62
Bruce Linquist UC Davis, Dept. Plant Sciences University of California Coopera;ve Extension July 24, 2015 Fertility and Crop Nutrition

Bruce&Linquist UCDavis,Dept.PlantSciences

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bruce&Linquist UCDavis,Dept.PlantSciences

Bruce  Linquist  UC  Davis,  Dept.  Plant  Sciences  

University  of  California  Coopera;ve  Extension    July  24,  2015  

Fertility and Crop Nutrition

Page 2: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Outline  • Why  is  nutrient  management  important?  •  Rice  soils  •  Approaches  to  nutrient  management  •  N,  P,  and  K  

–  Func=on  and  deficiency  –  Nutrient  in  the  soil  –  4R  management  –  Effect  of  straw  management  

•  Adjus=ng  nutrient  management  for  different  systems  –  Drill-­‐seeding  –  Stale  seedbed  

Page 3: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Why  is  nutrient  management  important?  

•  Economics  –  Cost  –  Yields  

•  Pollu=on  –  Ground  and  surface  waters  –  Air  quality  

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

1960   1965   1970   1975   1980   1985   1990   1995   2000   2005   2010   2015  

Dollars  per  to

n  of  fe

r;lizer  

Fer;lizer  prices  1960-­‐2013  (USDA)  

Nitrogen  solu=ons  (30%)  

Urea  44-­‐46%  nitrogen  

Super-­‐phosphate  44-­‐46%  phosphate  

       Potassium  chloride  60%  potassium  

Page 4: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Flooded  rice  soils  in  California  •  Aerobic  and  anaerobic  soils  

–  The  amount  of  oxygen  in  soils  affects:  •  Soil  microbiology  •  Soil  pH  •  Nutrient  transforma=ons  

•  Heavy  clay  soils  that  are  rela=vely  impermeable  –  High  reten=on  of  nutrients  –  Limited  leaching  –  A  lot  of  potassium  

Page 5: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Approaches  to  nutrient  management  

•  The  goal    – match  nutrient  supply  with  crop  requirements    – minimize  nutrient  losses  from  fields.    

•  Properly  managed  fer=lizers    – support  cropping  systems  that  provide  economic,  social  and  environmental  benefits.    

•  Poorly  managed  nutrient  applica=ons  can  – decrease  profitability  and  increase  nutrient  losses,  poten=ally  degrading  water  and  air  quality.  

Page 6: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Amount  of  nutrient  in  plant  at  harvest    (lb/1000  lb  grain  yield)  

15.6  

2.7  

15.1  

1.6  

3.6  3.1  

0.45   0.45  0.04   0.01   0.01  

0.0  

2.0  

4.0  

6.0  

8.0  

10.0  

12.0  

14.0  

16.0  

18.0  

N   P   K   S   Ca   Mg   Fe   Mn   Zn   Cu   B  

Nutrie

nt  in  plant  at  ;

me  of  harvest  

Nutrient  

Page 7: Bruce&Linquist UCDavis,Dept.PlantSciences

Nutrient  uptake  and  root  growth  

Plan;ng  

 

Page 8: Bruce&Linquist UCDavis,Dept.PlantSciences

What  is  this  material?   0.7    0.3    1.7        

Page 9: Bruce&Linquist UCDavis,Dept.PlantSciences
Page 10: Bruce&Linquist UCDavis,Dept.PlantSciences

Nutrients  (lb)  in  1  ton  (2000  lb)  of  rice  straw  

•  N          14  lb  •  P          6  lb  •  K      28  lb  

•  Value  (2012  fer;lizer  prices)  

•  $31.34  

Page 11: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Straw  management  and  how  it  affects  nutrient  management  

•  Removing  straw  will  increases  nutrient  requirement  of  all  major  nutrients-­‐especially  K  

•  Important  to  incorporate/roll  straw  to  facilitate  decomposi=on  during  winter  

•  Can  reduce  N  inputs  by  25  lb/ac.  IF  straw  is  incorporated  

0

2000

4000

6000

8000

10000

12000

-25 SP +25

BurnedIncorporated

lb a

cre

-1 a

t 14%

moi

stur

e

Page 12: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

 Maximizing  nutrient  use  efficiency  through  4R  management  

•  The  4  Rs  – Right  rate  – Right  source  – Right  place  – Right  =me  

 

