8

Click here to load reader

Bull. London Math. Soc. 2014 Zelenyuk 981 8

  • Upload
    m1f2p3

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bull. London Math. Soc. 2014 Zelenyuk 981 8

8/10/2019 Bull. London Math. Soc. 2014 Zelenyuk 981 8

http://slidepdf.com/reader/full/bull-london-math-soc-2014-zelenyuk-981-8 1/8

Bull. London Math. Soc.  46 (2014) 981–988   C   2014 London Mathematical Societydoi:10.1112/blms/bdu055

Continuity in  GLU C 

Yevhen Zelenyuk

Abstract

Given a locally compact group  G,  GLUC  is the largest semigroup compactification of  G   andG∗ = GLUC  \ G. We show that (i) for every locally compact compactly generated Abelian groupG  and for every  p, q  ∈  G∗, the multiplication in  GLUC  is discontinuous at ( p, q ), (ii) there is alocally compact  σ-compact torsion-free Abelian group  G  for which, assuming Martin’s Axiom,there are   p, q  ∈  G∗ such that the multiplication in  GLUC  is continuous at ( p, q ), and (iii) it isconsistent with ZFC that for every locally compact Abelian group  G  and for every  p, q  ∈  G∗, theleft translation by  p  in  G∗ is discontinuous at  q .

1.   Introduction

A semigroup compactification of a topological group   G   is a semigroup   S   with a compacttopology together with a continuous homomorphism   ψ :  G →  S   such that   ψ(G) is dense inS , for each  q  ∈  S  the right translation  S    x  → xq  ∈  S   is continuous, and for each  a ∈  G   theleft translation  S    x  → ψ(a)x ∈  S  is continuous. All topologies are assumed to be Hausdorff.If the mapping   G × S    (x, y) → ψ(x)y ∈  S   is continuous, then   S   is said to have the jointcontinuity property. The largest semigroup compactification of   G   with the joint continuityproperty, in the sense that any other is a natural quotient, is called the  LU C -compactificationand denoted by   GLUC . The homomorphism   ψ  :  G  →  GLUC  is a topological embedding, sowe identify   G  with its image, and write   G∗ = GLUC  \ G. As a topological compactification,GLUC  is characterized by the property that a continuous function  f   : G  →  [0, 1] extends to acontinuous function  f   : GLUC  → [0, 1] if and only if  f  is uniformly continuous with respect tothe right uniformity (see  [2, Theorem 21.41]). If  G   is locally compact, then every semigroupcompactification of  G  has the joint continuity property (see  [8, Theorem II.4.3]), so  GLUC  isthe largest semigroup compactification of  G. In the case, where  G  is discrete,  GLUC  coincideswith  β G, the Stone–Cech compactification.

It is well known that for every locally compact group  G  and for every  p  ∈  G∗, the mappingλ p :  GLUC   x  → px ∈  GLUC , the left translation by  p   in   GLUC , is discontinuous   [3] (in theAbelian case  [7]), and moreover, the mapping  λ∗ p :  G∗  x  → px  ∈  G∗, the left translation by

 p in  G∗, is discontinuous [5] (in the discrete case [9]). It is also known that for every countablediscrete Abelian group G  not containing an infinite Boolean subgroup and for every  p, q  ∈  G∗,

the mapping   µ :  βG × βG    (x, y) → xy  ∈  βG, the multiplication in   βG, is discontinuous at( p, q ) [4].

On the other hand, assuming additional set-theoretic assumptions, there are nontrivial pointsof continuity.

Recall that a nonprincipal ultrafilter   p   on   ω   is a   P -point   if the intersection of countablymany neighborhoods of  p  ∈  ω∗ is again a neighborhood of  p. Martin’s Axiom (MA) implies theexistence of  P -points. However, it is consistent with ZFC, the system of usual axioms of settheory, that there is no   P -point (Shelah). A cardinal   κ   is   measurable   (Ulam-measurable ),

Received 7 January 2014; revised 3 May 2014; published online 15 July 2014.

2010   Mathematics Subject Classification  22A05, 22A15 (primary), 22D05, 54D35 (secondary).

This research is supported by NRF grant IFR2011033100072.

