104
WSDOT Bridge Design Manual M 23-50.17 Page 15-i June 2017 15.1 Manual Description 15-1 15.1.1 Purpose 15-1 15.1.2 Specifications 15-1 15.2 Bridge Configuration Criteria 15-2 15.2.1 General 15-2 15.2.2 Railroad Crossings 15-2 15.2.3 Detour Structures 15-3 15.2.4 Inspection and Maintenance Access 15-3 15.2.5 Bridge Types 15-4 15.2.6 Aesthetic Design Elements 15-4 15.2.7 Architectural Design Standards 15-5 15.2.8 Methods 15-5 15.2.9 Design-Builder Urban Design Team 15-5 15.2.10 Analysis and Design Criteria for Structural Widenings and Modifications 15-6 15.2.11 Bridge Security 15-6 15.3 Load Criteria 15-8 15.3.1 Scope 15-8 15.3.2 Load Factors and Load Combinations 15-8 15.3.3 Permanent Loads 15-8 15.3.4 Live Loads 15-9 15.3.5 Noise Barrier Walls 15-10 15.4 Seismic Design and Retrofit 15-11 15.4.1 General 15-11 15.4.2 WSDOT Additions and Modifications to AASHTO Guide Specifications for LRFD Seismic Bridge Design 15-11 15.4.3 Seismic Design Requirements for Bridge Modifications and Widening Projects 15-21 15.4.4 Seismic Retrofitting of Existing Bridges 15-23 15.5 Concrete Structures 15-25 15.5.1 General 15-25 15.5.2 Materials 15-25 15.5.3 Design Considerations 15-27 15.5.4 Superstructures 15-28 15.5.5 Concrete Bridge Decks 15-32 15.6 Steel Structures 15-34 15.6.1 Design Considerations 15-34 15.6.2 Girder Bridges 15-36 15.6.3 Design of I-Girders 15-37 15.6.4 Plan Details 15-42 Chapter 15 Structural Design Requirements for Design-Build Contracts Contents

Bridge Design Manual M 23-50 Chapter 15 Structural Design

Embed Size (px)

Citation preview

WSDOT Bridge Design Manual M 23-50.17 Page 15-i June 2017

15.1 Manual Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-115.1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-115.1.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-1

15.2 BridgeConfigurationCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-215.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-215.2.2 RailroadCrossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-215.2.3 DetourStructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-315.2.4 InspectionandMaintenanceAccess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-315.2.5 BridgeTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-415.2.6 AestheticDesignElements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-415.2.7 ArchitecturalDesignStandards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-515.2.8 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-515.2.9 Design-BuilderUrbanDesignTeam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-515.2.10 AnalysisandDesignCriteriaforStructuralWideningsandModifications . . . . . . . . . . .15-615.2.11 BridgeSecurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-6

15.3 Load Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-815.3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-815.3.2 LoadFactorsandLoadCombinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-815.3.3 PermanentLoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-815.3.4 LiveLoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-915.3.5 NoiseBarrierWalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-10

15.4 SeismicDesignandRetrofit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1115.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1115.4.2 WSDOTAdditionsandModificationstoAASHTOGuideSpecifications

forLRFDSeismicBridgeDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1115.4.3 SeismicDesignRequirementsforBridgeModificationsandWideningProjects . . . . . . 15-2115.4.4 SeismicRetrofittingofExistingBridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-23

15.5 Concrete Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2515.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2515.5.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2515.5.3 DesignConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2715.5.4 Superstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2815.5.5 ConcreteBridgeDecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-32

15.6 Steel Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3415.6.1 DesignConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3415.6.2 GirderBridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3615.6.3 DesignofI-Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3715.6.4 PlanDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-42

Chapter 15 Structural Design Requirements for Design-Build Contracts Contents

Contents

Page 15-ii WSDOT Bridge Design Manual M 23-50.17 June 2017

15.7 Substructure Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4515.7.1 GeneralSubstructureConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4515.7.2 FoundationModelingforSeismicLoads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4515.7.3 ColumnDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4715.7.4 Crossbeam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4915.7.5 AbutmentDesignandDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4915.7.6 AbutmentWingWallsandCurtainWalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5115.7.7 FootingDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5115.7.8 Shafts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5215.7.9 PilesandPiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5415.7.10 Concrete-FilledSteelTubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-55

15.8 Walls and Buried Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5615.8.1 RetainingWalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5615.8.2 NoiseBarrierWalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5915.8.3 BuriedStructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-60

15.9 Bearings and Expansion Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6215.9.1 ExpansionJoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6215.9.2 Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-67

15.10 Signs, Barriers, Bridge Approach Slabs, and Utilities . . . . . . . . . . . . . . . . . . . . . . . . . 15-7315.10.1 SignandLuminaireSupports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7315.10.2 BridgeTrafficBarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8015.10.3 AtGradeConcreteBarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8115.10.4 BridgeTrafficBarrierRehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8315.10.5 BridgeRailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8415.10.6 BridgeApproachSlabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8415.10.7 TrafficBarrieronBridgeApproachSlabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8615.10.8 UtilitiesInstalledwithNewConstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8615.10.9 UtilityInstallationonExistingBridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8915.10.10 ResinBondedAnchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8915.10.11 DrainageDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-90

15.11 Detailing Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9115.11.1 StandardPractices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9115.11.2 BridgeOfficeStandardDrawingsandOfficeExamples . . . . . . . . . . . . . . . . . . . . . . . 15-9515.11.3 PlanSheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9515.11.5 StructuralSteel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9715.11.6 AluminumSectionDesignations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9915.11.7 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-99

15.12 Bridge Load Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-10015.12.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-10015.12.2 LoadRatingSoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-100

15.99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-101

WSDOT Bridge Design Manual M 23-50.17 Page 15-1 June 2017

Structural Design Chapter 15 Requirements for Design-Build Contracts

15.1 Manual Description15.1.1 Purpose

ThischapterprovidesthecontractualrequirementsforstructuraldesignofWSDOTprojectsthatsupersedeAASHTOLRFD Bridge Design Specifications(LRFD)andAASHTOGuide Specifications for LRFD Seismic Bridge Design (SEISMIC).

15.1.2 SpecificationsThismanualandthefollowingAASHTOSpecificationsarethefoundationdesigncriteriaanddesignpracticedocumentsusedtodesignhighwaybridgesandstructuresinWashingtonState:• AASHTOLRFD• AASHTOSEISMIC• WSDOTStandard Plans M21-01–A-50SeriesStandardPlansforEmbankmentGeometryatBridgeEnds

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-2 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.2 BridgeConfigurationCriteria15.2.1 General

A. Bridge Redundancy

BridgesubstructureshallhavethefollowingminimumnumberofcolumnstobeconsideredtoprovideconventionallevelsofredundancyinaccordancewithAASHTOLRFD Bridge Design Specification Section1.3.4:• Onecolumnminimumforroadwaywidths40′wideandunder.• Twocolumnsminimumforroadwaywidthsover40′to60′.• Threecolumnsminimumforroadwaywidthsover60′.

BridgesuperstructureshallhavethefollowingminimumnumberofwebstobeconsideredtoprovideconventionallevelsofredundancyinaccordancewithAASHTOLRFD Bridge Design SpecificationSection1.3.4:• Threewebsminimumforroadwaywidths32′andunder.• Fourwebsminimumforroadwaywidthsover32′.SeeBridgeStandardDrawing2.3-A2-1fordetails.

B. Bridge Deck Drainage

Roadwayandbridgedeckprofilesshallbeadjustedasmuchaspossibletoavoidhavingbridgedrainsonthebridge.Ifbridgegeometryissuchthatdrainsarerequired,thenumberofdrainsshouldbeminimizedasmuchaspossiblewhilestillprovidingabridgedeckdrainagedesignthatmeetsrequiredstandards.Thebridgedrainassemblyandsystemshallbedesignedforlowmaintenance.

15.2.2 Railroad CrossingsA. Horizontal Clearances

Forrailroadovercrossings,minimumhorizontalclearancesareasnotedbelow:

Railroad AloneFill Section 14′Cut Section 16′

Horizontalclearanceshallbemeasuredfromthecenteroftheoutsidetracktothefaceofpier.Whenthetrackisonacurve,theminimumhorizontalclearanceshallbeincreasedattherateof1½″foreachdegreeofcurvature.Anadditional8′ofclearanceforoff-trackequipmentshallonlybeprovidedwhenspecificallyrequestedbytherailroad.

B. Crash Walls

Crashwalls,whenrequired,shallbedesignedtoconformtothecriteriaoftheAREMA Manual.Todeterminewhencrashwallsarerequired,consultthefollowing:• UnionPacificRailroad,“GuidelinesforDesignofHighwaySeparationStructuresoverRailroad(OverheadGradeSeparation)”

• AREMA Manual • WSDOTRailroadLiaisonEngineer• TheRailroad

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-3 June 2017

C. Substructure

Forhighwayoverrailwaygradeseparations,thetopoffootingsforbridgepiersorretainingwallsadjacenttorailroadtracksshallbe2′ormorebelowtheelevationofthetopoftieandshallnothavelessthan2′ofcoverfromthefinishedground.Thefootingfaceshallnotbecloserthan10′tothecenterofthetrack.