Page 13: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nitrogen  

•  Applied  in  highest  amount  •  Most  costly  nutrient  •  Crop  suscep=ble  to  misuse  

–  too  liile:  low  yields    –  too  much:  lodging,  delay  harvest,  pests,  increased  cost,  off-­‐site  pollu=on  

•  Suscep=ble  to  the  most  losses  •  Overuse  can  lead  to  environmental  concerns  

– water  quality  –  air  quality  

Page 14: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nitrogen  transforma=ons  in  flooded  soils  

Buresh  et  al.,  2008  

N i t r o g e n  Fixa;on  

The   process   by  which   atmospheric   nitrogen  is   converted   to   biologically   usable   forms   of  nitrogen  by  microorganisms.  

Mineraliza;on   The  breakdown  of  organic  maier  resul=ng  in  the   release   of   ammonium   (NH4)   and   other  nutrients  which  can  be  used  by  plants.  

Nitrifica;on   The   conversion   of   ammonium   (NH4)   to  nitrate  (NO3).  

Denitrifica;on   The   conversion   of   nitrate   (NO3)   to   nitrogen  gas  (N2),  resul=ng  in  a  loss  of  plant  available  N.  

Immobiliza;on   The   assimila=on   (tying   up)   of   inorganic   N  (NH4   and   NO3)   by   microorganisms   resul=ng  in   the   nitrogen   being   unavailable   for   plant  uptake.  

A m m o n i a  vola;liza;on  

The  loss  of  ammonia  gas  to  the  atmosphere,  following   the   conversion   of   ammonium  (NH4)  to  ammonia  (NH3).  

Page 15: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nitrogen  transforma=ons  in  flooded  soils  

Buresh  et  al.,  2008  

Page 16: Bruce&Linquist UCDavis,Dept.PlantSciences

Denitrifica=on  •  In  rice  systems  N  fer=lizer  is  applied  in  

an  ammonium  (NH4)  form  or  a  fer=lizer  that  quickly  turns  to  NH4.  

•  When  a  field  is  flooded  the  N  stays  as  NH4.  

•  When  a  field  is  drained  (or  it  remains  in  a  unflooded  condi=on)  the  NH4  turns  to  nitrate  (NO3).  Both  NH4  and  NO3  can  be  taken  up  by  plants.  

•  When  a  field  is  reflooded,  the  NO3  present  in  the  soil  can  be  lost  as  gas  to  the  atmosphere.  

•  We  do  NOT  want  fer=lizer  N  turning  to  NO3  

   

O2    H+  

Flood  Water  

Oxidized  Zone  

Reduced  Zone  

Urea  Ammonium  Sulfate  

Fer;lizer  Incorpora;on  Zone  

O2  

NH3  ,N2O,  N2  

Urea  Aqua-­‐ammonia  Ammonium  Sulfate  

NO3  

Nitrate

NO3  

Page 17: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nitrogen:  func=on  and  deficiencies  

•  Func=on  •  amino  acids  •  proteins  •  chlorophyll  •  enzymes  •  DNA  

•  Deficiency  •  Yellow  leaves-­‐star=ng  with  lower  leaves  •  Reduced  growth  and  =llering  •  Do  not  confuse  with  S  deficiency  

Page 18: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nitrogen:  figuring  out  the  rate  

•  Factors  affec=ng  N  rate  – N  source  and  placement  –  Variety  (not  different  for  the  main  rice  varie=es)  –  Soil  – Water  management  –  Climate  –  Residue  management  

•  Incorpora=ng  straw  allows  for  a  25  lb/ac  reduc=on  in  N  input  

•  BUT  how  do  you  know  how  much?  