Page 2: Bull. London Math. Soc. 2014 Zelenyuk 981 8

8/10/2019 Bull. London Math. Soc. 2014 Zelenyuk 981 8

http://slidepdf.com/reader/full/bull-london-math-soc-2014-zelenyuk-981-8 2/8

982   YEVHEN ZELENYUK

if there is a   κ-complete (countably complete) nonprincipal ultrafilter on   κ. A cardinal isUlam-measurable if and only if it is greater than or equal to the first uncountable measurablecardinal. It is consistent with ZFC that there is no Ulam-measurable cardinal. Moreover, it isconsistent with ZFC that there is neither  P -point nor Ulam-measurable cardinal (see [11]).

Here are the examples of points of continuity.

(1) Let G  be a countably infinite discrete group and let  q  ∈  G∗ be a P -point. Then, for every p ∈  G∗, the mapping  µ∗ : G∗ × G∗  (x, y) → xy  ∈  G∗, the multiplication in  G∗, is continuousat ( p, q ) (van Douwen), and if  G  is Abelian, then  λq   is continuous at  q .

(2) Let   G  be a discrete group such that   κ =  |G|   is Ulam-measurable and let   q  ∈  G∗ be acountably complete ultrafilter. Then for any   p ∈  G∗ with   || p|| =  ω,   µ   is continuous at ( p, q )(Protasov).

(3) Let   G   be a countably infinite discrete Boolean group. Then, assuming MA, there are p, q  ∈  G∗ such that µ  is continuous at ( p, q ).

Recently, the following two theorems were proved [11].

(a) If  G  is a discrete Abelian group containing no infinite Boolean subgroup and   |G|   is notUlam-measurable, then for every  p, q  ∈  G∗,  µ  is discontinuous at ( p, q ).

(b) Assume that there is neither   P -point nor Ulam-measurable cardinal. Then for everydiscrete Abelian group  G  and for every  p, q  ∈  G∗,  λ∗ p   is discontinuous at  q .

In this paper, we extend examples (1), (2), (3) and theorems (a), (b) to the locally compactAbelian groups. Our results involve the following fact.

Lemma 1.1.   Let G  be a locally compact Abelian group. Then there is a compact subgroup 

K   of  G  such that   G/K  =  Rn × M   for some  n < ω   and a discrete subgroup   M   of   G/K,  and 

consequently ,  for the discrete subgroup  N  =  Zn × M   of  G/K,  (G/K )/N   =  T

n.

Proof.   Let   G0   be an open compactly generated subgroup of   G. By   [1, Theorem 9.8],G0 =  Rn × Zm × K  for some  n,m < ω  and a compact subgroup  K . Then  Rn × Zm is an opensubgroup of  H  = G/K , and so is Rn. Since Rn is divisible, there is a subgroup  M  of  H  such thatH  =  Rn × M  algebraically. And since Rn is open, M  is discrete and H  =  Rn × M   topologicallyas well.

The number   n < ω   in Lemma 1.1 is determined uniquely, and the subgroups   K   and   M almost uniquely in the following sense. If (K 1, M 1) and (K 2, M 2) are two such pairs, then foreach   i ∈ {1, 2},   F i =  K 1K 2/K i   is a compact subgroup of   H i  =  R

n × M i, and consequently,a finite subgroup of   M i, so there is a third pair (K, M ) with   K  = K 1K 2   and   M  = M 1/F 1

or   M  = M 2/F 2. It follows that   |N 1| = |N 2|   if   G   is noncompact, and   N 1   contains an infiniteBoolean subgroup if and only if so does  N 2. Also note that if  G   is not compactly generated,then |N | =  |G/G0|. Indeed,  G/G0 =  M/Zm and  N  =  Z

n × M .For every locally compact Abelian group   G, choose a compact subgroup   K   of   G   and a

discrete subgroup M  of  G/K  such that G/K  =  Rn × M  for some n < ω  and define the discrete

subgroup  N (G) of  G/K   by N (G) =  Zn × M .

Now, we can state our results.

Theorem 1.2.   Let G  be a noncompact locally compact Abelian group.

