31
Brief survey on Three-Dimensional Displays: from Our Eyes to Electronic Hologram* Taufiq Widjanarko *Presented at ECPE 4144 Optical Information Processing, Project Term Paper, Virginia Tech, Fall 2001. Last modified 19 March 2013

Brief survey on Three-Dimensional Displays

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Brief survey on Three-Dimensional Displays

Brief survey on Three-Dimensional Displays: from Our Eyes to Electronic Hologram*

Taufiq Widjanarko

*Presented at ECPE 4144 Optical Information Processing, Project Term Paper, Virginia Tech, Fall 2001. Last modified 19 March 2013

Page 2: Brief survey on Three-Dimensional Displays

Outline • Depth Cues • Examples of Three-Dimensional Displays • Wavefront Reconstruction • Examples of Hologram

– Off-axis Hologram – Reflection Hologram

• Information Content in Hologram • Method to reduce profuse information content

– Rainbow Hologram – Multiplex Hologram

• Computer Generated Hologram • Electronic Hologram

– Optical Scanning Holography – Holographic Video

Page 3: Brief survey on Three-Dimensional Displays

Depth Cues • Visual depth sense is often taken for granted until we

encounter the problem that can be solved if depth cues are present

• Depth Cues can be grouped into two major categories [1]:

1.Psychological (Pictorial) Depth Cues: depth cues influenced by the mental and prior knowledge of the observer

2.Physiological Depth Cues: depth cues related to the

physiology of our eyes

Page 4: Brief survey on Three-Dimensional Displays

Psychological Depth Cues

• Retinal Image Size: different image size appearance on retina

• Aerial Perspective • Linear Perspective

Figure taken from Ref.[1]

Page 5: Brief survey on Three-Dimensional Displays

Psychological Depth Cues(Cont’d)

• Occlusion

• Shading

Figures taken from Ref.[1]

Page 6: Brief survey on Three-Dimensional Displays

Psychological Depth Cues(Cont’d)

• Texture Gradient

Figure taken from Ref.[1]

Page 7: Brief survey on Three-Dimensional Displays

Physiological Depth Cues • Accommodation:

Change of eye muscular tension to adjust the focal length

• Convergence: eyes ability to fixate a point on the object

P0 = two pupil separation a = object distance

dda

Pa

Oα= 2

Figure taken from Ref.[1]

Page 8: Brief survey on Three-Dimensional Displays

Physiological Depth Cues (Cont’d) • Binocular Disparity/Stereospsis

• Motion Parallax: different angular velocity of object at different depths the observer

∆D DPO

≅ αθ2

Figure taken from Ref.[1]

Page 9: Brief survey on Three-Dimensional Displays

Example of Three-Dimensional Displays • Integral Photography: using lenslet array to sample

the object

Figures taken from Refs.[1,8]

Page 10: Brief survey on Three-Dimensional Displays

Example of Three-Dimensional Displays(Cont’d)

• Lenticular Sheet

θ =xf

Figures taken from Ref.[1,2]

Page 11: Brief survey on Three-Dimensional Displays

Example of Three-Dimensional Displays(Cont’d)

• Parallax Barrier

viewing distance = .25 m, p < .08 mm → for slit width 1/10 of pitch = 8 µm or only 15 x λvisible

Figures taken from Refs.[1,2]

Page 12: Brief survey on Three-Dimensional Displays

Three mechanisms of eyes in responding the incoming wavefront [12,26]

1. Modifies and the focus the wavefront to retina →Accommodation 2. Sample the wavefront from two slightly different positions and

interpreted as different position in two visual field →Convergence and Stereopsis 3. Moving observer samples the wavefront from different

positions and object’s position in visual field changes as the result of observer’s motion

→Motion Parallax To present all 4 physiological depth cues Provide or reconstruct the original object’s wavefront

Page 13: Brief survey on Three-Dimensional Displays

Wavefront Reconstruction

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

-10 -8 -6 -4 -2 0 2 4 6 8 10-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 inten. of raised ampl.orig. wavefront

Original waveform Intensity reconstruction (waveform shape disappears)

Original waveform + reference wave (flatline below the waveform) Intensity reconstruction of Original waveform + reference wave

Intensity reconstruction of Original waveform + reference wave maintains the original shape of the waveform

Holography is basically a technique to reconstruct the original wavefront through phase recording

Page 14: Brief survey on Three-Dimensional Displays

Examples of Hologram

• Transmission Hologram

• Reflection hologram

Figures taken from Refs.[6,8]

Page 15: Brief survey on Three-Dimensional Displays

Information Content in a Hologram [23,28]

• Grating equation – fh highest frequency comp. of object

• Required sampling freq

– fs = sampling frequency

• N= Number of sampling (in horizontal direction) – d = width of hologram in horizontal direction

• Nt= Total number of sample in both horizontal and vertical direction

– w=width of hologram in vertical direction

• 100 x 100 mm2, 30° view angle →2.5x1010 samples/frame • Real time hologram of 60 frames per second requires →1.2x1012 bit/sec (fastest conventional display rate 2 Gbits/s) [23,28]