Page 19: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Rice  yields  versus  N  rate  

Sheridan

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

50  lb  N  

Page 20: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Rice  yields  versus  N  rate  Arbuckle burn

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Arbuckle incorporated

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Sheridan

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Richvale

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Arbuckle-Burn

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilzer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Arbuckle-Incorporated

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m A ll  aqua

Only  surface

A qua+surface

Richvale

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

100  

170  200  150  

80   160  200  

Page 21: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Determining  the  correct  rate  for  your  field  

150  

175  +25  

125  -­‐25  

150  

150  

150  

150  

150  

150  

150  

•  Representa=ve  check  •  One  pass  with  +25  and  

another  pass  with  -­‐25  –  Aqua  rig  vs.  combine  width  

–  Flag  each  pass  •  Monitor  over  season  •  Determine  yield  with  

yield  monitor    •  Do  over  years  and  

fields  •  Keep  records  

Page 22: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

N  source  and  placement  

Aqua-­‐NH3  Aqua-­‐NH3  +  starter  

versus  

Page 23: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Rice  yields  versus  N  rate  Arbuckle burn

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Arbuckle incorporated

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Sheridan

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Richvale

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Arbuckle-Burn

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilzer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Arbuckle-Incorporated

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m A ll  aqua

Only  surface

A qua+surface

Richvale

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300Fertilizer N added (lb/ac)

Yiel

d (lb

/ac)

m

A ll  aqua

Only  surface

A qua+surface

Page 24: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

N  source,  placement,  =ming  

7800  

8000  

8200  

8400  

8600  

8800  

9000  

Aqua+starter   Aqua  

Yield  (lb

/ac)  

a   b  •  Applying  all  N  as  aqua  –  Increased  N  use  efficiency  –  Same  yield  poten=al  –  At  op=mal  yields  

•  Reduce  N  rate  by  10  lb/ac  –  Cheaper  source  of  N  –  Early  growth  (35  DAS)  is  slightly  reduced  in  some  loca=ons  

Data:  7  field  studies/100  lb  N/ac  N  rate    

Page 25: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Is  a  topdress  necessary?  

Total N N treatment 0 0-0

100 100-0 100 75-25 100 25-75 100 100 AS 150 150-0 150 112.5-37.5 200 200-0 200 150-50

Page 26: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Wet seeded conventional grain yield (14% moisture)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200Total N applied (lb/ac)

Grain

yield

(lb/

ac)

m

All preflood

Split

Ammonium sulfate

4000  

5000  

6000  

7000  

8000  

9000  

10000  

11000  

0   50   100   150   200  

Grain  yields  (lb  ac-­‐1)  

Total  N  applied  (lb  N  ac-­‐1)  

2008  

Preflood  

Split    

AS  

Grower wet seeded no-till

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200

Total N applied (lb/ac)

Gra

in y

ield

(lb/

ac)

m

All preflood

Split

Ammonium sulfate

5000  

6000  

7000  

8000  

9000  

10000  

11000  

12000  

13000  

0   100   200  

Grain  yields  (lb  ac-­‐1)  

Total  N  applied  (lb  N  ac-­‐1)  

Willows    Preflood  Split    AS  LSD  =  1235  

Page 27: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Is  a  topdress  necessary?  

•  When  the  same  amount  of  N  is  applied,  we  have  not  yields  being  significantly  higher  with  a  topdress  compared  to  when  it  is  all  applied  as  aqua.  

•  Some  say  “When  I  topdress  I  get  higher  yields”.  •  That  may  be  because  you  simply  applied  more  N.  The  real  ques=on  is  would  you  have  goien  higher  yields  if  you  had  applied  that  N  as  preplant?    

Page 28: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

N  applica=ons  following  a  herbicide  applica=on  

•  One  month  aqer  plan=ng  the  soil  s=ll  has  a  lot  of  N  –  Plants  are  small  and  N  demand  low  

•  Addi=on  of  more  N  during  this  period  will  likely  have  limited  impact  on  plant  uptake.  