(1)  Assume that there is a  P -point. Then there are  p, q  ∈  G∗ such that µ∗ is continuous at

( p, q )  and  λ p

  is continuous at  q .(2)   If |N (G)| is Ulam-measurable , then there are  p, q  ∈  G∗ such that µ is continuous at ( p, q ).

Page 3: Bull. London Math. Soc. 2014 Zelenyuk 981 8

8/10/2019 Bull. London Math. Soc. 2014 Zelenyuk 981 8

http://slidepdf.com/reader/full/bull-london-math-soc-2014-zelenyuk-981-8 3/8

CONTINUITY IN  GLUC  983

(3)   Assume MA. If  N (G)  contains an infinite Boolean subgroup ,   then there are  p, q  ∈  G∗

such that  µ   is continuous at  ( p, q ).

Statement (3) of Theorem 1.2 implies a surprising fact that has no analog in the discretecase: there is a locally compact  σ-compact torsion-free Abelian group  G  for which, assumingMA, there are  p, q  ∈  G∗ such that µ  is continuous at ( p, q ). Here is an example.

Example 1.3.   Let  Z(2)  denote the additive group of 2-adic integers and let H  =ω Z(2).

Define the subgroups   K   and   G   of   H   by   K  = 2H  =ω 2Z(2)   and   G =

ω Z(2) + K . Define

the group topology on   G   by taking the natural compact topology on   K   and declaring thesubgroup K  to be open. Then  G  is a locally compact  σ-compact torsion-free Abelian group,  K an open compact subgroup of  G, and N  = G/K  =

ω Z2 a countably infinite discrete Boolean

group. Hence, by statement (3) of Theorem 1.2, assuming MA, there are  p, q  ∈  G∗ such that µis continuous at ( p, q ).

Theorem 1.4.   (a)   If  G   is a locally compact Abelian group such that   N (G)   contains no 

infinite Boolean subgroup and   |N (G)|   is not Ulam-measurable ,   then for every  p, q  ∈  G∗, µ   is 

discontinuous at ( p, q ).

(b)   Assume that there is neither   P -point nor Ulam-measurable cardinal. Then for every 

locally compact Abelian group  G  and for every  p, q  ∈  G∗, λ∗ p   is discontinuous at  q .

As a partial case of statement (a) of Theorem 1.4, we obtain that for every locally compactcompactly generated Abelian group and for every  p, q  ∈  G∗,  µ  is discontinuous at ( p, q ). From

statement (b), we obtain that it is consistent with ZFC that for every locally compact Abeliangroup  G  and for every  p, q  ∈  G∗,  λ∗ p   is discontinuous at  q .The paper is organized as follows. In Section 2, we study the structure and natural

homomorphisms of  GLUC . Then, in Section 3, we prove Theorem 1.2 and Theorem 1.4.

2.   Structure and natural homomorphisms of  GLUC 

Given a topological group  G  and  A ⊆  G,  A is the closure of  A  in  GLUC .

Lemma 2.1.   Let G  be a topological group and let  A, B ⊆  G. If there is a neighborhood  U of  1  ∈  G  such that  (U A) ∩ B  =  ∅,  then  A ∩  B  =  ∅.

Proof.   Since (U A) ∩ B  =  ∅, there is a uniformly continuous function   f   : G  →  [0, 1] suchthat f (A) = {0} and  f (B) = {1}  [2, Exercise 21.5.3]. Let  f   : GLUC  → [0, 1] be the continuousextension of  f . Then  f ( A) = {0}  and  f ( B) = {1}. Hence,  A ∩  B  =  ∅.

A subset  D  of a topological group  G  is  uniformly discrete   if there is a neighborhood  U   of 1such that the family  {U a :  a  ∈  D} is disjoint, in which case we say that D  is  U -discrete . Everydiscrete subgroup is uniformly discrete.

Lemma 2.2 is a version of the Local Structure Theorem (see  [2, Lemma 21.42] for part (i)and [6] for the whole result).

Page 4: Bull. London Math. Soc. 2014 Zelenyuk 981 8

8/10/2019 Bull. London Math. Soc. 2014 Zelenyuk 981 8

http://slidepdf.com/reader/full/bull-london-math-soc-2014-zelenyuk-981-8 4/8

984   YEVHEN ZELENYUK

Lemma 2.2.   Let G  be a topological group and let  D  be a uniformly discrete subset of  G.