15.2.3 Detour StructuresA. Live Load

See Section3.4

B. DetourbridgetrafficbarriershallbedesignedtomeettheapplicableAASHTOLRFD criteria.

15.2.4 Inspection and Maintenance AccessA. General

Bridgesshallbeconfiguredtoallowinspectorsdirectaccesstobearings,andaccesstowithin3-feetofsuperstructuresurfaces.SeealsoFigure2.3.11-1forunder-bridge-inspection-truckclearancerequirements.

B. Bearings

Adequateclearanceformaintenanceandinspectionofbearingsshallbeprovided.Theclearanceshallbeadequatetoinspect,removeandreplacethebearings.

Jackingpointsshallbeprovidedforbearingreplacement.Jackingpointsshallbedesignedtosupport200percentofthecalculatedliftingload.

C. Safety Cables and Anchors

Built-upplategirderbridgeswithgirders5-feetdeeporgreaterindepthshallbedetailedwithsafetycablesforinspectorswalkingthebottomflanges.Atlargegussetplatelocationsontrussbridges(3-feetwideorwider),cablesorlanyardanchorsshallbeplacedontheinsidefaceofthetrusssoinspectorscanutilizebottomlateralgussetplatestostandonwhiletraversingaroundthemaintrussgussetplates.

D. AbutmentSlopes

Slopesinfrontofabutmentsshallprovideenoughoverheadclearancetothebottomofthesuperstructuretoaccessbearingsforinspectionandpossiblereplacement(3-feetminimumforgirdertypebridgesand5-feetminimumforconcreteslabs).

E. Access and Lighting

1. Concrete Box and Prestressed Concrete TubGirders

See Section5.2.6fordesigncriteria.

2. CompositeSteelBoxGirders

See Section6.4.9fordesigncriteria.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-4 WSDOT Bridge Design Manual M 23-50.17 June 2017

3. AccessDoors,Lighting,ReceptaclesandPenetrations

AllAccessdoorsshallhaveaminimum2′-6″diameteror2′-6″squareclearopening.Lockboxlatchesshallbeinstalledonallaccessdoorsaccessiblefromgroundlevel.Accesshatchesshallswingintotheboxgirdersandshallbeplacedatlocationsthatdonotimpacttraffic.LightingandreceptaclerequirementsshallbeinaccordancewithWSDOT Design Manual Chapter1040.AirventsshallbeinaccordancewithFigures5.2.6-1and5.2.6-2.

Boxgirderpenetrations(ventsanddrainholes)greaterthanoneinchindiameterthroughtheexteriorshallbecoveredwithgalvanizedwiremeshscreentopreventverminandbirdsfromaccessingtheinterioroftheboxgirder.Thewiresshallhaveamaximumspacingof¼inchinbothdirections.

15.2.5 Bridge TypesBridgesshallconformtothefollowingsuperstructuredepth-to-spanratiosbasedonpastWSDOTexperience,supersedingAASHTOLRFDSection2.52.6.3.

TheoptionalliveloaddeflectionlimitsofAASHTOLRFDSections3.6.1.3.2and2.5.2.6.2shallbesatisfied.

Forbothsimpleandcontinuousspans,thespanlengthisthehorizontaldistancebetweencenterlinesofbearings.

RefertoSection2.2.4forsuperstructuredepthrequirementsforinspectionandmaintenanceaccess.

FortherequiredminimumdepthtospanratiosseeSection2.4.1.

15.2.6 Aesthetic Design ElementsTheprimarygoaloftheaestheticdesignistobuildvisualcompatibilitybetweenthenewelementsandtheircurrentsurroundings.Theexistingelements,alongwithproposedandexistingstructures,typicallyestablishanidentifiablevisualcharacteristic.Theseexistingelementssuchaslightingfixtures,railingsstreethardware,constructionmaterials,colors,andfinishes,aretobeincludedasanintegralpartofthenewconstructionprogram.Examplesofnewelementsmayincludebutarenotlimitedto:• Bridgestructuretype• Bridgestructuremajorelementssuchaspierandcrossbeamform• Bridgestructureminorelementssuchasrailingsandlightstandards• Retainingwallmaterials,configurationandfinishes• Noisewallmaterial,configurationandfinishes:asviewedfromthecorridor• Noisewalls:asviewedfromtheneighborhoods• Vistaviewpoints• Medianandroadsideplantingareas• Colorselection• OpportunitiesforcommunityfundedartinaccordancewithDesign Manual Chapter950

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-5 June 2017

SomedesignelementsareplannedtobefunctionallyandvisuallyconsistentwithfeaturesintheProject’sadjacentstructures.Otherelementsbenefitbyretainingflexibilitywithinaconsistentpaletteofmaterials,colors,anddesignformsinordertoprovidethedesign-build-processflexibilityindevelopingpotentialsolution.

ThefinaldesignandconfigurationoftheseProjectfeaturesandotherfunctionalcomponentswillrequireongoingcommunication,review,andcoordinationbetweenthedesign-buildContractor’sdesignteamandWSDOT’sreviewteam.

15.2.7 Architectural Design StandardsTheRFPdocumentswillincludearchitecturalstandards.ThesewillaccommodatethefunctionalrequirementsofthepreferreddesignsolutionaswellasaddressthecontextualconditionsoftheProjectarea.Theywillbesensitivetocorridorcontinuityaswellasthescale,characterandtextureofthearea.

ThestandardswillprovideareferencefortheProject’scontextsensitivedesignandpassalongthefindingsoftheurbandesignanalysisconductedduringtheProject’splanningandearlydesignphases.ThestandardsdescribetheProject’surbandesignfeaturesandaideinthecreationofanattractivefacilitythatwillbefunctional,maintainableovertime,aswellasaddtothearea’svisualcharacter.

Dependingontheprojectcomplexity,thestandardsmaybehighlydetailedandprescriptiveortheymaybemoregeneralinnature,suchasasimplelistofcriteria.

15.2.8 MethodsThedesign-buildershallcomplywiththearchitecturalstandards.Thedesign-buildershallalsoberesponsivetotheexistingurbandesigndocumentsintheadjacentcorridors.

Thedesign-buildershallemploythehigheststandardofcarebyimplementingnationalbestpracticesinurbandesign.Themethodsshallinclude,butnotlimitedto,suchtechniquesaContextSensitiveDesign(CSS)andCrimePreventionThroughEnvironmentalDesign(CEPTED).

15.2.9 Design-Builder Urban Design TeamWhererequiredintheRFP,thedesign-buildershallincludeaestheticdesignteammemberresources.Thisshallincludeanexperiencedurbandesignercapableofworkingwithotherteammembersandtoaddressfinalcontextsensitivedesignissues,constructiondetails,andspecialprojectdesignfeatures.Theurbandesignershallbeanarchitectwithurbanprojectexperience.

ThearchitectshallbelicensedintheStateofWashingtonandberesponsibleforthecoordinationanddevelopmentoftheproject’sarchitecturalcomponents.Preferenceshallbegiventoateamwithanarchitectexperiencedinbridgearchitecture.PreferenceshallalsobegiventoteamswherethearchitecthasacurrentstandingwithprofessionalorganizationssuchastheAmericanInstituteofArchitects(AIA)ortheAmericanInstituteofCityPlanners(AICP).Thearchitectshallsealtheapplicabledesigndocuments.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-6 WSDOT Bridge Design Manual M 23-50.17 June 2017

WhenrequiredbytheRFP,andinordertoassureconsistencywiththeRFParchitecturaldesignstandards,thedesign-buildershallformanUrbanDesignTeam.Theteamshallconsistof,asaminimum,adesignbuilderprojecturbandesignmanager,aWSDOTBridgeandStructuresOfficeStructuresEngineer,theWSDOTStateBridgeandStructuresArchitectandtheRegionorHQPrincipalLandscapeArchitect.

15.2.10 AnalysisandDesignCriteriaforStructuralWideningsandModificationsThewideningofabridgeshallbeofasimilarsuperstructuretypeastheexisting.Theoverallappearanceandgeometricaldimensionsofthewideningshallbethesameorascloseaspossibletothoseoftheexistingstructure.Materialsusedintheconstructionofthewideningshallhavethesamethermalandelasticpropertiesasthematerialsintheoriginalstructure.Prestressedconcretegirdersmaybeusedtowidenexistingcast-in-placeconcretestructures.

Themembersofthewideningshallbeproportionedtoprovidesimilarlongitudinalandtransverseloaddistributioncharacteristicsastheexistingstructure.

Differentialsettlementbetweenthenewandexistingstructuresshallbetakenintoaccount.