λ θfh = sin

f fs h= =2 2 sinθλ

N df ds= =

2 sinθλ

N dwt =

42

sinθλ

Page 16: Brief survey on Three-Dimensional Displays

Holographic Information Reduction Method

• Rainbow Hologram

horizontal slit is to remove vertical parallax →reduce information content

Figures taken from Ref.[8]

Page 17: Brief survey on Three-Dimensional Displays

Holographic Information Reduction Method (Cont’d)

• Multiplex Hologram (Holographic Stereogram) – Proposed by De Bitteto

Figures taken from Ref.[8]

Page 18: Brief survey on Three-Dimensional Displays

Holographic Stereogram (Cont’d)

• Cross Hologram

→both hologram exhibit no vertical parallax Figures taken from Ref.[3,4,6]

Page 19: Brief survey on Three-Dimensional Displays

Computer Generated Hologram • Binary Detour Phase Method: to create Fourier

Hologram – Final image must be in the form of

– Cell aperture transmittance

– Inclined plane wave illumination

( )U u v a e ef pq

j

q

N jf

up x vq y

p

Npq

YX

( , ) ==

− +

=

∑∑ φπ

λ

0

1 2

0

1 ∆ ∆

t x y rect x xw

y ywA

X Y

( , ) =−

0 0

U epj x= − 2πα

Figures taken from Ref.[4]

Page 20: Brief survey on Three-Dimensional Displays

Computer Generated Hologram (Cont’d)

• After illumination

• At Fourier Plane

• After some assumptions, simplifications and

setting the offset

U x y e rect x xw

y ywt

j x

x y

( , ) =−

− 2 0 0πα

[ ]U u v w w

fc w u f

fc w v

fef

X Y X Yj

fu f x vy

( , ) sin ( ) sin( )

=+

+ +

λλ α

λ λ

πλ

λα20 0

( ) ( )x p x & y q y pq pq0 0= =∆ ∆

( )U u v w w e ef X pq Y pq

j p

q

N jf

up x vq y

p

N YX

( , ) ( ) ( )==

− +

=

∑∑ 2

0

1 2

0

πλ

∆ ∆

Page 21: Brief survey on Three-Dimensional Displays

Computer Generated Hologram (Cont’d)

• Shifting the aperture center

• With several assumption, the above expression

can be simplified as

• Compared with the desired form

• Phase and amplitude relation to the cell aperture

( ) ( )x p x xpq pq0 = ∆ + δ

( )U u v w w e ef X pq Y pq

jx

x

q

N jf

up x u x vq y

p

N pqY pqX

( , ) ( ) ( )( ) ( )

==

− + +

=

∑∑2

0

1 2

0

1 πδ π

λδ

∆∆ ∆

( )U u v a e ef pq

j

q

N jf

up x vq y

p

Npq

YX

( , ) ==

− +

=

∑∑ φπ

λ

0

1 2

0

1 ∆ ∆

( )U u v w w e ef X pq Y pq

jx

x

q

N jf

up x vq y

p

N pqYX

( , ) ( ) ( )( )

==

− +

=

∑∑2

0

1 2

0

1 πδ π

λ∆∆ ∆

φπ δ

pqpq

Y pq pq

xx

w a= − ∝2 ( )

( )∆

&

Page 22: Brief survey on Three-Dimensional Displays

Computer Generated Hologram (Cont’d)

Figures taken from Ref.[4]

Page 23: Brief survey on Three-Dimensional Displays

Electronic Holography

• Using dynamic electronically-controlled optical modulator 1. Optical Scanning Holography: scanning TDFZP to obtain the

scanned holographic pattern of the object

Application in fluorescence microscopy: for image region 2 x 2 mm2, the system can reveal lateral and axial resolution of 7.7 and 200 µm, respectively

Figures taken from Ref.[5,16]

Page 24: Brief survey on Three-Dimensional Displays

Electronic Holography (Cont’d)

– Holographic video (Media Lab MIT) • inspired by binary detour phase, holographic

stereogram and rainbow hologram • using AOM to diffract light into desired point in

volume space • fringe calculation is similar to computer

graphics

Figures taken from Ref.[29]

Page 25: Brief survey on Three-Dimensional Displays

Electronic Holography (Cont’d) • A single hologram lines is decomposed into pre-

computed ‘basis fringe’ → orthogonal basis function decomposition

• First generation: full color 25x25x25 mm3, 15°viewing angle, 20 frames/second

• Second generation: 80x140x150 mm3, 2.5 frames/second

Figure taken from http://www.media.mit.edu/spi/HVmark2.htm

Page 26: Brief survey on Three-Dimensional Displays

Electronic Holography (Cont’d)

Application: Haptic (Force Feedback) hologram

Figures taken from http://www.media.mit.edu/spi/HHlathe.htm

Page 27: Brief survey on Three-Dimensional Displays

Electronic Holography (Cont’d)

