14
Brittany Amanda Biology 9/23/03

Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

Embed Size (px)

Citation preview

Page 1: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

Brittany

Amanda

Biology

9/23/03

Page 2: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue until the last phase of the cycle. The order is as follows:

G1 phase

S phase

G2 Phase

Mitosis

Prophase

Metaphase

Anaphase

Telophase

Cytokinesis

Meiosis

Page 3: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• Sometimes called Interphase.• The formation of two daughter cells from a parent cell in cytonkinesis is an energy-consuming process. The time needed by the new cells to replenish their energy causes this “gap”.• After cell energy reserves are restored, the daughter cells begin to grow.• This is the longest phase of the cell cycle.

Page 4: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• Synthesis means to make. • After a period of growth, each cell's original DNA is duplicated in the process of replication or the process of duplicating the DNA molecule.

S PHASE IS ALSO KNOWN AS THE SYNTHESIS PHASE OR DNA SYNTHESIS.

This is a chromosome that is found in the cell during cell division.

Page 5: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• The replication of DNA is another energy-consuming process for the cell. The time taken by a cell to build up its energy reserves produces this second "gap".

• During the G2 Phase, the cell again undergoes growth and protein synthesis because it needs enough proteins for the 2 cells it will split into, priming it to be able to divide. Once this is complete, and has gone through many checkpoints along the way, the cell finally enters the fourth and final phase of the cell cycle. This phase is known as the M (Mitosis) phase.

Page 6: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• Mitosis is the process by which DNA is divided into two identical daughter sets before the cell divides.

• There are four stages that occur before the cell is completely split apart. They are:

Prophase Anaphase Metaphase

Telophase

Page 7: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• Early prophase: chromatin coils to form chromesomes, nuclear membrane disappears, and centrioles migrate to opposite poles of the cell.

• Middle prophase: spindle fibers, microtubules of protein, begin developing.

• Polar fibers extend across the cell from centriole to centriole.• Kinetiochore fibers extend from the centromeres of a chromosome to the centrioles.

• Late prophase: protein fibers called asters radiate from each centriole in animal cells.

Page 8: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• In this phase, kinetochore fibers move the chromosomes to the equator of the cell.

• Each chromosome has reached its maximum density. • The homologous pairs and their sister chromatids interact with fibers which form from either side of the nuclear envelope of the cell. These fibers are procudes from the centriole. There is a centriole at the opposite ends of the cell.• The chromosomes are then lined by the fibers at what is known as the metacentric plate, which is located in the center.

Movement taking place during metaphase.

Page 9: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• Pulls apart the tetrad, separating each homologous chromosome.• The centromere of each pair of chromatids divides, the chromatids separate and are pushed to opposite poles of the cell by the combined efforts of the fibers, all in one quick motion.

The separation of the fibers to opposite poles.

Page 10: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• All fibers disappear.• Chromatids unwind and stretch to form chromatin.• A nuclear membrane forms around each mass of chromatin, splitting the cytoplasm into two separate parts.• Then interkinesis will follow, which is a resting period.

Membranes forming, showing the division of the cytoplasm.

Page 11: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

• The division of the cytoplasm of a parent cell. (the cell pinches together in the center)• While each daughter cell gets identical sets of DNA, the cytoplasm and organelles are only roughly divided equally between the two cells.

THE FINAL

STAGE OF

MITOSIS

Detailed events occurring in cytokinesis.

Page 12: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

Meiosis I -• DNA replication takes place. • A parent cell produces two daughter cells with one member of each original pair of homologous chromosomes.

Meiosis II -• There is no DNA replication. • The chromatids of each chromosome separate and each daughter cell divides. • At the end of Meiosis, there are four daughter cells from each parent cell. Each daughter cell has half the number of chromosomes of the parent.

The process of Meiosis is more complicated than the single division of

Mitosis because it provides more opportunity for genetic variation.

Page 13: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

Covered in this presentation was the cell cycle in detail. It was learned that the steps within this cycle are:

• G1 phase - energy consuming process.• S phase - DNA duplication. • G2 Phase - growth and energy synthesis.• Mitosis - equal division of DNA.• Prophase - 2 centrosome move to opposite poles.• Metaphase - chromosomes move to equator of cell.• Anaphase - fibers separate to opposite poles.• Telophase - nuclear membrane forms around the 2 cells.• Cytokinesis - division of the cytoplasm and organelles.• Meiosis - two divisions in sequence.

Page 14: Brittany Amanda Biology 9/23/03. In this presentation, all of the phases of the cell cycle will be covered. We will start with the G1 phase and continue

Cells and the Cell Cycle - Day 3. 2003. Desert Vista High School. 24 September 2003. <http://staff.tuhsd.k12.az.us/gfoster/standard/bcell2.htm>

Cell Cycle Regulation. 2003. University of Pennsylvania <http://www.geocities.com/CollegePark/Lab/1580/cycle.html>

Metaphase I. 1997. North Carolina State University <http://www4.ncsu.edu/unity/users/b/bnchorle/www/metai.htm>

Anaphase I. 1997. North Carolina State University <http://www4.ncsu.edu/unity/users/b/bnchorle/www/anai.htm>

Telophase I. 1997. North Carolina State University <http://www4.ncsu.edu/unity/users/b/bnchorle/www/teloi.htm>

CYTOKINESIS. 1999. The University of Manchester <http://www.teaching-biomed.man.ac.uk/ramsay/Cytok.htm>

Meiosis. 1999. National Health Museum <http://www.accessexcellence.org/AB/GG/meiosis.html>