Thedesignofthewideningshallconformtocurrentstandardsandnotthestandardsusedtodesignandconstructtheexistingstructure.Thestrengthoftheexistingstructureshallbecheckedutilizingcurrentdesignstandards.Existingcomponentsshallbestrengthenedasnecessarysothattheircapacity/demandratiosarenotworsened.SeismicdesignofbridgewideningsshallbeinaccordancewithSection4.3.

Diaphragmsforthewideningshallcoincidewithandbeparalleltotheexistingdiaphragms.

Falseworkforthewideningshallbesupportedfromtheexistingstructureifthewideningdoesnotrequireadditionalgirdersorsubstructure.Otherwise,falseworkforthewideningshallnotbesupportedfromtheexistingstructure.

Ifthewideningrequiresadditionalgirdersorsubstructure,aclosurestripshallbeprovided.Allfalseworksupportingthewideningshallbereleasedpriortoplacingconcreteintheclosurestrip.Formworksupportingtheclosurestripshallbesupportedfromtheexistingstructureandthewidening.

15.2.11 Bridge SecurityA. General

WhererequiredintheRFP,newbridgesshallbedesignedforsecurity.Bridgeabutmentsinparticularshallbedesignedtodeterinappropriatepublicuseandaccessbyillegalurbancampers.

TheDesign-BuildContractorshallcoordinatewiththeprojecturbandesignteamtoidentifydeterrencestrategies.TheprinciplesofCPTED(CrimePreventionThroughEnvironmentalDesign)shallbeemployedwithtwostrategicoptions.Thefirststrategyemploysnaturalsurveillanceandterritorialreinforcement.Forconditionswherethefirststrategyisnotfeasible,thenasecondstrategyshallbeprovided.Thesecondstrategyprovideshardarmoring,suchassecurityfences.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-7 June 2017

B. NaturalSurveillanceandTerritorialReinforcement

Thenaturalsurveillanceandterritorialreinforcementstrategyshallbeprovidedthroughthefollowing:

1. Thedistancefromthetopofabutmentwalltothefinishedgradeatthefaceofabutmentshallnotbelessthan10feetinheightand,

2. Horizontalgradedlandformshelvesattheabutmentfacebeneathsuperstructuresshallbeomittedand,

3. Alcovespaceswithintheabutment-superstructureinterfaceshallbeomittedand,

4. Unobstructedviewsforlawenforcementsurveillanceshallbeprovided.

C. HardArmoring

Thehardarmoringstrategyshallconsistofoneofthefollowingoracombinationofboth:

1. Asecurityfencesystemwithananti-cut,anti-climb,galvanizedsteelweldedwiremeshfabric.Thesteelweldedwiremeshfabricshallhaveaminimumwirespacingof½inchforhorizontalelementsand3inchesverticalelements.Theminimumwirediametershallbe0.162inch(8gauge)steelweldedwiremesh.ThefencesystemshallhavethecomponentsshowninFigure2.8.3-2. Thebridgesecurityfenceshallnotbeconnectiontothebridgesuperstructure.Thesecurityfencemaybeattachedtothebridgeabutment,curtainwalls,girderseatsorretainingwalls.

2. Curtainwallsmaybeusedinlieuofasecurityfencesystem.Castinplaceconcrete,precastconcrete,orconcretemasonryunitmaterialsmaybeconstructedascurtainwallsprovidedtheymeettheprojecturbandesigngoals.Figure2.8.3-1showsaschematicviewofthecurtainwalloption.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-8 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.3 Load Criteria15.3.1 Scope

AASHTOLRFDshallbetheminimumdesigncriteriausedforallprojects.Additionalrequirements,exceptions,anddeviationsfromAASHTOLRFDrequirementsarecontainedherein.

15.3.2 Load Factors and Load CombinationsAvalueof1.0shallbeusedforhiinEquation3.4.1-1ofAASHTOLRFDexceptforthedesignofcolumnswhenaminimumvalueofgiisrequiredbyArticle3.4.1ofAASHTOLRFD.Insuchacase,hishallbe0.95.

StrengthIVloadcombinationshallnotbeusedforfoundationdesign.Forfoundationdesign,loadsshallbefactoredafterdistributionthroughstructuralanalysisormodeling.

ThedesignliveloadfactorfortheServiceIIILimitStateloadcombinationshallbeasfollows:

gLL=0.8whentherequirementsofSections5.6.1and5.6.2aresatisfiedandstressanalysisisbasedongrosssectionproperties.

gLL=1.0whentherequirementsofSections5.6.1and5.6.2aresatisfiedandstressanalysisisbasedontransformedsectionproperties.

InspecialcasesthatdeviatefromtherequirementsofSections5.6.1and5.6.2andhavebeenapprovedbytheWSDOTBridgeDesignEngineer,gLL,shallbeasspecifiedintheAASHTOLRFD.

TheServiceIIIliveloadfactorforloadratingshallbe1.0.

TheliveloadfactorforExtremeEvent-ILimitStateshallbe0.5.Thebaseconstructiontemperatureshallbetakenas64°FforthedeterminationofTemperatureLoad.

TheLoadFactorsforPermanentLoadsDuetoSuperimposedDeformationsareprovidedinTable3.53.Table3.5-3replacesTable3.4.1-3ofAASHTOLRFD.

15.3.3 Permanent LoadsThedesignunitweightsofcommonpermanentloadsshallbeasshowninTable3.8-1.

A. FutureDeckOverlayRequirement

StructuresthatwillbeconstructedwithdeckprotectionSystem1or4shallbedesignedtoaccountfora2″thickHMAoverlayplaceduniformlyovertheentiredeckarea.Thedesignneednotaccountfortheweightofthe2″thickHMAoverlaywithinthedeckareacoveredbyappurtenancessuchas,butnotlimitedto,sidewalksandtrafficbarriers,whichhaveadeadweightinexcessofthe2″thickHMAoverlay.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-9 June 2017

15.3.4 Live LoadsA. Design Live Load

Thedesignliveloadshallbe:• Fornewbridgesandbridgesthataremodifiedinsuchawaytoincludenewsubstructureelements–LiveloadinaccordancewithAASHTOLRFD

• Forbridgesmodifiedinsuchawaythatdonotincludenewsubstructureelements–Liveloadcriteriaoftheoriginaldesign

• Forbridgesusedfortemporarydetourorothertemporarypurposes–minimum75percentofHL-93liveloadinaccordancewithAASHTOLRFD

TheapplicationofdesignvehicularliveloadsshallbeasspecifiedinAASHTOLRFDSection3.6.1.3.Thedesigntandem,or“lowboy”,definedinLRFDSectionC3.6.1.1shallbeincludedinthedesignvehicularliveload.

• TheeffectofonedesigntandemcombinedwiththeeffectofthedesignlaneloadspecifiedinLRFDArticle3.6.1.2.4and,fornegativemomentbetweenthepointsofcontraflexureunderauniformloadonallspansandreactionsatinteriorsupports,shallbeinvestigatedadualdesigntandemspacedfrom26.0feetto40.0feetapart,measuredbetweenthetrailingaxleoftheleadvehicleandtheleadaxleofthetrailingvehicle,combinedwiththedesignlaneload.Forthepurposeofthisarticle,thepairsofthedesigntandemshallbeplacedinadjacentspansinsuchpositiontoproducemaximumforceeffect.Axlesofthedesigntandemthatdonotcontributetotheextremeforceeffectunderconsiderationshallbeneglected.

B. LiveLoadDeflectionEvaluation

Article2.5.2.6.2oftheAASHTOLRFDismandatoryinitsentirety.

C. DistributiontoSuperstructure

1. Crosssectionsa,e,k,andalsoiandjifsufficientlyconnectedtoactasaunitfromAASHTOLRFD Table 4.6.2.2.1-1

Theliveloaddistributionfactorshallbeasfollows:• Forexteriorgirderdesignwithslabcantileverlengthequalorlessthan40percentoftheadjacentinteriorgirderspacing,usetheliveloaddistributionfactorfortheadjacentinteriorgirder.Theslabcantileverlengthisdefinedasthedistancefromthecenterlineoftheexteriorgirdertotheedgeoftheslab.

• Forexteriorgirderdesignwithslabcantileverlengthexceeding40percentoftheadjacentinteriorgirderspacing,usetheleverrulewiththemultiplepresencefactorof1.0forsinglelanetodeterminetheliveloaddistribution.Theliveloadusedtodesigntheexteriorgirdershallnotbelessthantheliveloadusedfortheadjacentinteriorgirder.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-10 WSDOT Bridge Design Manual M 23-50.17 June 2017

• TherigidcrosssectionanalysisdescribedinAASHTOLRFDSectionC4.6.2.2.2dshallnotbeusedtodetermineliveloaddistributionunlessitcanbedemonstratedthattheeffectivenessofdiaphragmsonthelateraldistributionofvehicularliveloadcausesthecrosssectionofthestructuretodeflectandrotateasarigidcrosssection.