– Potential application: telesurgery,

telemanufacturing, etc

Figure taken from http://www.media.mit.edu/spi/HHlathe.htm

Page 28: Brief survey on Three-Dimensional Displays

Conclusion • Depth Cues:

– Psychological or Pictorial cues (based on mental and prior knowledge of observer): retinal image size, aerial and linear perspective, occlusion, shading and texture gradient

– Physiological depth cues: accommodation, binocular disparity, convergence and motion parallax

– 3-D displays prior to hologram can only provide the last three physiological cues

– Hologram can naturally provide all physiological & psychological depth cues due to its nature to reconstruct object wavefront

• Off axis hologram can solve initial Gabor’s hologram problem • Information content in a hologram is tremendously profuse→ 100 x 100

mm2, 30° view angle requires 2.5x1010 samples/frame • Some proposed method to reduce information content are rainbow

hologram and multiplex hologram (holographic stereogram) →sacrificing vertical parallax to reduce information content

Page 29: Brief survey on Three-Dimensional Displays

Conclusion (Cont’d) • The earliest Computer Generated Hologram method: the Binary

Detour Phase Hologram uses aperture within a cell to encode the amplitude (from aperture area) and phase (from center of aperture shift). Plotted pattern quality is determined by resolution of the writing device

• Recent Electronic Holograms use dynamic optical modulator, such as AOM, LCD as a light diffracting component.AOM are used in optical scanning holography and holographic video

Page 31: Brief survey on Three-Dimensional Displays

References 1. T. Okoshi, “Three-Dimensional Imaging Techniques”, Academic Press, New York (1976) 2. M. McKenna & D. Zeltzer, Presence (1)4, 421 (1992) 3. P. Hariharan, “Optical Holography: Principles, Techniques and Applications”, 2nd ed, Cambridge University Press, Cambridge (1996) 4. J. W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, NY (1996) 5. T-C. Poon and P. P. Banerjee, “Contemporary Optical Information Processing With Matlab®”, Elsevier, Oxford (2001) 6. F. Unterseher, J. Hansen and R. Schlesinger, “Holography Handbook: Making Holograms the Easy Way”, Ross Book, Berkeley, CA (1982) 7. E. N. Leith, “White-Light Holograms”, Sci. Am. 8. G. Saxby, “Practical Holography”, Prentice-Hall International, Hertfordshire (1988) 9. S. A. Benton, “Holography: The Second Decade”, Opt. News, Optical Society of America, pp. 16-21 (Summer 1977) 10. L. Huff & R. L. Fusek, Opt. Eng. (9)5,691 (1980) 11. S.A. Benton, Proc. SPIE vol 532, pp 8-13 (1985) 12. M. W. Halle, Proc. SPIE vol 2176, 73(1994) 13. A. W. Lohmann and D. P. Paris, App. Opt.(6), 1739 (1967) 14. W. J. Dallas, “Computer Generated Hologram”, in The Computer in Optical Research, Topics in Applied Physics, B. R. Frieden ed., Springer-Verlag, Berlin, pp 291-366 (1980) 15. T-C. Poon and A. Korpel, Opt. Lett.(10) 317 (1979) 16. T-C. Poon, M. H. Wu, K. Shinoda and Y. Suzuki, Proc. IEEE vol. 84, 5 (1996) 17. T-C. Poon, JOSA.A (2)4,521 (1985) 18. M. Lucente, P. St-Hillaire, S. A. Benton, D. L. Arias and J. A. Watlington, Proc. SPIE vol 1732, 377(1992) 19. P. St-Hillaire, S. A. Benton, M. Lucente, J. D. Sutter and W. J. Plesniak, Proc. SPIE vol 1914, 188 (1993) 20. R. Pappu and W. J. Plesniak, “Haptic Interaction with Holographic Video Images”, Practical Holography XII, Proc. SPIE (1998) 21. S. A. Benton, private communication (2001) 22. M. W. Halle, Proc SPIE 2176, 75 (1994) 23. P. St-Hillaire, “Scalable Optical Architectures for Electronic Holography”, Dissertation, Massachusetts Institute of Technology (1994). 24. H. J. Caulfield and S. Lu, “Application of Holography”, Wiley-Interscience, NY (1970) 25. M. W. Halle, “The Generalized Holographic Stereogram”, Master Thesis, Massachusetts Institute of Technology (1991) 26. M. W. Halle, “Multiple Viewpoint Rendering for Three-Dimensional Displays”, Dissertation, Massachusetts Institute of Technology (1997) 27. B.W. Schilling, T-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki and M. H. Wu, Optics Letters (22)19 (1997) 28. M. Lucente, “ Diffraction-Specific Fringe Calculation for Electro-Holography”. Dissertation, Massachusetts Institute of Technology (1994) 29. R. Haralick, L.Shapiro,”Computer and Robot Vision”,Addison Wesley (1992)