B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

  • Upload
    tsoniff

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    1/23

    111Equation Chapter 1 Section 1

    Dynamic evaluation of eigenvalues depending on the

    parameter

    Analytical Approach to Calculation of Eigenvectors

    and

    Eigenvalues for 5x5 Impedance Matrix

    Mathematical background.

    (y !"#soni$%

    Introduction

     #he three phase line &ith t&o grounded shield &ires algeraically descried as

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 1 1 1 1 1 2 2

    2 2 2 2 1 1 2 2 2

    0

    0

     A AA A AB B AC C AN N AN N 

     B BA A BB B BC C BN N BN N 

    C CA A CB B CC C CN N CN N  

     N A A N B B N C C N N N N N N 

     N A A N B B N C C N N N N N N 

    V Z I Z I Z I Z I Z I  

    V Z I Z I Z I Z I Z I  

    V Z I Z I Z I Z I Z I  

     Z I Z I Z I Z I Z I 

     Z I Z I Z I Z I Z I 

    = + + + +

    = + + + +

    = + + + +

    = + + + +

    = + + + +

    '1')

    ME*+E,-*MA# ("%

    or. in matrix form

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    2/23

    1 2

    1 2

    1 2

    11 1 1 1 1 1 2

    22 2 2 2 1 2 2

    0

    0

     AA AB AC AN AN  A A

     BA BB BC BN BN  B B

    C CA CB CC CN CN C  

     N  N A N B N C N N N N 

     N  N A N B N C N N N N 

     Z Z Z Z Z V I 

     Z Z Z Z Z V I 

    V Z Z Z Z Z I  

     I  Z Z Z Z Z 

     I  Z Z Z Z Z 

           ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷ = × ÷   ÷ ÷ ÷  ÷ ÷ ÷   ÷ ÷   ÷ ÷        

    /1/)

    ME*+E,-*MA# ("%

    In the impedance matrix

    1 2

    1 2

    1 2

    1 1 1 1 1 1 2

    2 2 2 2 1 2 2

     AA AB AC AN AN 

     BA BB BC BN BN 

    CA CB CC CN CN  

     N A N B N C N N N N 

     N A N B N C N N N N 

     Z Z Z Z Z 

     Z Z Z Z Z 

     Z Z Z Z Z 

     Z Z Z Z Z 

     Z Z Z Z Z 

      ÷ ÷ ÷= ÷ ÷

    ÷ ÷  

    0

    1)

    ME*+E,-*MA# ("%

    the diagonal elements ( self2impedance terms% in according to Carson

    correction terms formulae. depend on the 3nite Earth resistance R" In

    general. it may e said that matrix 0and hence its eigenvaluesparametrically depend on the Earth resistance" 4ynamic evaluation of

    eigenvalues depending on the parameter variation is a fundamental

    prolem" Mean&hile. dependence of the eigenvalues on the parameters

    variation cannot e otained y numerical methods. &hich are generally

    not e$ective for prolems &ith the parameters" In such circumstances.

    the possiility of an analytical representation of the eigenvalues may e a

    decisive factor in the successful solution of the prolem"

    Reduction of matrix dimension (theory)

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    3/23

    In the set of equations (1"1% the last t&o equations are homogeneous

    (free terms equal 6ero%" In this particular case the numer of equations

    may e reduced y the numer of homogeneous equations" #he matrix equation (1"'% may e represented in the loc7 form8

    1 2

    1 2

    1 2

    11 1 1 1 1 1 2

    22 2 2 2 1 2 2

    0

    0

     AA AB AC AN AN   A A

     BA BB BC BN BN    B B

    C CA CB CC CN CN  C 

     N  N A N B N C N N N N 

     N  N A N B N C N N N N 

     Z Z Z Z Z    I V 

     Z Z Z Z Z    I V 

     I  Z Z Z Z Z V 

     I  Z Z Z Z Z 

     I  Z Z Z Z Z 

           ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷= × ÷ ÷   ÷ ÷ ÷   ÷ ÷

    ÷   ÷ ÷ ÷ ÷      

    M

    M

    M

    9 :   : : : : : M: : :

    M

    M

    515)