2. CrosssectionTypedfromAASHTOLRFDTable4.6.2.2.1-1

Thistypeofcrosssectionshallbedesignedasasingleunit.TheliveloadforceeffectsshallbethatofasinglelaneofliveloadmultipliedbytheproductoftheliveloaddistributionfactorforinteriorgirderscomputedinaccordancewithAASHTOLRFDandthetotalnumberofwebsinthecrosssection.ThecorrectionfactorforliveloaddistributionforskewedsupportsasspecifiedinAASHTOLRFDTables4.6.2.2.2e-1and4.6.2.2.3c1forshearshallapply.

3. Distribution to Substructure

Thenumberoftrafficlanestobeusedinthesubstructuredesignshallbedeterminedbydividingtheentireroadwayslabwidthby12-feet.Nofractionallanesshallbeused.Bridgedeckwidthsoflessthan24feetshallhaveaminimumoftwodesignlanes.

4. DistributiontoCrossbeam

Thedesignandloadratingshallbedistributedtothesubstructurebyplacingwheellinereactionsinalaneconfigurationthatgeneratesthemaximumforceeffectsinthesubstructure.LiveloadsareconsideredtoactdirectlyonthesubstructurewithoutfurtherdistributionthroughthesuperstructureasillustratedinFigure3.9-1.

Forsteelandprestressedconcretesuperstructurewheretheliveloadistransferredtosubstructurethroughbearings,crossframesordiaphragms,thegirderreactionmaybeusedforsubstructuredesign.

15.3.5 Noise Barrier WallsWindonNoiseWallsshallbeasspecifiedinAASHTOLRFDSections3.8.1,3.8.1.2.4,and15.8.2.

WSDOT Bridge Design Manual M 23-50.17 Page 15-11 June 2017

15.4 SeismicDesignandRetrofit15.4.1 General

ThischapterandtheAASHTO SEISMICarethefoundationseismicdesigncriteriadocumentsusedtodesignhighwaybridgesinWashingtonState.

ThischaptersupplementsandsupersedestheAASHTOLRFDbyprovidingWSDOTseismicdesigncriteria,policyandpractice.

TheimportanceclassificationsforallhighwaybridgesinWashingtonStateareclassifiedas“Normal”exceptforspecialmajorbridges.Specialmajorbridgesfittingtheclassificationsofeither“Critical”or“Essential”willbesodesignatedintheRFP.

15.4.2 WSDOTAdditionsandModificationstoAASHTOGuideSpecificationsfor LRFD Seismic Bridge Design

WSDOTmodificationstotheAASHTOSEISMICareasfollows:

A. Definitions

GuideSpecificationsArticle2

Reviseexistingdefinitionsandaddnewdefinitionsasfollows:• Oversized Pile Shaft Adrilledshaftfoundationthatislargerindiameterthanthesupportedcolumnandhasareinforcingcagelargerthanandindependentofthecolumn’sreinforcementcage.ThesizeoftheshaftshallbeinaccordancewithSection7.8.2.

• Owner Personoragencyhavingjurisdictionoverthebridge.ForWSDOTprojects,regardlessofdeliverymethod,theterm“Owner”intheseGuideSpecificationsshallbetheWSDOTBridgeDesignEngineerand/ortheWSDOTGeotechnicalEngineer.

B. EarthquakeResistingSystems(ERS)RequirementsforSeismicDesignCategories(SDCs)C and D

GuideSpecificationsArticle3.3

WSDOTGlobalSeismicDesignStrategies:• Type1 DuctileSubstructurewithEssentiallyElasticSuperstructure.Thiscategoryispermissible.

• Type2 EssentiallyElasticSubstructurewithaDuctileSuperstructure.Thiscategoryisnotpermissible.

• Type3 ElasticSuperstructureandSubstructurewithaFusingMechanismBetweentheTwo.Thiscategoryisnotpermissible.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-12 WSDOT Bridge Design Manual M 23-50.17 June 2017

ForType1ERSforSDCCorD,ifcolumnsorpierwallsareconsideredanintegralpartoftheenergy-dissipatingsystembutremainelasticatthedemanddisplacement,theforcestouseforcapacitydesignofothercomponentsshallbeaminimumof1.2timestheelasticforcesresultingfromthedemanddisplacementinlieuoftheforcesobtainedfromoverstrengthplastichinginganalysis.Becausemaximumlimitinginertialforcesprovidedbyyieldingelementsactingataplasticmechanismlevelisnoteffectiveinthecaseofelasticdesign,thefollowingconstraintsareimposed.

1. Unlessananalysisthatconsidersredistributionofinternalstructureforcesduetoinelasticactionisperformed,allsubstructureunitsoftheframeunderconsiderationandofanyadjacentframesthatmaytransferinertialforcestotheframeinquestionshallremainelasticatthedesigngroundmotiondemand.

2. Effectivemembersectionpropertiesshallbeconsistentwiththeforcelevelsexpectedwithinthebridgesystem.Reinforcedconcretecolumnsandpierwallsshallbeanalyzedusingcrackedsectionproperties.ForthispurposeinabsenceofbetterinformationorestimatedbyFigure5.6.2-1,amomentofinertiaequaltoone-halfthatoftheuncrackedsectionshallbeused.

3. Foundationmodelingshallbeestablishedsuchthatuncertaintiesinmodelingwillnotcausetheinternalforcesofanyelementsunderconsiderationtoincreasebymorethan10percent.

4. Whensite-specificgroundresponseanalysisisperformed,theresponsespectrumordinatesshallbeselectedsuchthatuncertaintieswillnotcausetheinternalforcesofanyelementsunderconsiderationtoincreasebymorethan10percent.

5. Thermal,shrinkage,prestressorotherforcesthatmaybepresentinthestructureatthetimeofanearthquakeshallbeconsideredtoactinasensethatisleastfavorabletotheseismicloadcombinationunderinvestigation.

6. P-Deltaeffectsshallbeassessedusingtheresistanceoftheframeinquestionatthedeflectioncausedbythedesigngroundmotion.

7. Jointsheareffectsshallbeassessedwithaminimumofthecalculatedelasticinternalforcesappliedtothejoint.

8. DetailingasnormallyrequiredineitherSDCCorD,asappropriate,shallbeprovided.

Useofexpectedmaterialstrengthsforthedeterminationofmemberstrengthsforelasticresponseofmembersispermitted.

TheuseofelasticdesigninlieuofoverstrengthplastichingingforcesforcapacityprotectiondescribedaboveshallonlybeconsideredifdesignerdemonstratesthatcapacitydesignofArticle4.11oftheAASHTOGuide Specifications for LRFD Bridge Seismic Designisnotfeasibleduetogeotechnicalorstructuralreasons.

Type3ERSmaybeconsideredonlyifType1strategyisnotsuitableandType3strategyhasbeendeemednecessaryforaccommodatingseismicloads.IsolationbearingsshallbedesignedinaccordancewiththeAASHTO Guide Specifications for Seismic Isolation.IsolationbearingsshallconformtoSection9.3.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-13 June 2017

LimitationsontheuseofERSandEREareshowninFigures4.2.2-1,4.2.2-2,4.2.2-3,and4.2.3-4.• Figure4.2.2-2Type6,connectionwithmomentreducingdetailshouldonlybeusedatcolumnbaseifprovednecessaryforfoundationdesign.AfixedconnectionatbaseofcolumnremainsthepreferredoptionforWSDOTbridges.

• Thedesigncriteriaforcolumnbasewithmomentreducingdetailshallconsiderallapplicableloadsatservice,strength,andextremeeventlimitstates.

• 4.2.2-3Types6and8arenotpermissiblefornon-liquefiedconfigurationandpermissibleforliquefiedconfiguration.

C. SeismicGroundShakingHazard

GuideSpecificationsArticle3.4

ForbridgesthatareconsideredcriticaloressentialornormalbridgeswithasiteClassF,theseismicgroundshakinghazardshallbedeterminedinaccordancewiththesitespecificprocedureinArticle3.4.3oftheAASHTOSEISMIC.

IncaseswherethesitecoefficientsusedtoadjustmappedvaluesofdesigngroundmotionforlocalconditionsareinappropriatetodeterminethedesignspectrainaccordancewithgeneralprocedureofArticle3.4.1(suchastheperiodattheendofconstantdesignspectralaccelerationplateau(Ts)isgreaterthan1.0secondortheperiodatthebeginningofconstantdesignspectralaccelerationplateau(To)islessthan0.2second),asite-specificgroundmotionresponseanalysisshallbeperformed.

ThespectralresponseparametersshallbedeterminedusingUSGS2014 Seismic Hazard Maps and Site Coefficients definedinSection4.2.3.

D. SelectionofSeismicDesignCategory(SDC)

GuideSpecificationsArticle3.5

ApushoveranalysisshallbeusedtodeterminedisplacementcapacityforbothSDCsCandD.

E. TemporaryandStagedConstruction

GuideSpecificationsArticle3.6

Forbridgesthataredesignedforareducedseismicdemand,thecontractplansshalleitherincludeastatementthatclearlyindicatesthatthebridgewasdesignedastemporaryusingareducedseismicdemandorshowtheAccelerationResponseSpectrum(ARS)usedfordesign.Noliquefactionassessmentrequiredfortemporarybridges.