Then

(i)  D =  βD.

Furthermore ,   if  G  is locally compact,  then

(ii)   for every  a  ∈  G  and  p  ∈  D,  the sets  U V,  where  U   is a neighborhood of  a  ∈  G  and  V   a 

neighborhood of  p  ∈  D,  form a neighborhood base at  ap  ∈  GLUC ;(iii)   if   U   is an open neighborhood of   1 ∈  G   such that   D   is   U -discrete ,   then the mapping 

U  × βD    (x, y) → xy  ∈  U  D   is a homeomorphism.

Proof.   (i) It suffices to show that any two disjoint subsets A, B  of  D  have disjoint closuresin   GLUC . Choose a neighborhood   U   of 1 ∈  G   such that the family  {U a :  a  ∈  D}  is disjoint.Then (U A) ∩ B  =  ∅. Consequently, by Lemma 2.1,  A ∩  B  =  ∅.

(ii) Choose an open neighborhood   U 0   of 1 such that   a U 0 ⊆  U ,  U 0   is compact, and   D

is  U 0-discrete, and choose   D0 ⊆  D   such that   p ∈  D0 ⊆  V . We claim that   U 0  D0   is open inGLUC . To see this, let  B  =  G \ (U 0D0). Then   U 0D0 ∪  B  =  GLUC . For every  u ∈  U 0, there isa neighborhood   W   of 1 ∈  G   such that   W u ⊆  U 0, so (W uD0) ∩ B  =  ∅, and by Lemma 2.1,(uD0) ∩  B  =  ∅. Consequently, (U 0D0) ∩  B  =  ∅. Now let   s ∈  U 0D0 \ (U 0D0). Then   s =  vq   forsome   v ∈  U 0 \ U 0   and   q  ∈  D0. Since   D0   is   U 0-discrete, (vD0) ∩ (U 0D0) = ∅. Consequently,vD0 ⊆  B, and so  s  ∈  B. Hence,  U 0D0 =  GLUC  \  B.

(iii) Clearly, this mapping is continuous, and by (ii), it is open. We have to check injectivity.For every   a ∈  G, the left translation by   a   in   GLUC  is a homeomorphism (because   λa−1 ◦λa =  λa ◦ λa−1  = id), so   ap = aq   for any distinct   p, q  ∈  GLUC . Now let   u, v ∈  U   be distinct.Then (uD) ∩ (vD) = ∅   and (uD) ∪ (vD) is uniformly discrete. To see the latter, choose aneighborhood  W   of 1 ∈  G  such that W u, W v ⊆  U  and (W u) ∩ (W v) = ∅, then (uD) ∪ (vD) is

W -discrete. Hence by (i), (u D) ∩ (v D) = ∅, and so  up  = vq  for any  p, q  ∈  D.

Lemma 2.3.   Let  G  be a topological group and let  N  be a closed normal subgroup of  G.

Then

(i)   the natural mapping   G →  G/N   extends to a continuous homomorphism   π :  GLUC  →(G/N )LUC ;

(ii)   for every  a  ∈  G, π−1(π(a)) = a  N .

Proof.   (i) The natural mapping   G →  G/N   is uniformly continuous, so it is immediatefrom [2, Theorem 21.45].

(ii) Let q  ∈  GLUC  \ (a N ). Choose a closed neighborhood  U   of  a  N   not containing  q . Usingthe joint continuity property and compactness of  N , choose a neighborhood   V    of 1 ∈  Gsuch that   V a N  ⊆ U . Let   A =  aN   and   B  =  G \ V A. Then   a ∈  A   and   q  ∈  B, so   π(a) ∈  π(A)and π(q ) ∈  π(B). But (π(V )π(A)) ∩ π(B) = ∅, consequently, by Lemma 2.1,  π(A) ∩ π(B) = ∅.Hence, π(q ) = π(a).

Proposition 2.4.   Let G  be a locally compact group , let  N  be a discrete normal subgroup 

of   G   such that   G/N   is compact,   and let   π :  GLUC  → G/N   be the natural homomorphism.