1  mo  afer  plan;ng  

1  mo  afer  plan;ng  

Page 29: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nitrogen  source  

•  When  aqua  is  not  an  op=on  

Page 30: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nitrogen  management:  the  4Rs  •  Right  rate  

–  Determined  individually  •  Right  source  

–  As  much  aqua-­‐N  as  possible  –  Lowest  amount  of  N  in  starter  as  possible  

•  Right  place  –  Injected  3-­‐4  inches  below  soil  surface  

•  Right  =me  –  All  N  can  be  applied  just  before  flooding  

•  Excep=on:  if  you  plan  to  apply  P  late  

–  No  benefit  of  planning  a  split  N  applica=on  •  Apply  if  necessary  •  Excep=on:  planning  for  early  season  drain  event  

Page 31: Bruce&Linquist UCDavis,Dept.PlantSciences

Phosphorus  

•  Only  10%  of  rice  soils  P  deficient  •  Most  growers  apply  P  fer=lizer    •  Deficiencies  are  developing    

UC  DAVIS University of California

Page 32: Bruce&Linquist UCDavis,Dept.PlantSciences

Phosphorus:  func;on  and  deficiency  

•  Func=on  • Membrane  integrity  •  Energy  storage  •  Phloem  transport  

•  Deficiency  •  Stunted  dark  green  plants  •  Narrow  leaves  •  Reduced  =llering  •  Symptoms  oqen  diminish  with  =me  

•  Delayed  flowering  

UC  DAVIS University of California

Page 33: Bruce&Linquist UCDavis,Dept.PlantSciences

•  Soil  test  – Olsen-­‐P  test  (sodium-­‐bicarbonate)  

•  above  6-­‐9  ppm  – Bray-­‐P  test  not  good  for  CA  rice  soils  

•  Plant  =ssue  test  – Y-­‐leaf  =ssue  test.    

•  35  DAS  •  0.2%  P  

•  Input-­‐output  P  budget  

Determining  the  soil  P  status  

UC  DAVIS University of California

Page 34: Bruce&Linquist UCDavis,Dept.PlantSciences

Input-­‐output  P  budget  •  Soil  is  P  bank  •  P  is  rela=vely  immobile  in  soils.    

– No  gas  losses  –  Liile  is  lost  through  water    –  Liile  lost  by  leaching  

•  Inputs  –  Fer=lizer  

•  Outputs  – Grain  removal  (0.52%  P2O5)  –  Straw  removal  (0.21%  P2O5)  

UC  DAVIS University of California

Page 35: Bruce&Linquist UCDavis,Dept.PlantSciences

Input-­‐output  P  budget  

•  Develop  a  budget  –  Inputs  (lb/ac  of  P2O5  as  fer=lizer)  –  Outputs  (lb/ac  removed  in  

grain  and  straw)  

– Develop  such  a  budget  over  5  yr  period  –  take  average  

UC  DAVIS University of California

Page 36: Bruce&Linquist UCDavis,Dept.PlantSciences

0  

5  

10  

15  

20  

25  

30  

35  

-­‐40.0   -­‐20.0   0.0   20.0   40.0  

Olsen

 P  (p

pm)  

Annual  P  budget  (lb  P2O5/yr)  

P  management,  soil  P  and  P  budget  

•  Nega=ve  budget  =  yield  response    

•  Olsen  P  reflects  previous  P  mgmt.  

•  Growers  applied  similar  P  rates  

•  Difference:  yield  

UC  DAVIS University of California

Page 37: Bruce&Linquist UCDavis,Dept.PlantSciences

0  

5  

10  

15  

20  

25  

30  

35  

-­‐40   -­‐20   0   20   40  

Olsen

 P  (p

pm)  

Annual  P  budget  (lb  P2O5/yr)  

Should  you  apply?  

•  High  P  levels  (above  15  ppm)  /  posi=ve  P  budget  –  Apply  no  P  

•  Low  P  soils  (below  6  ppm)  /  nega=ve  P  budget  –  Build  up  soil  P  

•  The  rest:  P  not  limi=ng  –  Apply  maintenance  rate  

•  that  removed  by  crop    

UC  DAVIS University of California

Page 38: Bruce&Linquist UCDavis,Dept.PlantSciences

Amount  of  P  removed:    Only  grain  removed  

Grain  yield  (cwt@14%)  

P  added/removed  (lb  P2O5/ac)  0   5   10   15   20   25   30   35   40   45   50   55   60   65   70  