F. Load and Resistance Factors

GuideSpecificationsArticle3.7

Useloadfactorsof1.0forallpermanentloads.Theloadfactorforliveloadshallbe0.0whenpushoveranalysisisusedtodeterminethedisplacementcapacity.Usealiveloadfactorof0.5forallotherextremeeventcases.Unlessotherwisenoted,allϕfactorsshallbetakenas1.0.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-14 WSDOT Bridge Design Manual M 23-50.17 June 2017

G. BalancedStiffnessRequirementsandBalancedFrameGeometryRecommendation

GuideSpecificationsArticles4.1.2and4.1.3

BalancedstiffnessbetweenbentswithinaframeandbetweencolumnswithinabentandbalancedframegeometryforadjacentframesarerequiredforbridgesinbothSDCsCandD.

H. SelectionofAnalysisProceduretoDetermineSeismicDemand

GuideSpecificationsArticle4.2

MinimumrequirementsfortheselectionoftheanalysisproceduretodetermineseismicdemandshallbeasspecifiedinTables4.2-1and4.2-2oftheGuideSpecifications,exceptProcedure1(EquivalentStaticAnalysis)shallnotbeusedforWSDOTBridges.

I. MemberDuctilityRequirementforSDCsCandD

GuideSpecificationsArticle4.9

In-groundhingingfordrilledshaftandpilefoundationsmaybeconsideredfortheliquefiedconfigurationifallowedbytheRFPCriteria.

J. Longitudinal Restrainers

GuideSpecificationsArticle4.13.1

Longitudinalrestrainersshallbeprovidedattheexpansionjointsbetweensuperstructuresegments.RestrainersshallbedesignedinaccordancewiththeFHWASeismic Retrofitting Manual for Highway Structure(FHWAHRT06032),Article8.4,theIterativeMethod.RestrainersshallbedetailedinaccordancewiththerequirementsofGuideSpecificationsArticle4.13.3andBridge Design Manual Section4.4.4.RestrainersmaybeomittedforSDCsCandDwheretheavailableseatwidthexceedsthecalculatedsupportlengthspecifiedinEquationC4.13.1-1.

Longitudinalrestrainersshallnotbeusedattheendpiers(abutments).

K. Abutments

GuideSpecificationsArticle5.2

Abutmentsarerevisedasfollows:

1. 5.2.1-General

Theparticipationofabutmentwallsinprovidingresistancetoseismicallyinducedinertialloadsmaybeconsideredintheseismicdesignofbridgeseithertoreducecolumnsizesorreducetheductilitydemandonthecolumns.Damagetobackwallsandwingwallsduringearthquakesmaybeconsideredacceptablewhenconsideringnocollapsecriteria,providedthatunseatingorotherdamagetothesuperstructuredoesnotoccur.Abutmentparticipationintheoveralldynamicresponseofthebridgesystemshallreflectthestructuralconfiguration,theloadtransfermechanismfromthebridgetotheabutmentsystem,theeffectivestiffnessandforcecapacityofthewall-soilsystem,andthelevelofacceptableabutmentdamage.Thecapacityoftheabutmentstoresistthebridgeinertialloadsshallbecompatiblewiththesoilresistancethatcanbereliably

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-15 June 2017

mobilized,thestructuraldesignoftheabutmentwall,andwhetherthewallispermittedtobedamagedbythedesignearthquake.Thelateralloadcapacityofwallsshallbeevaluatedonthebasisofarationalpassiveearth-pressuretheory.

TheparticipationofthebridgeapproachslabintheoveralldynamicresponseofbridgesystemstoearthquakeloadingandinprovidingresistancetoseismicallyinducedinertialloadsmaybeconsideredifallowedbytheRFPCriteria.

2. 5.2.2-LongitudinalDirection

TheabutmentmaybeconsideredaspartoftheERSforacontinuoussuperstructure.IftheabutmentisconsideredaspartofthelongitudinalERS,theabutmentstiffnessandcapacityshallbedeterminedasillustratedschematicallyinFigure5.2.2-aforsemi-integralabutments,Figure5.2.2-b forL-shapedabutmentswithbackwallfuse,andFigure5.2.2-cforL-shapedabutmentswithoutbackwallfuse.

Longitudinalrestrainersshallnotbeusedattheendpiers(abutments).

4.2.11 Abutments

(a)Semi-integralAbutment (b)L-shapeAbutmentBackwallFuses

(c)L-shapeAbutmentBackwallDoesNotFuse

Figure5.2.2- AbutmentStiffnessandPassivePressure EstimateBDM Figure 4.2.11-1

Wherethepassivepressureresistanceofsoilsbehindsemi-integralorL-shapeabut-mentswillbemobilizedthroughlargelongitudinalsuperstructuredisplacements,thebridgemaybedesignedwiththeabutmentsaskeyelementsofthelongitudinalERS.Abutmentsshallbedesignedtosustainthedesignearthquakedisplacements.Whenabutmentstiffnessandcapacityareincludedinthedesign,itshouldberecognizedthatthepassivepressurezonemobilizedbyabutmentdisplacementextendsbeyondtheactivepressurezonenormallyusedforstaticserviceloaddesign.Thisisillustrat-edschematicallyinFigures1aand1b. Dynamicactiveearthpressureactingontheabutmentneednotbeconsideredinthedynamicanalysisofthebridge. Thepassiveabutmentresistanceshallbelimitedto70%ofthevalueobtainedusingtheproceduregiveninArticle5.2.2.1.

5.2.2.1 - AbutmentStiffnessandPassivePressureEstimate

Abutmentstiffness,Keff inkip/ft,andpassivecapacity,Pp inkips,shouldbecharac-terizedbyabilinearorotherhigherordernonlinearrelationshipasshowninFigure5.2.2.1.Whenthemotionofthebackwallisprimarilytranslation,passivepressuresmaybeassumeduniformlydistributedovertheheight(Hw)ofthebackwallorenddiaphragm.Thetotalpassiveforcemaybedeterminedas:

Pp = pp Hw Ww (5.2.2.1-1)

where:

Longitudinalrestrainersshallnotbeusedattheendpiers(abutments).

4.2.11 Abutments

(a)Semi-integralAbutment (b)L-shapeAbutmentBackwallFuses

(c)L-shapeAbutmentBackwallDoesNotFuse

Figure5.2.2- AbutmentStiffnessandPassivePressure EstimateBDM Figure 4.2.11-1

Wherethepassivepressureresistanceofsoilsbehindsemi-integralorL-shapeabut-mentswillbemobilizedthroughlargelongitudinalsuperstructuredisplacements,thebridgemaybedesignedwiththeabutmentsaskeyelementsofthelongitudinalERS.Abutmentsshallbedesignedtosustainthedesignearthquakedisplacements.Whenabutmentstiffnessandcapacityareincludedinthedesign,itshouldberecognizedthatthepassivepressurezonemobilizedbyabutmentdisplacementextendsbeyondtheactivepressurezonenormallyusedforstaticserviceloaddesign.Thisisillustrat-edschematicallyinFigures1aand1b. Dynamicactiveearthpressureactingontheabutmentneednotbeconsideredinthedynamicanalysisofthebridge. Thepassiveabutmentresistanceshallbelimitedto70%ofthevalueobtainedusingtheproceduregiveninArticle5.2.2.1.

5.2.2.1 - AbutmentStiffnessandPassivePressureEstimate

Abutmentstiffness,Keff inkip/ft,andpassivecapacity,Pp inkips,shouldbecharac-terizedbyabilinearorotherhigherordernonlinearrelationshipasshowninFigure5.2.2.1.Whenthemotionofthebackwallisprimarilytranslation,passivepressuresmaybeassumeduniformlydistributedovertheheight(Hw)ofthebackwallorenddiaphragm.Thetotalpassiveforcemaybedeterminedas:

Pp = pp Hw Ww (5.2.2.1-1)

where:

Longitudinalrestrainersshallnotbeusedattheendpiers(abutments).

4.2.11 Abutments

(a)Semi-integralAbutment (b)L-shapeAbutmentBackwallFuses

(c)L-shapeAbutmentBackwallDoesNotFuse

Figure5.2.2- AbutmentStiffnessandPassivePressure EstimateBDM Figure 4.2.11-1

Wherethepassivepressureresistanceofsoilsbehindsemi-integralorL-shapeabut-mentswillbemobilizedthroughlargelongitudinalsuperstructuredisplacements,thebridgemaybedesignedwiththeabutmentsaskeyelementsofthelongitudinalERS.Abutmentsshallbedesignedtosustainthedesignearthquakedisplacements.Whenabutmentstiffnessandcapacityareincludedinthedesign,itshouldberecognizedthatthepassivepressurezonemobilizedbyabutmentdisplacementextendsbeyondtheactivepressurezonenormallyusedforstaticserviceloaddesign.Thisisillustrat-edschematicallyinFigures1aand1b. Dynamicactiveearthpressureactingontheabutmentneednotbeconsideredinthedynamicanalysisofthebridge. Thepassiveabutmentresistanceshallbelimitedto70%ofthevalueobtainedusingtheproceduregiveninArticle5.2.2.1.