Then

(1)  N   = βN ;(2)   for every  z  ∈  G/N,  there is  a  ∈  G  unique modulo  N   such that  π−1(z) = a  N ;

Page 5: Bull. London Math. Soc. 2014 Zelenyuk 981 8

8/10/2019 Bull. London Math. Soc. 2014 Zelenyuk 981 8

http://slidepdf.com/reader/full/bull-london-math-soc-2014-zelenyuk-981-8 5/8

CONTINUITY IN  GLUC  985

(3)   GLUC  = G  N ;(4)   for every  a ∈  G  and  p ∈  N ,   the sets  U V,  where  U   is a neighborhood of  a ∈  G  and  V   a 

neighborhood of  p  ∈  N ,  form a neighborhood base at  ap  ∈  GLUC ;(5)   if  U  is an open neighborhood of  1 such that N   is  U -discrete , then the mapping  U  × βN  

(x, y) → xy  ∈  U  N   is a homeomorphism.

Proof.   (1), (4), and (5) are immediate from Lemma 2.2.(2) For every   z ∈  G/N , there is   a ∈  G   unique modulo   N   such that   π(a) = z, and by

Lemma 2.3,  π−1(π(a)) = a  N .(3) is immediate from (2).

Proposition 2.5.   Let G  be a topological group ,   let N  be a compact normal subgroup of 

G,  and let  π  :  GLUC  → (G/N )LUC  be the natural homomorphism. Then

(1)   for every  p  ∈  GLUC , π−1(π( p)) = N p;(2)   π   is open;(3)   π(G∗) = (G/N )∗.

Proof.   (1) Let   q  ∈  GLUC  \ N p. Choose a closed neighborhood   U   of   N p   not containingq . Using the joint continuity property and compactness of   N , choose a neighborhood   V   of 1 ∈  G  and a neighborhood W   of  p  ∈  GLUC  such that V N W   ⊆ U . Let A =  N (W  ∩ G) and B  =G \ V A. Then p  ∈  A and  q  ∈  B, so π( p) ∈  π(A) and π(q ) ∈  π(B). But (π(V )π(A)) ∩ π(B) = ∅,consequently, by Lemma 2.1,  π(A) ∩ π(B) = ∅. Hence,  π(q ) = π( p).

(2) Let U  ⊆ GLUC  be open. By (1),  π−1(π(U )) = N U . For every a  ∈  G, the left translationby a   in  GLUC  is a homeomorphism, so  N U  =

a∈N  aU   is open. Then  GLUC  \ N U   is closed,

and consequently,  π(GLUC  \ N U ) = (G/N )LUC  \ π(U ) is closed. Hence,  π(U ) is open.(3) Let   p ∈  G∗. By (1),   π−1(π( p)) = N p. Since   N p ⊆  G∗, it follows that

π( p) ∈  (G/N )∗.

3.   Proofs of Theorems  1.2  and  1.4

Proof of Theorem   1.2.   (1) Suppose first that  G   is compactly generated. Then   G =  Rn ×

Zm × K   for some   n,m < ω   and a compact subgroup   K ,   N  =  Z

n+m is an infinite discretesubgroup of   G, and  N   = βN   (Lemma 2.2). Let   p, q  ∈  N ∗ be such that the multiplication inN ∗ is continuous at ( p, q ) (the left translation by  p   in  N   is continuous at   q ). We claim that

the multiplication in  G∗

is continuous at ( p, q ) (the left translation by  p  in  GLUC 

is continuousat  q ).

To see that the multiplication in G∗ is continuous at ( p, q ), let U  be a neighborhood of 1  ∈  Gand  R ∈  pq , so U R∗ is a neighborhood of  pq  ∈  G∗ (Lemma 2.2). Choose a neighborhood  V   of 1 ∈  G,  P   ∈ p, and  Q ∈  q   such that  V 2 ⊆ U   and  P ∗Q∗ ⊆ R∗. Then  V P ∗ is a neighborhood of 

 p ∈  G∗,  V Q∗ a neighborhood of  q  ∈  G∗, and  V P ∗V Q∗ = V 2P ∗Q∗ ⊆ U R∗.To see that the left translation by  p  in  GLUC  is continuous at  q , let U  be a neighborhood of 

1 ∈  G  and  R ∈  pq , so  U  R  is a neighborhood of  pq  ∈  GLUC . Choose  Q ∈  q   such that  pQ ⊆  R.Then U  Q   is a neighborhood of  q  ∈  GLUC  and  pU  Q =  U pQ ⊆  U  R.

