentFault Rho ID Rhophase-ph 1 1three ph 2 0.866Three ph 3 0.808

*Gust factorStructure Gfsmall <125 horizontal ft 1.3large >125 horizontal ft 1.1

Page 19: Bus Conductor Calculations

* Exposure FactorLarge City Center 50% of buildings > 70 ft 1Urban/Suburban, Wooded, Closely Spaced Items in area 2Open Terrain with obstructions less then 30 ft 3Unobstructed areas exposed, wind blowing over > 1mi of water 4

*Type of bus connection IDSingle span P P 1Single span P F 2Single span F F 3Two Cont. Span P C P 4Two Cont. Span P F F 5Two Cont. Span F F F 6Three Cont. Span P C C P 7Four Cont. Span P C C C P 8Four or more P C .. C P 8**Two span uneven F F F 9**Two span uneven P F P 10**Two span uneven F F P 11**Two span uneven P F F 12**Two span uneven P P P 13**Two span uneven P P F 14**Two span uneven F P P 15**Two span uneven F P F 16

Page 20: Bus Conductor Calculations

If you add line items to this table update AF52 ,AI53-AI55, BM51Conductor heights *Centerline Bus Support Insulator

15 kV T.R. 205 110 BIL1 2 15 kV T.R. 225 HS

1.5 2.5 23 kV T.R. 208 150 BIL2 2.75 23 kV T.R. 227 HS

2.5 3.125 34.5 kV T.R. 210 200 BIL3 3.625 34.5 kV T.R. 231 HS

3.5 4 46 kV T.R. 214 250 BIL4 4.5 46 kV T.R. 267 HS5 5 69 kV T.R. 216 350 BIL6 5.5 69 kV T.R. 278 HS

81 2 115 kV T.R. 286 550 BIL81.5 2.5 115 kV T.R. 287 HS82 2.75 138 kV T.R. 288 650 BIL

82.5 3.125 138 kV T.R. 289 HS83 3.625 161 kV T.R. 291 750 BIL

83.5 4 161 kV T.R. 295 HS54 4.5 230 kV T.R. 304 900 BIL85 5 230 kV T.R. 308 HS86 5.5 230 kV T.R. 312 1050 BIL

230 kV T.R. 316 HSdamping cables 345 kV T.R. 324 1300 BIL

1 0.1456 345 kV T.R. 367 HS2 0.2923 0.6564 0.9873

795 ACSR 1.0928

Page 21: Bus Conductor Calculations

If you add line items to this table update AF52 ,AI53-AI55, BM51Insulator Properties Summation of Convective Losses

T.R. Hi(in) Di(in) Fis(lb) Wn(lb) ID Shape205 10 7 2000 18 1 Round Tube225 12 8.5 4000 44 2 Bar Square Tube208 14 7 2000 30 3 Rectangular Tube227 15 9 4000 58 4 Universal Angle210 18 7.5 2000 41 5 Double angle231 20 9 4000 74 6 Channel214 22 7.84 2000 50 7 Double Channel267 24 10 4000 111 8 Integral Web216 30 7.84 1500 79278 30 10.5 3000 132286 45 9.31 1700 161287 45 10.5 2600 213288 54 9.69 1450 200 Summation of Radiation Losses289 54 10.5 2200 255 ID Shape291 62 11.62 1200 331 1 Round Tube295 62 11.62 1850 331 2 Bar Square Tube304 80 9.5 950 307 3 Rectangular Tube308 80 10.12 1450 371 4 Universal Angle312 92 9.84 800 384 5 Double angle316 92 10.5 1250 450 6 Channel324 106 8.94 1000 388 7 Double Channel367 106 9.44 1450 438 8 Integral Web

Summation of Solar Radiation Gains QsID Shape1 Round Tube2 Bar Square Tube3 Rectangular Tube4 Universal Angle5 Double angle6 Channel7 Double Channel8 Integral Web

Cross Sectional AreaID Shape1 Round Tube2 Bar Square Tube3 Rectangular Tube4 Universal Angle5 Double angle6 Channel

Page 22: Bus Conductor Calculations

7 Double Channel8 Integral Web

Skin Effect TableX F

0.0 1.000000.1 1.00000

0.2 1.000010.3 1.000040.4 1.000130.5 1.000320.6 1.000670.7 1.001240.8 1.002120.9 1.003401.0 1.005191.1 1.007581.2 1.010711.3 1.014701.4 1.196901.5 1.025821.6 1.033231.7 1.042051.8 1.052401.9 1.064402.0 1.078162.1 1.093752.2 1.111262.3 1.130692.4 1.152072.5 1.175382.6 1.200562.7 1.227532.8 1.256202.9 1.286443.0 1.318093.1 1.351023.2 1.385043.3 1.419993.4 1.455703.5 1.492023.6 1.528793.7 1.565873.8 1.603143.9 1.64051