5.2.2.1 - AbutmentStiffnessandPassivePressureEstimate

Abutmentstiffness,Keff inkip/ft,andpassivecapacity,Pp inkips,shouldbecharac-terizedbyabilinearorotherhigherordernonlinearrelationshipasshowninFigure5.2.2.1.Whenthemotionofthebackwallisprimarilytranslation,passivepressuresmaybeassumeduniformlydistributedovertheheight(Hw)ofthebackwallorenddiaphragm.Thetotalpassiveforcemaybedeterminedas:

Pp = pp Hw Ww (5.2.2.1-1)

where:

(a) Semi-integral Abutment (b) L-shape Abutment Backwall Fuses

(c) L-shape Abutment Backwall Does Not Fuse

AbutmentStiffnessandPassivePressureEstimateFigure 5.2.2

Abutmentsshallbedesignedtosustainthedesignearthquakedisplacements.Thepassiveabutmentresistanceshallbelimitedto70percentofthevalueobtainedusingtheproceduregiveninArticle5.2.2.1.

3. 5.2.2.1-AbutmentStiffnessandPassivePressureEstimate

Abutmentstiffness,Keffinkip/feet,andpassivecapacity,Ppinkips,shallbecharacterizedbyabilinearorotherhigherordernonlinearrelationshipasshowninFigure5.2.2.1.Whenthemotionofthebackwallisprimarilytranslation,passivepressuresmaybeassumeduniformlydistributedovertheheight(Hw)ofthebackwallorenddiaphragm.Thetotalpassiveforceshallbedeterminedas:

Pp = pp Hw Ww (5 .2 .2 .1-1)Where:

pp = passivelateralearthpressurebehindbackwallordiaphragm(ksf)Hw = heightofbackwallorenddiaphragmexposedtopassiveearth

pressure(feet)Ww = widthofbackwallordiaphragm(feet)

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-16 WSDOT Bridge Design Manual M 23-50.17 June 2017

Pp = pp Hw Ww (5.2.2.1-1)

where:

pp =passivelateralearthpressurebehindbackwallordiaphragm(ksf)

Hw =heightofbackwallorenddiaphragmexposedtopassiveearthpressure(ft)

Ww =widthofbackwallordiaphragm(ft)

(a) Semi-integralAbutment (b): L-shapeAbutment

Figure5.2.2.1- CharacterizationofAbutmentCapacityandStiffnessBDM Figure 4.2.11-2

5.2.2.2- CalculationofBestEstimatePassivePressurePp

Ifthestrengthcharacteristicsofcompactedornaturalsoilsinthe"passivepressurezone"areknown,thenthepassiveforceforagivenheight,Hw, maybecalculatedus-ingacceptedanalysisprocedures.Theseproceduresshouldaccountfortheinterfacefrictionbetweenthewallandthesoil.Thepropertiesusedshallbethoseindicativeoftheentire"passivepressurezone"asindicatedinFigure1. Therefore,thepropertiesofbackfillpresentimmediatelyadjacenttothewallintheactivepressurezone maynotbeappropriateasaweakerfailuresurfacecandevelopelsewhereintheembank-ment.

ForL-shapeabutmentswherethebackwallisnotdesignedtofuse,Hw

shallconservativelybetakenasthedepthofthesuperstructure,unlessamorerationalsoil-structureinteractionanalysisisperformed.

Ifpresumptivepassivepressuresaretobeusedfordesign,thenthefollowingcriteriashallapply:

Pp = pp Hw Ww (5.2.2.1-1)

where:

pp =passivelateralearthpressurebehindbackwallordiaphragm(ksf)

Hw =heightofbackwallorenddiaphragmexposedtopassiveearthpressure(ft)

Ww =widthofbackwallordiaphragm(ft)

(a) Semi-integralAbutment (b): L-shapeAbutment

Figure5.2.2.1- CharacterizationofAbutmentCapacityandStiffnessBDM Figure 4.2.11-2

5.2.2.2- CalculationofBestEstimatePassivePressurePp

Ifthestrengthcharacteristicsofcompactedornaturalsoilsinthe"passivepressurezone"areknown,thenthepassiveforceforagivenheight,Hw, maybecalculatedus-ingacceptedanalysisprocedures.Theseproceduresshouldaccountfortheinterfacefrictionbetweenthewallandthesoil.Thepropertiesusedshallbethoseindicativeoftheentire"passivepressurezone"asindicatedinFigure1. Therefore,thepropertiesofbackfillpresentimmediatelyadjacenttothewallintheactivepressurezone maynotbeappropriateasaweakerfailuresurfacecandevelopelsewhereintheembank-ment.

ForL-shapeabutmentswherethebackwallisnotdesignedtofuse,Hw

shallconservativelybetakenasthedepthofthesuperstructure,unlessamorerationalsoil-structureinteractionanalysisisperformed.

Ifpresumptivepassivepressuresaretobeusedfordesign,thenthefollowingcriteriashallapply:

(a) Semi-integral Abutment (b) L-shape AbutmentCharacterizationofAbutmentCapacityandStiffness

Figure 5.2.2-14. 5.2.2.2-CalculationofBestEstimatePassivePressurePp Ifthestrengthcharacteristicsofcompactedornaturalsoilsinthe“passive

pressurezone”areknown,thenthepassiveforceforagivenheight,Hw,shallbecalculatedusingacceptedanalysisprocedures.Theseproceduresshouldaccountfortheinterfacefrictionbetweenthewallandthesoil.Thepropertiesusedshallbethoseindicativeoftheentire“passivepressurezone”asindicatedinFigure1.Therefore,thepropertiesofbackfillpresentimmediatelyadjacenttothewallintheactivepressurezonemaynotbeappropriateasaweakerfailuresurfacecandevelopelsewhereintheembankment.

ForL-shapeabutmentswherethebackwallisnotdesignedtofuse,Hwshallconservativelybetakenasthedepthofthesuperstructure,unlessamorerationalsoil-structureinteractionanalysisisperformed.

Ifpresumptivepassivepressuresaretobeusedfordesign,thenthefollowingcriteriashallapply:• Soilinthe“passivepressurezone”shallbecompactedinaccordancewith

Standard Specifications Section2-03.3(14)I.• Forcohesionless,nonplasticbackfill(finescontentlessthan30percent),thepassivepressureppshallbeassumedequalto2Hw/3ksfperfootofwalllength.

• Forothercases,includingabutmentsconstructedincuts,thepassivepressuresshallbedevelopedbyageotechnicalengineer.

5. 5.2.2.3-CalculationofPassiveSoilStiffness

Equivalentlinearsecantstiffness,Keffinkip/feet,isrequiredforanalyses.Forsemi-integralorL-shapeabutmentsinitialsecantstiffnessmaybedeterminedasfollows:

5.2.2.3- Calculation of Passive Soil Stiffness

Equivalentlinearsecantstiffness,Keff inkip/ft,isrequiredforanalyses.Forsemi-integralorL-shapeabutmentsinitialsecantstiffnessmaybedeterminedasfol-lows:

( )ww

peff HF

PK =1 (5.2.2.3-1)

where:

Pp =passivelateralearthpressurecapacity(kip)

Hw =heightofbackwall(ft)

Fw = thevalueofFw touseforaparticularbridgemaybefoundinTableC3.11.1-1oftheAASHTO LRFD Bridge Design Specifications.

ForL-shapeabutments,theexpansiongapshouldbeincludedintheinitialestimateofthesecantstiffnessasspecifiedin:

( )gww

peff DHF

PK

+=1 (5.2.2.3-2)

where:

Dg =widthofgapbetweenbackwallandsuperstructure(ft)

ForSDCsCandD,wherepushoveranalysesareconducted,valuesofPp andtheini-tialestimateofKeff1 shouldbeusedtodefineabilinearload-displacementbehavioroftheabutmentforthecapacityassessment.

5.2.2.4-Modeling Passive Pressure Stiffness in the Longitudinal Direction

Inthelongitudinaldirection,whenthebridgeismovingtowardthesoil, thefullpas-siveresistanceofthesoilmaybemobilized,butwhenthebridgemovesawayfromthesoilnosoilresistanceismobilized. Sincepassivepressureactsatonlyoneabutmentatatime,linearelasticdynamicmodelsandframepushovermodelsshouldonlyincludeapassivepressurespringatoneabutmentinanygivenmodel.Secantstiffnessvaluesforpassivepressureshallbedevelopedindependentlyforeachabut-ment.