Now suppose that  G   is not compactly generated. Let  G0   be an open compactly generatedsubgroup of   G. Then   G/G0   is an infinite discrete group. Construct inductively a sequence(x

n)n<ω

 in  G such that the cosets xn

G0

 and  xm

xk

G0

, where n < ω  and m < k < ω, are pairwisedistinct, so the set  D =  {xn :  n < ω } ∪ {xmxk   : m < k < ω}  is uniformly discrete. Let  q  ∈  D∗

Page 6: Bull. London Math. Soc. 2014 Zelenyuk 981 8

8/10/2019 Bull. London Math. Soc. 2014 Zelenyuk 981 8

http://slidepdf.com/reader/full/bull-london-math-soc-2014-zelenyuk-981-8 6/8

986   YEVHEN ZELENYUK

be a  P -point such that  {xn :  n < ω } ∈ q . Then  {xn :  n < ω}∗q  ⊆  D∗. We claim that for every p ∈ {xn :  n < ω }∗, the multiplication in  G∗ is continuous at ( p, q ), and the left translation byq   in  GLUC  is continuous at q .

To see the first, let   U   be a neighborhood of 1 ∈  G   and   R ∈  pq . Choose a neighborhood  V 

of 1 ∈  G   such that   V 2 ⊆ U . Choose   P   ∈ p  contained in   {xn :  n < ω }, and for each   xn ∈  P ,Qn ∈  q  contained in {xk   : n < k < ω}  such that

xn∈P 

 xnQn ⊆  R. Since  q   is a  P -point, thereis Q  ∈  q  such that Q \ Qn  is finite for all  n < ω. It follows that  P ∗Q∗ ⊆ R∗, and consequently,V P ∗V Q∗ = V 2P ∗Q∗ ⊆ U R∗.

To see the second, let  U   be a neighborhood of 1 ∈  G  and  R ∈  qq . Choose  P  ∈ q  containedin   {xn :  n < ω}, and for each   xn ∈  P ,   Qn ∈  q    contained in   {xk   : n < k < ω}   such thatxn∈P 

 xnQn ⊆  R. Since q   is a  P -point, there is  Q  ∈  q  such that Q \ Qn   is finite for all  n < ω .It follows that  qQ∗ ⊆ R∗. Choose  Q ∈  q   in addition so that  Qq  ⊆  R. Then  q  Q =  qQ ∪ qQ∗ =Qq  ∪ qQ∗ ⊆  R, and consequently,  qU  Q =  U q  Q ⊆  U  R.

(2) Let G0  be an open compactly generated subgroup of  G  and suppose that  κ  = |G/G0|  isUlam-measurable. Construct inductively a sequence (xα)α<κ   in  G  such that the cosets  xnG0

and   xmxγ G0, where   n < ω   and   m < γ < κ, are pairwise distinct, so the set   D =  {xn :  n <ω} ∪ {xmxγ   : m < γ < κ}   is uniformly discrete. Let   p, q  ∈  D∗ be ultrafilters on   D   such that{xn :  n < ω} ∈ p,   {xα :  α < κ} ∈ q   and   q   is countably complete. Clearly,   pq  ∈  D∗. We claimthat the multiplication in  GLUC  is continuous at ( p, q ).

To see this, let U  be a neighborhood of 1 ∈  G and R ∈  pq . Choose a neighborhood V   of 1  ∈  Gsuch that V 2 ⊆ U . Choose P   ∈ p contained in {xn :  n < ω }, and for each xn ∈  P , choose Qn ∈  q contained in {xα :  n < α < κ} such that

xn∈P 

 xnQn ⊆  R. Let Q  =n<ω Qn. Then P Q ⊆  R,

and since  q  is countably complete,  Q ∈  q . Hence,  V  P   is a neighborhood of  p ∈  GLUC ,  V  Q  aneighborhood of  q  ∈  GLUC , and  V  P V  Q =  V 2 P  Q ⊆  U  R.