P  balance  (lb  P2O5/ac)  50   -­‐26   -­‐21   -­‐16   -­‐11   -­‐6   -­‐1   4   9   14   19   24   29   34   39   44  55   -­‐29   -­‐24   -­‐19   -­‐14   -­‐9   -­‐4   1   6   11   16   21   26   31   36   41  60   -­‐31   -­‐26   -­‐21   -­‐16   -­‐11   -­‐6   -­‐1   4   9   14   19   24   29   34   39  65   -­‐34   -­‐29   -­‐24   -­‐19   -­‐14   -­‐9   -­‐4   1   6   11   16   21   26   31   36  70   -­‐37   -­‐32   -­‐27   -­‐22   -­‐17   -­‐12   -­‐7   -­‐2   3   8   13   18   23   28   33  75   -­‐39   -­‐34   -­‐29   -­‐24   -­‐19   -­‐14   -­‐9   -­‐4   1   6   11   16   21   26   31  80   -­‐42   -­‐37   -­‐32   -­‐27   -­‐22   -­‐17   -­‐12   -­‐7   -­‐2   3   8   13   18   23   28  85   -­‐44   -­‐39   -­‐34   -­‐29   -­‐24   -­‐19   -­‐14   -­‐9   -­‐4   1   6   11   16   21   26  90   -­‐47   -­‐42   -­‐37   -­‐32   -­‐27   -­‐22   -­‐17   -­‐12   -­‐7   -­‐2   3   8   13   18   23  95   -­‐50   -­‐45   -­‐40   -­‐35   -­‐30   -­‐25   -­‐20   -­‐15   -­‐10   -­‐5   0   5   10   15   20  100   -­‐52   -­‐47   -­‐42   -­‐37   -­‐32   -­‐27   -­‐22   -­‐17   -­‐12   -­‐7   -­‐2   3   8   13   18  105   -­‐55   -­‐50   -­‐45   -­‐40   -­‐35   -­‐30   -­‐25   -­‐20   -­‐15   -­‐10   -­‐5   0   5   10   15  110   -­‐57   -­‐52   -­‐47   -­‐42   -­‐37   -­‐32   -­‐27   -­‐22   -­‐17   -­‐12   -­‐7   -­‐2   3   8   13  

Maintenance  line  

Page 39: Bruce&Linquist UCDavis,Dept.PlantSciences

P  budget  calculator  

Page 40: Bruce&Linquist UCDavis,Dept.PlantSciences

P  budget  calculator  

Page 41: Bruce&Linquist UCDavis,Dept.PlantSciences

P  budget  calculator:  Printout  

Page 42: Bruce&Linquist UCDavis,Dept.PlantSciences

When  to  apply:    

•  Before  plan=ng    – Use  P  source  with  lowest  N  content  –  Incorporate  

•  Timing  to  control  algae  – Applica=on  of  P  before  plan=ng  can  lead  to  algae  – Algae  reduces  crop  density  and  growth  

UC  DAVIS University of California

Page 43: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

P  management  and  algae  control  

0  

10  

20  

30  

40  

50  

60  

Grower  1   Grower  2  

Algae  dry  weight  (g/m2)  

At  plan=ng  (on  surface)  

Spring  applied  (incorporated)  

30  days  aqer  plan=ng  •  Early  applica=on  and  incorpora=on  reduced  algae  53%  on  average  

•  Delayed  applica=on  decreased  algae  by  88%  on  average  

 

Page 44: Bruce&Linquist UCDavis,Dept.PlantSciences

When  to  apply:    Grain  yield  response  to  delayed  P  applica=ons    

UC  DAVIS University of California

0  

20  

40  

60  

80  

100  

120  

No  P   0   14   28   42  

Yield  (cwt/ac)  

P  ;ming  (days  afer  plan;ng)  

b   a   a  a  a  

0  

20  

40  

60  

80  

100  

120  

No  P   0   14   28   42  

Yield  (cwt/ac)  

P  ;ming  (days  afer  plan;ng)  

b  a  ab  ab  c  

Page 45: Bruce&Linquist UCDavis,Dept.PlantSciences

Delayed  P  applica=on  effects  on  water  quality  

Days after delayed P application0 5 10 15 20 25 30

Wat

er P

O4-

P (

mg

L-1)

0.0

0.5

1.0

1.5

2.0

Location ALocation BLocation CLocation DLocation E

slope  =  -­‐0.054  mg  L-­‐1  d-­‐1    (P  =  0.029)intercept  =  0.394  mg  L-­‐1  (P  =  0.3489)