(5 .2 .2 .3-1)

Where:Pp = passivelateralearthpressurecapacity(kip)Hw = heightofbackwall(feet)Fw = thevalueofFwtouseforaparticularbridgeisfoundinTableC3.11.1-1

oftheAASHTOLRFD.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-17 June 2017

ForL-shapeabutments,theexpansiongapshallbeincludedintheinitialestimateofthesecantstiffnessasspecifiedin:

5.2.2.3- Calculation of Passive Soil Stiffness

Equivalentlinearsecantstiffness,Keff inkip/ft,isrequiredforanalyses.Forsemi-integralorL-shapeabutmentsinitialsecantstiffnessmaybedeterminedasfol-lows:

( )ww

peff HF

PK =1 (5.2.2.3-1)

where:

Pp =passivelateralearthpressurecapacity(kip)

Hw =heightofbackwall(ft)

Fw = thevalueofFw touseforaparticularbridgemaybefoundinTableC3.11.1-1oftheAASHTO LRFD Bridge Design Specifications.

ForL-shapeabutments,theexpansiongapshouldbeincludedintheinitialestimateofthesecantstiffnessasspecifiedin:

( )gww

peff DHF

PK

+=1 (5.2.2.3-2)

where:

Dg =widthofgapbetweenbackwallandsuperstructure(ft)

ForSDCsCandD,wherepushoveranalysesareconducted,valuesofPp andtheini-tialestimateofKeff1 shouldbeusedtodefineabilinearload-displacementbehavioroftheabutmentforthecapacityassessment.

5.2.2.4-Modeling Passive Pressure Stiffness in the Longitudinal Direction

Inthelongitudinaldirection,whenthebridgeismovingtowardthesoil, thefullpas-siveresistanceofthesoilmaybemobilized,butwhenthebridgemovesawayfromthesoilnosoilresistanceismobilized. Sincepassivepressureactsatonlyoneabutmentatatime,linearelasticdynamicmodelsandframepushovermodelsshouldonlyincludeapassivepressurespringatoneabutmentinanygivenmodel.Secantstiffnessvaluesforpassivepressureshallbedevelopedindependentlyforeachabut-ment.

(5 .2 .2 .3-2)

Where:Dg = widthofgapbetweenbackwallandsuperstructure(feet)

ForSDCsCandD,wherepushoveranalysesareconducted,valuesofPpandtheinitialestimateofKeff1shouldbeusedtodefineabilinearload-displacementbehavioroftheabutmentforthecapacityassessment.

6. 5.2.3-TransverseDirection

TransversestiffnessofabutmentsmaybeconsideredintheoveralldynamicresponseofbridgesystemsifallowedbyRFPCriteria.Thetransverseabutmentstiffnessusedintheelasticdemandmodelsshallbetakenas50-percentoftheelastictransversestiffnessoftheadjacentbent.

Girderstopsareexpectedtofuseatthedesigneventearthquakelevelofaccelerationtolimitthedemandandcontrolthedamageintheabutmentsandsupportingpiles/shafts.Theforcesgeneratedwithelasticdemandassessmentmodelsshallnotbeusedtosizetheabutmentgirderstops.Girderstopsforabutmentssupportedonaspreadfootingshallbedesignedtosustainthelesseroftheaccelerationcoefficient,As,timesthesuperstructuredeadloadreactionattheabutmentplustheweightofabutmentanditsfootingorslidingfrictionforcesofspreadfootings.Girderstopsforpile/shaft-supportedfoundationsshallbedesignedtosustainthesumof75percenttotallateralcapacityofthepiles/shaftsandshearcapacityofonewingwall.

Thestiffnessoffusingorbreakawayabutmentelementssuchaswingwalls(yieldingornon-yielding),elastomericbearings,andslidingfootingsshallnotbereliedupontoreducedisplacementdemandsatintermediatepiers.

Unlessfixedbearingsareused,girderstopsshallbeprovidedbetweenallgirdersregardlessoftheelasticseismicdemand.Thedesignofgirderstopsshallaccommodateunequalforcesthatmaydevelopineachstop.

Whenfusinggirderstops,transverseshearkeys,orotherelementsthatpotentiallyreleasetherestraintofthesuperstructureareused,thenadequatesupportlengthmeetingtherequirementsofArticle4.12oftheAASHTOSEISMICshallbeprovided.Additionally,theexpectedredistributionofinternalforcesinthesuperstructureandotherbridgesystemelementshallbeconsidered.Boundinganalysesconsideringincrementalreleaseoftransverserestraintateachendofthebridgeshallalsobeconsidered.

7. 5.2.4-CurvedandSkewedBridges

Thepassivepressureresistanceinsoilsbehindsemi-integralorL-shapeabutmentsshallbebasedontheprojectedwidthoftheabutmentwallnormaltothecenterlineofthebridge.Abutmentspringsshallbeincludedinthelocalcoordinatesystemoftheabutmentwall.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-18 WSDOT Bridge Design Manual M 23-50.17 June 2017

L. Foundation – General

GuideSpecificationsArticle5.3.1

TherequiredFoundationModelingMethod(FMM)andtherequirementsforestimationoffoundationspringsforspreadfootings,pilefoundations,anddrilledshaftsshallbeModelingMethodIIasdefinedinTable5.3.1-1.

M.Foundation–SpreadFooting

GuideSpecificationsArticleC5.3.2

FoundationspringsforspreadfootingsshallbedeterminedinaccordancewithSection7.2.7 andGeotechnical Design Manual Section6.5.1.1.

N. Procedure3:NonlinearTimeHistoryMethod

GuideSpecificationsArticle5.4.4

ThetimehistoriesofaccelerationusedtodescribetheearthquakeloadsshallbeselectedinaccordancewithGeotechnical Design ManualSection6-A.6.

O. IeffforBoxGirderSuperstructure

GuideSpecificationsArticle5.6.3

Thegrossmomentofinertiashallbeusedforboxgirdersuperstructuremodeling.

P. Foundation Rocking

GuideSpecificationsArticle6.3.9

FoundationrockingshallnotbeusedforthedesignofWSDOTbridges.

Q. Drilled Shafts

GuideSpecificationsArticleC6.5

ForWSDOTbridges,thescalefactorforp-ycurvesorsubgrademodulusforlargediametershaftsshallnotbeused.

R. LongitudinalDirectionRequirements

GuideSpecificationsArticle6.7.1

Case2:EarthquakeResistingSystem(ERS)withabutmentcontributionmaybeusedprovidedthatthemobilizedlongitudinalpassivepressureisnotgreaterthan70percentofthevalueobtainedusingtheproceduregiveninArticle5.2.2.1.

S. LiquefactionDesignRequirements

GuideSpecificationsArticle6.8

SoilliquefactionassessmentshallbebasedonGeotechnical Design Manual Section6.4.2.8.

T. Reinforcing Steel

GuideSpecificationsArticle8.4.1

Reinforcingbars,deformedwire,cold-drawwire,weldedplainwirefabricandweldeddeformedwirefabricshallconformtothematerialstandardsasspecifiedinAASHTOLRFD.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-19 June 2017

SteelreinforcementshallconformtoStandard Specifications Section9-07.2andthefollowingcriteria.OnlyASTMA706Grade60reinforcingsteelshallbeusedinmemberswhereplastichingingisexpectedforSDCsB,C,andD.ASTMA706Grade80reinforcingsteelsmaybeusedforcapacity-protectedmembersasspecifiedinArticle8.9.ASTMA706Grade80reinforcingsteelshallnotbeusedforoversizedshaftswherein-groundplastichingingisconsideredasapartofERS.

Deformedweldedwirefabricshallnotbeused.

Wireropeorstrandsforspiralsandhighstrengthbarswithyieldstrengthinexcessof75ksishallnotbeused.

GuideSpecificationsArticleC8.4.1

TherequirementsforplastichingingandcapacityprotectedmembersdonotapplytothestructuresinSDCA,thereforeuseofASTMA706Grade80reinforcingsteelispermittedinSDCA.

ForSDCsB,C,andD,themoment-curvatureanalysesbasedonstraincompatibilityandnonlinearstress/strainrelationsareusedtodeterminetheplasticmomentcapacitiesofallductileconcretemembers.Furtherresearchisrequiredtoestablishtheshapeandmodelofthestress-straincurve,expectedreinforcingstrengths,strainlimits,andthestress-strainrelationshipsforconcreteconfinedbylateralreinforcementmadewithASTMA706Grade80reinforcingsteel.

U. Concrete Modeling

GuideSpecificationsArticle8.4.4

Wherein-groundplastichingingispartoftheERS,theconfinedconcretecoreshallbelimitedtoamaximumcompressivestrainof0.008andthememberductilitydemandshallbelimitedto4maximum.

V. ExpectedNominalMomentCapacity

GuideSpecificationsArticle8.5

TheexpectednominalcapacityofcapacityprotectedmembersusingASTMA706Grade80reinforcementshallbedeterminedbystrengthdesignformulasspecifiedintheAASHTOLRFDbasedontheexpectedconcretestrengthandreinforcingsteelyieldstrengthswhentheconcretereaches0.003orthereinforcingsteelstrainreaches0.090for#10barsandsmaller,0.060for#11barsandlarger.