(3) Let  K  be a compact subgroup of  G and suppose that  G/K  contains an infinite discreteBoolean subgroup B. Choose an independent subset {bn :  n < ω} of  B , for every n < ω , choosexn ∈  G  such that  xnK  = bn, and let D  = FP((xn)n<ω). As usual, FP((xn)n<ω) = {

n∈H  xn :

H  ∈ P f (ω)}, where  P f (ω) is the family of finite nonempty subsets of  ω. Then  D  is uniformlydiscrete, so  D =  βD,  T   =

m<ω FP((xn)mn<ω) is a closed subsemigroup of  D∗ [2, Lemma

5.11], and for every  x  ∈  D,  x2 ∈ K .It follows from the proof of [10, Theorem 10.4] that assuming MA, there is a filter  F   on  D

containing exactly two ultrafilters  p, q  ∈  T  together with a mapping  f   : D  → { p, q } such that

(i) both  p  and  q  are idempotents and  pq  =  qp  =  q ;(ii)   f −1( p) ∈  p  and  f −1(q ) ∈  q ;

(iii)   f (i∈I  xi) = q  if and only if there is  i  ∈  I   such that  f (xi) = q ; and

(iv)   F  has a base consisting of subsets of the form FP((yn)n<ω), where (yn)n<ω is a productsubsystem of (xn)n<ω.

(Recall that (yn)n<ω   is a  product subsystem   of (xn)n<ω   if there is a sequence (H n)n<ω   inP f (ω) such that for every  n < ω , yn =

i∈H n

xi  and max H n <  min H n+1.) We claim that themultiplication in  GLUC  is continuous at ( p, q ).

To show this, we first note that the images of  p, q  under the mapping x  → x2 are idempotentultrafilters on  {x2 : x  ∈  D} ⊆ K , so by  [10, Lemma 7.10], they converge to 1. Now let   U   bea neighborhood of 1 ∈  G  and let R ∈  pq  =  q , so  U  R   is a neighborhood of  pq  ∈  GLUC . Choosea compact neighborhood   V    of 1 ∈  G   such that   V 3 ⊆ U , and choose a product subsystem(yn)n<ω of (xn)n<ω such that FP((yn)n<ω) ∩ f −1(q ) ⊆  R  and FP((y2n)n<ω) ⊆  V . Define P   ∈ pand  Q  ∈  q  by P  = FP((yn)n<ω) ∩ f −1( p) and  Q  = FP((yn)n<ω) ∩ f −1(q ). Then  P Q ⊆  V Q.

Indeed, let x  ∈  P   and y  ∈  Q. Write x  =i∈I  yi  and  y  =

j∈J  yj. For every i  ∈  I , f (yi) = p,

and there is  j  ∈  J  such that  f (yj) = q . Let u  =k∈I ∆J  yk  and v  =

i∈I ∩J  y

2i . Then  xy  =  uv,

u ∈  Q, and  v  ∈  V .

Page 7: Bull. London Math. Soc. 2014 Zelenyuk 981 8

8/10/2019 Bull. London Math. Soc. 2014 Zelenyuk 981 8

http://slidepdf.com/reader/full/bull-london-math-soc-2014-zelenyuk-981-8 7/8

CONTINUITY IN  GLUC  987

Finally,   V  P   is a neighborhood of   p ∈  GLUC ,   V  Q   is a neighborhood of   q  ∈  GLUC , andV  P V  Q =  V 2P Q ⊆  V 2V Q =  V 3 Q ⊆  U  R.

Theorem 1.4 is a consequence of its discrete case and the following reduction theorem.

Theorem 3.1.   Let  G  be a locally compact group and suppose that there are a compact

normal subgroup  K   of  G  and a discrete normal subgroup  N   of  H  = G/K   such that  H/N   is 

compact. If there are   p, q  ∈  G∗ such that the multiplication in   GLUC  is continuous at   ( p, q )(the left translation by  p   in  G∗ is continuous at  q ),   then there are  p0, q 0 ∈  N ∗ such that the 

multiplication in  βN   is continuous at   ( p0, q 0) (the left translation by  p0   in  N ∗ is continuous 

at q 0).