R2  =  0.87

UC  DAVIS University of California

Water  release  

Page 46: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Phosphorus  management:  the  4Rs  

•  Right  rate  –  Based  on  soil  test  and  P  budget  

•  Right  source  –  P  fer=lizer  with  lowest  N  content    

•  Right  place  –  Incorporated:  when  applied  before  flooding  –  Broadcast:  late  applica=on  into  water  

•  Right  =me  – Maintenance  rates:  flexibility  –  Deficient  soils:  between  land  prep  and  30  days  aqer  plan=ng  –  Algae  problems:  aqer  rice  plants  emerge  (20-­‐30  DAP)  

Page 47: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Potassium:  func=on  •  Plant  regula=on  

– Osmoregula=on  –  Enzyme  ac=va=on  –  Regula=on  of  cell  pH  –  Cellular  ca=on-­‐anion  balance  –  Regula=on  of  transpira=on  –  Regula=on  of  assimilate  transport  

•  Inadequate  K  results  in:  – Adequate  K  improves  a  plants  ability  to  tolerate  adverse  clima=c  condi=ons,  lodging,  insects,  and  diseases.  

 

Page 48: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Potassium:  deficiency  •  Older  leaf  =ps  are  yellowish  

brown  •  Younger  leaves  can  be  

short  and  droopy  •  Rusty  brown  spots  appear  

on  =ps  of  older  leaves  and  then  spreads  to  en=re  leaf.  

•  Symptoms  tend  to  appear  during  later  growth  stages.  

•  An  accumula=on  of  sugars  and  amino  acids  that  are  suitable  food  sources  for  leaf  diseases  

Page 49: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Potassium  and  aggregates  sheath-­‐spot  (AgSS)  

y = -0.65x + 3.39R2 = 0.58

2.00

2.20

2.40

2.60

2.80

3.00

1.00 1.20 1.40 1.60 1.80 2.00

Midseason leaf K concentration (% )

AgS

S ra

ting

c

Incorporated

Removed

Page 50: Bruce&Linquist UCDavis,Dept.PlantSciences

Flag  leaf  K  vs.  soil  K  Flag  leaf  K  vs  soil  K  

 0.80  

 1.00  

 1.20  

 1.40  

 1.60  

 1.80  

 2.00  

 2.20  

   0    60   120   180   240   300   360   420  

Flag  leaf  K  con

centra;o

n  (%

)  

Soil  K  (ppm)  

50%   24%  

Page 51: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Potassium:  loca=ons  of  low  K  soils  

•  East  side  of  valley  •  Related  to  soils  and  irriga=on  water  

>120  ppm  100-­‐120  ppm  60-­‐100  ppm  <60ppm  

Page 52: Bruce&Linquist UCDavis,Dept.PlantSciences

Stage   Plant   Leaf  1  

 2  

 3  

 4  

 5  

Tillering  begins  

Maximum  ;llering  

Panicle  ini;a;on*   Heading   R7   Maturity  

Fer=lity  program  for  water-­‐seeded  rice  

Starter  blend  (NPK  w/  lowest  

amount  of  N  possible)  

Aqua-­‐N  applica;on  

Access  need  for  topdress  N  

applica;on  at  PI  (use  urea  or  AS  if  needed)  

OR  before  28  DAS  

Page 53: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nutrient  management  adjustments  for  different  systems  

•  Drill-­‐seeded  systems  •  Stale-­‐seed  bed  systems  

Page 54: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Drill  seeded  rice  •  Right  rate  

–  Similar  to  water-­‐seeded  rice  for  all  nutrients  

•  Right  source  –  Urea  plus  a  starter  blend  

with  P  and  K  if  necessary  •  Right  place  

–  Surface  applied    •  Right  =me  

–  Just  before  permanent  flood  –  No  benefit  of  applying  a  

por=on  of  N  rate  at  plan=ng.  