    ME*+E,-*MA# ("%

    Introducing

     

     A

    abc B

    V V V 

      ÷

    = ÷ ÷ 

    0

    00    =  ÷

     

     A

    abc B

     I 

     I I  I 

      ÷

    = ÷ ÷ 

    1

    2

     N  g 

     N 

     I  I 

     I   =  ÷ ÷

     

     AA AB AC 

     BA BB BC 

    CA CB CC  

     Z Z Z 

     Z Z Z 

     Z Z Z 

     A

      ÷= ÷ ÷

     

    1 2

    1 2

    1 2

     AN AN 

     BN BN 

    CN CN  

     Z Z 

     B Z Z 

     Z Z 

      ÷

    =  ÷ ÷

     

    1 1 1

    2 2 2

     N A N B N C 

     N A N B N C 

     Z Z Z C 

     Z Z Z 

     =  ÷ ÷

     

    1 1 1 2

    2 1 2 2

     N N N N 

     N N N N 

     Z Z  D

     Z Z 

     =  ÷ ÷

    &rite do&n loc7 matrix in the form

    0

    abcabc

     g 

     I V    A B I C D

           = × ÷ ÷   ÷        

    ;1;) ME*+E,-*MA# ("%

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    4/23

    After matrix multiplication

    abc abc g  V A I B I  = × + ×

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    5/23

    &here A is an( )n n×

      complex valued matrix. x  and b are vectors in the

    complex vector space

    nC " Assume that the b vector has t&o 6ero

    elements in the last t&o ro&s" #hen (1"% may e &ritten as

    ........

    .......

    ..

    111 12 1n   1

    21 22 2n 2 2

    n-1,1 n-1,2 n-1,n n-1

    nnnn1 n2

    ba a ...... a   xa a ...... a   x b

    a a .......... a x   0

     x   0a a .............a

            ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷        

    × =M M - M M

    1/11/)

    ME*+E,-*MA# ("%

     #he last t&o equations are constraints y de3nition li7e any homogeneous

    equations (free terms equal 6ero%" In this case the order of matrix  A may

    e reduced to( ) ( )2 2n n− × −

     y eliminatingn-1

     x  and

    n x using the

    constraint equations

    nn-1,1 1 n-1,2 2 n-1,na x + a x .......a x =0 111)ME*+E,-*MA# ("%

    and

    n,n nn,1 1 n,2 2a x + a x .......a x =0

    15115)

    ME*+E,-*MA# ("%

    *educing the order of the matrix &ill e given in t&o steps8 in the 3rst

    step &e eliminaten x . then

    n-1 x

      " +enerally spea7ing. the elements of

    the vector x  can e eliminated in any order. since the exchange of t&o

    ro&s does not change a matrix"

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    6/23

    ,rom (1";%

    ,

    1

    ,1

    1

    n n

    n

    n   n j j j

    a x a x= −

    =∑

    1;11;) ME*+E,-*MA# ("%

    ,or the

    th

    i 2ro& ( i n≠ %

    1

    , ,1

    n

    ni j j i n i j

    a x a x b+ =−

    =∑

    111>) ME*+E,-*MA#

    ("%

    4enote

    , ,,

    ,,

    i n n ji j

    n ni j

    a aa

    ac   −=

    '?1'?) ME*+E,-*MA# ("%

    ,rom (1"11% it follo&s that coe@cients

    ,i jc

    turns 6ero for

    i n=  or for

     j n=

     " #hus. the last ro& and the last column removed from the matrix A and

    equation (1"% may e &ritten in the form

    Cx b='11'1) ME*+E,-*MA# ("%

    &here

    ,

    1

    1i j j

    n

    i j

    c x   b=−

    =∑''1'') ME*+E,-*MA# ("%

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    7/23

     #he expression (1"1'% may e &ritten in the structured form as a

    determinant of the second order normali6ed y the self2impedance of the

    eliminated ground line"

    ( )  , ,

    ,,,, , , ,

    , ,1 1   i j i n

    n nn jn ni j i j i n n j

    n n n n

    a a

    a ac a a a aa a= =−'/1'/)