Proof of Theorem   3.1.   We first use Proposition 2.5. Let   π :  GLUC  → H LUC  be thenatural homomorphism and let p1 =  π( p) and  q 1  =  π(q ). Then  p1, q 1 ∈  H ∗. We claim that the

multiplication in H LUC  is continuous at ( p1, q 1) (the left translation by p1 in H ∗ is continuous atq 1). To see this, let U 1 be a neighborhood of  p1q 1 ∈  H LUC . Then U  = π−1(U 1) is a neighborhoodof  pq  ∈  GLUC . Choose a neighborhood V   of  p  and a neighborhood  W   of  q  such that V W   ⊆ U .Since π  is open, V 1 =  π(V ) is a neighborhood of  p1  and W 1 =  π(W ) a neighborhood of  q 1, andV 1W 1 =  π(V )π(W ) = π(V W ) ⊆  π(U ) = U 1. The check for the left translation is similar.

Now we use Proposition 2.4. Write  p1 =  ap2  and  q 1 =  bq 0  for some a, b ∈  H  and p2, q 0 ∈  βN .Let p0  =  b−1 p2b. Then p1q 1 =  ap2bq 0 =  abb−1 p2bq 0 =  abp0q 0. We claim that the multiplicationin   βN   is continuous at ( p0, q 0) (the left translation by  p0   in  N ∗ is continuous at   q 0). To seethis, let R  ∈  p0q 0. Choose a neighborhood U   of 1 ∈  H  such that N   is U -discrete. Then abU  R isa neighborhood of  p1q 1. Since the multiplication in  H LUC  is continuous at ( p1, q 1), there are aneighborhood  V   of 1 ∈  H ,  P   ∈ p2, and  Q  ∈  q 0  such that (aV  P )(bV  Q) ⊆  abU  R. In particular,

aP bQ =  ab(b−1

 P b) Q ⊆  abU  R, so (b−1

 P b) Q ⊆  U  R. But then (b−1

 P b) Q ⊆  R. The check for theleft translation is similar.

Acknowledgements.   The author thanks the referee for a careful reading of the paper anduseful comments.

References 

1.   E. Hewitt  and   K. Ross,  Abstract harmonic analysis, I  (Springer, Berlin, 1979).2.   N. Hindman  and   D. Strauss,   Algebra in the Stone– Cech compactification  (De Gruyter, Berlin, 1998).3.   A. Lau  and   J. Pym, ‘The topological centre of a compactification of a locally compact group’,   Math. Z.

219 (1995) 567–579.4.   I. Protasov, ‘Points of joint continuity of the semigroup of ultrafilters of an Abelian group’,   Sb. Math.

187 (1996) 287–296.5.   I. Protasov  and   J. Pym, ‘Continuity of multiplication in the largest compactification of a locally compact

group’,  Bull. London Math. Soc.  33 (2001) 279–282.6.   J. Pym, ‘A note on  GLUC  and Veech’s theorem’,  Semigroup Forum  59 (1999) 171–174.7.   W. Ruppert, ‘On semigroup compactifications of topological groups’,  Proc. R. Ir. Acad. Sect. A  79 (1979)

179–200.8.   W. Ruppert,   Compact semitopological semigroups: an intrinsic theory , Lecture Notes in Mathematics

1079 (Springer, Berlin, 1984).9.   E. van Douwen, ‘The  Cech-Stone compactification of a discrete groupoid’,   Topology Appl.   39 (1991)

43–60.10.   Y. Zelenyuk,  Ultrafilters and topologies on groups  (De Gruyter, Berlin, 2011).11.   Y. Zelenyuk, ‘Discontinuity of multiplication and left translations in   βG’,  Proc. Amer. Math. Soc., to

appear.

Page 8: Bull. London Math. Soc. 2014 Zelenyuk 981 8

8/10/2019 Bull. London Math. Soc. 2014 Zelenyuk 981 8

http://slidepdf.com/reader/full/bull-london-math-soc-2014-zelenyuk-981-8 8/8

988   CONTINUITY IN  GLUC 

Yevhen Zelenyuk School of Mathematics University of the Witwatersrand  (WITS )Private Bag 3 

Johannesburg 2050 South Africa 

yevhen·zelenyuk@wits·ac·za