Page 55: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Stale  seedbed  systems  

•  Stale  seedbed  – Flush  of  water  to  bring  up  weeds  may  also  increase  NO3  accumula=on  before  flooding  

•  No-­‐=ll  – Fer=lizer  needs  to  be  applied  on  the  surface  

Page 56: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Stale  seedbed  systems  •  Right  rate  

–  Water  seeded-­‐increase  N  rate  by  30  lb  N/ac.  –  Drill  seeded-­‐no  change  to  N  rate  

•  Right  source  –  Urea  plus  a  starter  blend  with  P  and  K  if  necessary  

 

Water-seeded

N rate (lb ac-1)

0 50 100 150 200

Gra

in yie

ld (l

b ac

-1)

2000

4000

6000

8000

10000

WS conventionalWS staleWS no-till stale

Drill-seeded

N rate (lb ac-1)

0 50 100 150 200

DS conventionalDS no-till stale

•  Right  place  –  Surface  applied    

•  Right  =me  –  Water  seeded  

•  Just  before  flooding  

–  Drill-­‐seeding  •  Just  before  

permanent  flood  

Page 57: Bruce&Linquist UCDavis,Dept.PlantSciences

1. 2. 3. 4. 5. 6.

2%0%

27%

13%10%

48%

Enter  ques=on  text...  

1.  Aqua-­‐NH3  2.  Ammonium  sulfate  3.  UAN-­‐32  (urea-­‐

ammonium  nitrate)  4.  Urea  5.  Ammonium  

phosphate  6.  All  the  above  are  

suitable  

Clicker  ques=on  

What  is  not  a  suitable  N  fer=lizer  source  for  flooded  rice  systems?    

UC  DAVIS University of California

Page 58: Bruce&Linquist UCDavis,Dept.PlantSciences

1. 2. 3. 4.

0%8%

90%

2%

Enter  ques=on  text...  

1.  Draining  the  field  is  not  a  problem  

2.  Draining  field  reduces  root  growth  and  reduces  N  uptake  

3.  Draining  the  field  results  in  ammonium  (NH4-­‐N)  being  converted  to  nitrate  (NO3-­‐N)  which  is  suscep=ble  to  loss  when  the  field  is  reflooded  

4.  A  large  amount  of  N  is  lost  in  the  tailwater  when  the  flood  water  is  drained  from  the  field  

UC  DAVIS University of California

Clicker  ques=on  From  a  nitrogen  management  perspec=ve,    why  is  draining  the  field  early  in  the  season  a  problem?  

Page 59: Bruce&Linquist UCDavis,Dept.PlantSciences

1. 2. 3. 4. 5.

13%

19% 19%

50%

0%

Enter  ques=on  text...  

1.  Before  plan=ng  2.  4  weeks  aqer  

plan=ng  3.  6  weeks  aqer  

plan=ng  4.  1  &  2  above  5.  All  the  above  

Clicker  ques=on  

When  are  safe  =mes  to  apply  P  without  risk  of  yield  loss?    

UC  DAVIS University of California

Page 60: Bruce&Linquist UCDavis,Dept.PlantSciences

1. 2. 3.

30%

40%

30%

Enter  ques=on  text...  

1.  Nitrogen  (N)  2.  Phosphorus  (P)  3.  Potassium  (K)  

Clicker  ques=on  

Removing  rice  straw  (i.e.  bailing)  removes    the  most  of  which  nutrient?    

UC  DAVIS University of California

Page 61: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

THANK  YOU  

Ques=ons?  

Page 62: Bruce&Linquist UCDavis,Dept.PlantSciences

UC  DAVIS University of California

Nitrogen  management:    Straw  management  effects  

•  Yield  poten=al  is  the  same  •  Incorpora=ng  rice  straw  affects  op=mum  N  rate  

–  IF  incorporated  during  winter:  Fer=lizer  N  rates  can  be  reduced  by  25  lb/ac  without  compromising  yield  under  straw  incorpora=on  

–  IF  leq  on  surface/standing  with  no  flood:  Fer=lizer  rates  may  need  to  be  increased  

Yie

ld lb

s/ac

re (1

4% m

oist

ure)

No Flood Winter Flood

Figure 4. Yield of rice grain Maxwell 2000, after 7 seasons of alternative strawmanagement practices.

0

2000

4000

6000

8000

10000

12000

-25 SP +25

BurnedIncorporated

lb a

cre

-1 a

t 14%

moi

stur

e