    ME*+E,-*MA# ("%

    Expression (1"15% provides &ith the algorithm of the matrix reduction" An

    element of the reduced matrix is expressed through the four elements of

    the original matrix. rought together into a normali6ed determinant of the

    second order" Each of these four elements is. in turn. the normali6eddeterminant of the second order (except the 3rst reduction% as a result of

    a previous reduction"

     #o eliminaten-1

     x  the aove procedure should e repeated using

    constraint equation (1"%" As a result &e &ill get the matrix

     Dx b='1') ME*+E,-*MA# ("%

    &here

    2

    1,i j j

    n

    i j

    d xb−

    == ∑

    '51'5) ME*+E,-*MA# ("%

    1

    1 11

    , ,

    ,,1 1, ,

    1   i j i n

    n nn jd i j n n

    c c

    c cc

    − −−− −=';1';)

    ME*+E,-*MA# ("%

    o& &e have to express the elements of matrix D through the elements

    of matrix A"

    , ,

    ,,, ,

    1   i j i n

    n nn ji j n n

    a a

    a a

    ca

    =

    '

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    8/23

    1

    1

    , ,

    , ,1,

    ,

    1   i n i n

    n n n ni n

    n n

    a a

    a ac

    a−

    −− =

    '=1'=) ME*+E,-*MA# ("%

    1, 1,

    ,,1,

    ,

    1   jn n n

    n nn j jn

    n n

    a a

    a ac

    a− −

    −   =

    '>1'>) ME*+E,-*MA#

    ("%

    1, 1 1

    1

    ,

    , ,1, 1

    ,

    1   nn n n

    n n n nnn

    n n

    a a

    a ac

    a−− −

    −−−   =

    /?1/?) ME*+E,-*MA#

    ("%

    Sustituting (1"1>% B (1"''% to (1"1=% &e otain

    ,

    1, 1 1,

    , 1 ,

    ,, ,   , 1

    , ,, ,,   , 1

    1, 1,   1, 1 1,

    ,, ,,,   , 1

    ,

    1 1

    1 1

    n n

    n n n n

    n n n n

    i ni j i n   i n

    n n n nn n n nn j   n n

    n j n n   n n n n

    n nn n n nn nn j   n n

    ad 

    a a

    a a

    i j

    a aa a

    a a   a aa a

    a a a a

    a aa aa a

    − − −

    − −   − − −

    =

    /11/1) ME*+E,-*MA# ("%

    After simpli3cation

    1, 1 1,

    ,

    , 1 ,

    ,, ,   , 1

    ,   ,,   , 1

    1, 1,   1, 1 1,

    ,,,   , 1

    1

    , n n n nn n

    n n n n

    i ni j i n   i n

    n n   n nn j   n n

    n j n n   n n n n

    n nn nn j   n n

    a aaa a

    i j

    a aa a

    a a   a a

    a a a a

    a aa a

    − − −

    − − − − −

    =

    /'1/') ME*+E,-*MA# ("%

     #he last expression is an embedded determinant" #he factor in front of

    the determinant is a constant. &hich depends only on the self and mutual

    impedances of the eliminated conductors" #he 3rst term of thedeterminant depends on the ro& and column numers. the second one B

    only on the ro& numer. the third one B only on the column numer. and

    the fourth one is a constant"

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    9/23

    Double Kron Reduction of impedance matrix

    Apply the otained formula for the equation (1"'%"

    Introduce the normali6ed coe@cient

    1 1 1 2

    2 2

    2 1 2 2

    , ,,

    , ,

     N N N N  N N N 

     N N N N 

     Z Z  Z 

     Z Z = ×0

    //1//)

    ME*+E,-*MA# ("%

    o& the impedance matrix0

     may e &ritten in the 9ron reduced form8

    ( )

    2 1 2

    2 2 2 2 1 2 2

    1 1 2

    2 2 2   2 2

    , , , ,

    , , , ,

    ,

    , ,

    , ,   ,

    1

    i j i N i N i N  

     N j N N N N N N  R

    i j

     N    N j N N   N 

     N j N N    N N 

     Z Z Z Z 

     Z Z Z Z  Z 

     Z Z 

     Z Z    Z 

    = ×0 0

    /1/)

    ME*+E,-*MA# ("%

    &here the superscript (R) denotes the doule reduced matrix.