Page 23: Bus Conductor Calculations

Summation of Convective Losses QcA forced Convention A Natural Convection Summation of Convection losses From IEEE 6050-1998 sheet

150.79644737231 0 56.2977063784047 l96 0 52.9481557752487 w72 0 45.1940778876243 d72 0 45.1940778876243 a72 72 68.0610623547566 b96 0 45.1940778876243 c96 72 95.3078151326009 ii96 144 1856.44941568904 g

TaTrT2

Delta TSummation of Radiation Losses Qr S

Surf. Area of Material Black body area Summation of Radiation Loss e150.79644737231 0 2780 lat

96 0 1772 at72 0 1299 Time72 0 1299 alt72 9.6 1645.4 ID96 0 1732 C'96 0 2078.4 Hc

52.8 0 952.6 ZcQs clearQs indus.

MultA2

Summation of Solar Radiation Gains QsEffective Projected Area

48 Data sent back28.4654229972376 Qc16.7276517884319 Qr16.7276517884319 Qs16.727651788431916.727651788431937.855639964282123.7703145137153

Cross Sectional AreaArea

3.33794219443915 Round Tube4 inside diam2 outside diam

0.561.120.52

Page 24: Bus Conductor Calculations

0.921.8

Area : 3.33794219443915

table from GE 4th ed. page 53

R dc resistance 0.024312464168852 Ohms at 20 degrees CX : 3.15939985775258 formunla from GE 4th eddition pg. 34

X Rounded : 3.2F : 1.38504 Skin Effect Factor

F temp : 1.31476783295082 New Skin Effect at entered temp

F at temperature

Mat : 2 cu = 1, alum = 2Alpha : 0.004294262295082 Value to use aboveMaterial Alpha

1 0.0025545 copper2 0.004294262295082 Aluminum

FTEMP=F−12∗(T 2−T1 )∗(F1−1 )∗α

Page 25: Bus Conductor Calculations

Altitude and Azimuth in degreesFrom IEEE 6050-1998 sheet Degrees of North Latitude 10:00 A.M.

2 Hc Zc1 20 62 78 Hc 10 : 614 25 62 88 Zc 10 : 1073 30 62 981 35 61 107

0.5 40 60 1150.2 45 57 1220.2 50 54 12840 60 47 13765 70 40 143

105 12:00 N.65 Hc Zc0.4 20 87 0 Hc 12 : 780.5 25 88 180 Zc 12 : 18035 30 83 1800 35 78 180

12 40 73 1801000 45 68 180

1 50 63 1800.65 60 53 18078 70 43 180

77.4 2:00 P.M.95.8 Hc Zc77.4 20 62 282 Hc 2 : 61

1 25 62 272 Zc 2 : 2533.337942 30 62 262

35 61 25340 60 245

Data sent back 45 57 23856.29771 50 54 232

2780 60 47 22348 70 40 217

Hc for time : 78Zc for time : 180

Solar Heat Gain QsSolar Altitude HC clear industrial

40 84.8 61.5 clear : 95.841 84.8 61.5 industrial : 77.442 84.8 61.5

= 4 43 90 67.5 clear mult : 95.8= 4.5 44 90 67.5 ind. mult : 77.4

45 90 67.546 90 67.547 90 67.5

Page 26: Bus Conductor Calculations

48 90 67.549 90 67.550 90 67.551 90 67.552 90 67.553 90 67.554 90 67.555 92.9 71.6

56 92.9 71.657 92.9 71.658 92.9 71.659 92.9 71.660 92.9 71.661 92.9 71.662 92.9 71.663 92.9 71.664 92.9 71.665 95 75.266 95 75.267 95 75.268 95 75.269 95 75.270 95 75.271 95 75.272 95 75.273 95 75.274 95 75.275 95.8 77.476 95.8 77.477 95.8 77.478 95.8 77.479 95.8 77.480 95.8 77.481 95.8 77.482 95.8 77.483 95.8 77.484 95.8 77.485 96.4 78.986 96.4 78.987 96.4 78.988 96.4 78.9

FTEMP=F−12∗(T 2−T1 )∗(F1−1 )∗α

Page 27: Bus Conductor Calculations

Solar heat gain Altitude MultiplierElevation Multiplier

0 1 Multiplier : 1degrees 5000 1.15degrees 10000 1.25

15000 1.3

degreesdegrees

degreesdegrees

degreesdegrees

QsQs

Qs multQs mult