    { }, , ,i j A B C  ="

    After doule 9ron reduction the original set of 3ve linear equations (1"1%

    has een reduced to the set of three linear equations

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

     R R R

     A AA A AB B AC C 

     R R R

     B BA A BB B BC C 

     R R RC CA A CB B CC C  

    V Z I Z I Z I  

    V Z I Z I Z I  

    V Z I Z I Z I  

    = + +

    = + +

    = + +/51/5)

    ME*+E,-*MA# ("%

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    10/23

    &ith corresponding impedance matrix

    ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

     R R R

     AA AB AC 

     R R R R

     BA BB BC 

     R R R

    CA CB CC  

     Z Z Z 

     Z Z Z 

     Z Z Z 

      ÷

    = ÷ ÷

    ÷

    0

    /;1/;) ME*+E,-*MA#

    ("%

    ,or convenience &e drop the superscript (R) in (1"'=%

     AA AB AC 

     BA BB BC 

    CA CB CC  

     Z Z Z 

     Z Z Z 

     Z Z Z 

      ÷= ÷ ÷

    0

    /

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    11/23

    directions remain unchanged%" Correspondingly. the entries of matrix A 

    also depend on the selected asis"If &e consider the vectors x  and y  &ithout reference to a speci3c asis.

    the connection et&een them is the transformation (mapping% descried

    y a linear operator

    ˆ A

    ˆ y A x=/=1/=) ME*+E,-*MA# ("%

    &hich is represented y di$erent matrices of the same dimension in

    di$erent ases" #hese matrices are called similar and have a numer of

    speci3c properties"

    :et mapping

    ˆ y A x=in an aritrary chosen asis in

    nC 

    is represented ymatrix A so that y Ax=

    . and represented y matrix A’ in any other aritrary chosen asis

    in the same space. so that

    '' ' y x A= &here y’ and x’ are vectors in the

    ne& asis" Connection et&een the vectors x’ and x . y’ and y  is de3ned

    y the transition matrix T  from one asis to another

    ' x T x=/>1/>) ME*+E,-*MA# ("%

    ' y T y=?1?) ME*+E,-*MA# ("%

    &here T  is any non2singular matrix"As already mentioned. the matrices A and A’ are similar" #he relation

    et&een them can e easily determined" ,rom

    '' ' y x A=

    'T y A T x=

    or

    1

      ' y T A T x−=

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    12/23

     #herefore similar matrices A and A related to each other through the

    transformation

    1   ' A T A T −=

    111) ME*+E,-*MA# ("%

     #he similarity transformation guides matrix A from the asis to the asisin the same vector space.

    !igenvalue decomposition

    As mentioned aove. the impact of operator

    ˆ A on the vector x  in the

    general case is made of t&o independent actions8 the changing the

    vectors length and rotation of the vector y a certain angle" If angle of

    rotation is 6ero. then operatorˆ A

     only change the vectors length. other

    &ords

    ˆ A x xλ ='1') ME*+E,-*MA# ("%

    In this case the vector x  is called an eigenvector of the operator

    ˆ A

     and λ

    is called an eigenvalue of the operator corresponding to the given

    eigenvector",rom geometric point of vie&. an eigenvector x prescries the direction

    &here the operators action is reduced to vectors expansion" #hen the

    coe@cient of expansion is an eigenvalue λ"If λ is complex then the geometric interpretation ecomes pointless ut

    de3nitions remain in force" In this case only more general algeraic

    interpretation exists"

    Assume that for the certain asis equation (1"1% may e &ritten in the

    matrix form

     A x xλ =/1/) ME*+E,-*MA# ("%

     #hen the vector x is called an eigenvector of the matrix A and λ is called

    an eigenvalue of the matrix corresponding to the given eigenvector"In explicit form

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    13/23

    2 2

    2

    2 22

    2

    2

    .......................................................................

    .......................................................................

    1 111 1

    1

    1

    1

    n ,n

    n ,n

    n

    a x + a x .......a x = xa x + a x .......a x = x

    a

    λ 

    λ 

    2   21   1   nn,n nn x + a x .......a x = xλ 

    1)ME*+E,-*MA# ("%

    -ne can see no& that there is a product of t&o un7no&n in the right hand

    side of each equation8 the eigenvalue λ and the componenti x of the

    eigenvector x . that is the prolem of 3nding eigenvalues and

    eigenvectors of the matrix A is nonlinear" In addition. the numer of

    un7no&ns exceeds the numer of equations y one"

     #here is a method of separating λ andi x. ased on the Cramer rule for

    solving the set of simultaneous linear equations"

    Collecting terms in the right hand side rings (1"/% to the set of linear

    homogeneous equations

    ( )

    ( )   2

    2

    2 22

    2

    2

    .......................................................................

    .......................................................................

    0

    0

    111 1

    1

    1

    1

    n ,n

    n ,n

    n

    a x + a x .......a x =

    a x + a x .......a x =

    a

    λ 

    λ 

    ( )2   2   01   1   n,n nn x + a x ....... a x =λ −515)

    ME*+E,-*MA# ("%

     

    In matrix form

     

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    14/23

    ( )

    ( )

    ( )

    22

    ..... 0

    .   0

    1 2

    11

    n,n

    12 1n 1

    21 2n   2

    nn n

    a

    a

    a

    a ...... a   x

    a ...... a   x

     x   0a a .......

    λ 

    λ 

    λ 

            ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷ ÷   ÷ ÷        

    × =MM M - M   M

    ;1;)ME*+E,-*MA# ("%

    or

    ( )   0 A I xλ − =

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    15/23

    &hich al&ays has n complex di$erent or multiple roots"

    If all λ are di$erent. then each jλ 

     corresponds (&ith accuracy up to a

    constant factor% to the eigenvector j   .

    ( )1, ... j n=" #hose n vectors are

    linearly independent and form the asis in &hich the matrix

    1   ' A T A T −= 

    ta7es the diagonal form" It is easy to prove that

    1

    2

    0 .....0

    0 . 0

    0 0   n

    ......

    ......

    .......

     A

    λ 

    λ 

    λ 

      ÷ ÷ ÷ ÷ ÷ ÷  

    = Λ =M M - M

    5?15?) ME*+E,-*MA#

    ("%

    if the transition matrix T  made of eigenvector columns"

    "ectors #ith the physical dimension and dimension

    transformation

    In equation

    abc abcV I = ×0

    51151) ME*+E,-*MA# ("%

    vectorsabcV 

    andabc I 

    elong to the vector spaces of di$erent physical

    dimensions. &hich means that matrix

    0

     transforms vector from the spaceof currents to the space of voltages"

    o&ever. the similarity transformation

    1   ' A T A T −=

    is de3ned only &ithin

    the same linear space and cannot transfer a vector from one space to

    another" Since astract algera deals &ith vectors &hich do not have

    physical dimensions it is not clear ho& the di$erent physical dimensions

    in the left and right hand sides of equation (1"'% may inDuence the

    solution of eigenvalue equation" o&ever. the general experience hassho&n that neglecting some sutleties in mathematical reasoning &hile

    solving a physical prolem. may lead to fatal errors in the 3nal result"

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    16/23

     #o comply &ith condition that vectorsabc

    V and

    abc I elong to the space of

    the same physical dimension. matrix must e made dimensionless"

    4imensionless of matrix0

     may e easily achieved y normali6ing all the

    elements to a certain numer (numers%. &hich has the dimension ofimpedance. the choice of &hich is more or less aritrary" It is desirale.

    ho&ever. to choose the parameters that have a physical meaning" :et us

    &rite the equation (1"'% in explicit form

     A AA A AB B AC C 

     B BA A BB B BC C 

    C CA A CB B CC C  

    V Z I Z I Z I  

    V Z I Z I Z I  

    V Z I Z I Z I  

    = + +

    = + +

    = + + 5'15')ME*+E,-*MA# ("%

    It ma7es sense to divide each equation y the corresponding diagonal

    entry of matrix0

    . &hich has clear physical interpretation ( self2

    impedance% of the line"

     AC  A AB A B C 

     AA AA AA

     BC  B BA A B C 

     BB BB BB

    C CA CB

     A B C CC CC CC  

     Z V Z  I I I 

     Z Z Z 

     Z V Z  I I I 

     Z Z Z 

    V Z Z 

     I I I  Z Z Z 

    = + +

    = + +

    = + +5/15/)

    ME*+E,-*MA# ("%

    In matrix form

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    17/23

    1

    1

    1

     AC  AB A

     AA AA AA A

     BC  B BA B

     BB BB BB

    C C CA CB

    CC CC CC  

     Z  Z V 

     Z Z  Z  I 

     Z V Z  I 

     Z Z Z 

     I V Z Z 

     Z Z Z 

        = ×  

     

    515)

    ME*+E,-*MA# ("%

    or

    ' ''

    ' ' '

    '   ' '

    1

    1

    1

     AB AC  A   A

     B BA BC B

    C C    CA CB

     Z Z V    I 

    V Z Z I  

     I V    Z Z 

        = ×    

    55155)

    ME*+E,-*MA# ("%

    &here the normali6ed elements are mar7ed y prime"

    o& the matrix

    ' '

    ' ' '

    ' '

    1

    1

    1

     AB AC 

     BA BC 

    CA CB

     Z Z 

     Z Z 

     Z Z 

    0

    5;15;)

    ME*+E,-*MA# ("%

    is dimensionless and vectors

    '

    abcV  and

    abc I  elong to the same vector

    space"

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    18/23

     #he eigenvalue equation may e &ritten as

    ' '

    ' '

    ' '

    1

    1 0

    1

     AB AC 

     BA BC 

    CA CB

     Z Z 

     Z Z 

     Z Z 

    λ 

    λ 

    λ 

    − =

    − 5

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    19/23

    o& equation (1"

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    20/23

    3

    3 3

    3

    2

    1 2

    3

    1

    1 2 1 2

    3

    01 2

    3

    a x x x

    a

    a x x x x x x

    a

    a x x x

    a

    + + = −

    + + =

    = −;/1;/) ME*+E,-*MA# ("%

    +. Depressed cubic polynomial

    Analytical solution of cuic equation

    3 2

    3 2 1 0... 0a x a x a x a+ + + + =

    ;1;)

    ME*+E,-*MA# ("%

    al&ays starts &ith reducing cuic polynomial to the monic form and the

     #schirnhaus transformation &hich removes quadratic term from the

    polynomial. ringing it to the depressed one

    30 ! "! #+ + =

    ;51;5) ME*+E,-*MA# ("%

    In this case the ietaFs formulae are

    3

    3 3

    3

    1 2

    1 2 1 2

    1 2

    0 x x x

     x x x x x x "

     x x x #

    + + = + + =

    = − ;;1;;) ME*+E,-*MA#("%

    ,. -ubic roots of unity

    ,ollo&ing the ,undamental theorem of algera the equation

    3

    1 0ω   − = ;

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    21/23

    In trigonometric notation

    21 cos 2 sin 2

      i $ $ i $    %   π π π = + =;=1;=)

    ME*+E,-*MA# ("%

    2

    3   31 0; 1; 2$ 

    i% $ π 

    = =;>1;>) ME*+E,-*MA#

    ("%

    Correspondingly

    0

    0

    2

    31

    4

    32

    1

    2 2 1 3cos sin

    3 3 2

    4 4 1 3cos sin

    3 3 2

    i

    i

    %

    i% i

    i% i

    π 

    π 

    ω 

    π π ω 

    π π ω 

    = =

    − += = + =

    += = + = −

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    22/23

    If the follo&ing relations hold

    3bc "ω − =

  • 8/18/2019 B.tsoniff Analytical Approach to Calculation of Eigenvectors and Eigenvalues for 5x5 Impedance Matrix

    23/23

    1

    32 3

    1

    32 3

    4 / 27

    2

    4 / 272

    # # "b

    # # "c

     + +=  ÷

    ÷  

     − +=  ÷ ÷

    =11=1)

    ME*+E,-*MA# ("%

     #here are three complex cue roots among &hich to choose b and c. and

    not all sets satisfy the original equation (1"