Replacethedefinitionofλmowiththefollowing:

λmo=overstrengthfactor

=1.2forASTMA706Grade60reinforcement

=1.4forASTMA615Grade60reinforcement

W. Interlocking Bar Size

GuideSpecificationsArticle8.6.7

Thelongitudinalreinforcingbarinsidetheinterlockingportionofacolumn(interlockingbars)shallbethesamesizeofbarsusedoutsidetheinterlockingportion.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-20 WSDOT Bridge Design Manual M 23-50.17 June 2017

X. SplicingofLongitudinalReinforcementinColumnsSubjecttoDuctilityDemandsforSDCsCandD

GuideSpecificationsArticle8.8.3

Thesplicingoflongitudinalcolumnreinforcementoutsidetheplastichingingregionshallbeaccomplishedusingmechanicalcouplersthatarecapableofdevelopingthetensilestrengthofthesplicedbar.Splicesshallbestaggeredatleast2feet.Lapsplicesshallnotbeused.Thedesignengineershallclearlyidentifythelocationswheresplicesinlongitudinalcolumnreinforcementarepermittedontheplans.Ingeneralwherethelengthoftherebarcageislessthan60feet(72feetforNo.14andNo.18bars),nospliceinthelongitudinalreinforcementshallbeallowed.

Y. DevelopmentLengthforColumnBarsExtendedintoOversizedPileShaftsfor SDCs C and D

GuideSpecificationsArticle8.8.10

ExtendingcolumnbarsintooversizedshaftshallbeinaccordancewithSection7.4.4.C,basedonTRACReportWARD417.1“Non-Contact Lap Splice in Bridge Column Shaft Connections”.

Z. LateralConfinementforOversizedPileShaftforSDCsCandD

GuideSpecificationsArticle8.8.12

Therequirementofthisarticleforshaftlateralreinforcementinthecolumn-shaftsplicezonemaybereplacedwiththerequirementsofSection7.8.2.K.

AA.LateralConfinementforNon-OversizedStrengthenedPileShaftforSDCsC and D

GuideSpecificationsArticle8.8.13

Non-oversizedcolumn-shaft(thecrosssectionoftheconfinedcoreisthesameforboththecolumnandthepileshaft)isnotpermissibleunlessallowedbytheRFPCriteria.

AB. RequirementsforCapacityProtectedMembers

GuideSpecificationsArticle8.9

ForSDCsCandDwhereliquefactionisidentified,pileanddrilledshaftingroundhingingmaybeconsideredasanERE.

Bridgesshallbeanalyzedanddesignedforthenon-liquefiedconditionandtheliquefiedconditioninaccordancewithArticle6.8.ThecapacityprotectedmembersshallbedesignedinaccordancewiththerequirementsofArticle4.11.Toensuretheformationofplastichingesincolumns,oversizedpileshaftsshallbedesignedforanexpectednominalmomentcapacity,Mne,atanylocationalongtheshaft,thatis,equalto1.25timesmomentdemandgeneratedbytheoverstrengthcolumnplastichingemomentandassociatedshearforceatthebaseofthecolumn.Thesafetyfactorof1.25maybereducedto1.0dependingonthesoilproperties.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-21 June 2017

Thedesignmomentsbelowgroundforextendedpileshaftmaybedeterminedusingthenonlinearstaticprocedure(pushoveranalysis)bypushingthemlaterallytothedisplacementdemandobtainedfromanelasticresponsespectrumanalysis.Thepointofmaximummomentshallbeidentifiedbasedonthemomentdiagram.Theexpectedplastichingezoneshallextend3Daboveandbelowthepointofmaximummoment.Theplastichingezoneshallbedesignatedasa“nosplice”zoneandthetransversesteelforshearandconfinementshallbeprovidedaccordingly.

AC. SuperstructureCapacityDesignforTransverseDirection(IntegralBentCap)forSDCsCandD

GuideSpecificationsArticle8.11

ForSDCsCandD,thelongitudinalflexuralbentcapbeamreinforcementshallbecontinuous.Splicingofcapbeamlongitudinalflexuralreinforcementshallbeaccomplishedusingmechanicalcouplersthatarecapableofdevelopingthetensilestrengthofthesplicedbar.Splicesshallbestaggeredatleast2feet.Lapsplicesshallnotbeused.

AD. SuperstructureDesignforNonIntegralBentCapsforSDCsB,C,andD

GuideSpecificationsArticle8.12

NonintegralbentcapsshallnotbeusedforcontinuousconcretebridgesinSDCB,C,andDexceptattheexpansionjointsbetweensuperstructuresegments.

AE. IntegralBentCapJointShearDesign

GuideSpecificationsArticle8.13.4.1.1

InadditiontotheT-jointslistedinArticle8.13.4.1.1,theexteriorcolumnjointsforboxgirdersuperstructureandothersuperstructuresifthecapbeamextendsthejointfarenoughtodevelopthelongitudinalcapreinforcementshallbeconsideredT-jointsforjointshearanalysisinthetransversedirection.

AF. CastinPlace and Precast Concrete Piles

GuideSpecificationsArticle8.16.2

Minimumlongitudinalreinforcementof0.75percentofAgshallbeprovidedforCIPpilesinSDCsB,C,andD.Longitudinalreinforcementshallbeprovidedforthefulllengthofpile.

15.4.3 SeismicDesignRequirementsforBridgeModificationsandWidening Projects

A. SeismicAnalysisandRetrofitPolicy

TheSeismicAnalysisandRetrofitPolicyforBridgeModificationsandWideningProjectsshallconformtoSections 4.3.1 ,4.3.2,4.3.3,and4.3.4.

ThespectralresponseparametersshallbedeterminedusingUSGS2014SeismicHazardMapsandSiteCoefficientsdefinedinSection4.2.3.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-22 WSDOT Bridge Design Manual M 23-50.17 June 2017

B. Design and Detailing Considerations

1. SupportLength

Thesupportlengthatexistingabutments,piers,inspanhinges,andpavementseatsshallbechecked.Ifthereisaneedforlongitudinalrestrainers,transverserestrainers,oradditionalsupportlengthontheexistingstructure,theyshallbeincludedinthewideningdesign.

2. ConnectionsBetweenExistingandNewElements

Connectionsbetweentheexistingelementsandnewelementsshallbedesignedformaximumoverstrengthforces.Whereyieldingisexpectedinthecrossbeamconnectionattheextremeeventlimitstate,thenewstructureshallbedesignedtocarryliveloadsindependentlyattheStrengthIlimitstate.Incaseswherelargedifferentialsettlementand/oraliquefactioninducedlossofbearingstrengthareexpected,theconnectionsmaybedesignedtodeflectorhingeinordertoisolatethetwopartsofthestructure.Elementssubjecttoinelasticbehaviorshallbedesignedanddetailedtosustaintheexpecteddeformations.

Longitudinaljointsthatisolatethedecksbetweentheexistingandnewstructuresarenotpermitted.

3. DifferentialSettlement

Thedesignershallevaluatethepotentialfordifferentialsettlementbetweentheexistingstructureandwideningstructure.Additionalgeotechnicalmeasuresmayberequiredtolimitdifferentialsettlementstotolerablelevelsforbothstaticandseismicconditions.Thebridgedesignershallevaluate,design,anddetailallelementsofnewandexistingportionsofthewidenedstructureforthedifferentialsettlementwarrantedbythegeotechnicalengineer.Angulardistortionsbetweenadjacentfoundationsshallnotexceed0.008(RAD)insimplespansand0.004(RAD)incontinuousspans.

Thehorizontaldisplacementofpileandshaftfoundationsshallbeestimatedusingproceduresthatconsidersoilstructureinteraction(seeGeotechnical Design ManualSection8.12.2.3).Horizontalmovementcriteriashallbeestablishedatthetopofthefoundationbasedonthetoleranceofthestructuretolateralmovementwithconsiderationofthecolumnlengthandstiffness.Toleranceofthesuperstructuretolateralmovementwilldependonbridgeseatwidths,bearingtype(s),structuretype,andloaddistributioneffects.

4. FoundationTypes

Thefoundationtypeofthenewstructureshouldmatchthatoftheexistingstructure.However,adifferenttypeoffoundationmaybeusedforthenewstructureduetogeotechnicalrecommendationsorthelimitedspaceavailablebetweenexistingandnewstructures.Forexample,ashaftfoundationmaybeusedinlieuofspreadfooting.

5. ExistingStruttedColumns

Thehorizontalstrutbetweenexistingcolumnsmayberemoved.Theexistingcolumnsshallthenbeanalyzedwiththenewunbracedlengthsandretrofittedifnecessary.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-23 June 2017

6. NonStructuralElementStiffness

Medianbarriersandotherpotentiallystiffeningelementsshallbeisolatedfromthecolumnstoallowcolumndeformation.

DeformationcapacitiesofexistingbridgemembersthatdonotmeetcurrentdetailingstandardsshallbedeterminedusingtheprovisionsofSection7.8oftheRetrofitting Manual for Highway Structures: Part 1 – Bridges,FHWAHRT06032.DeformationcapacitiesofexistingbridgemembersthatmeetcurrentdetailingstandardsshallbedeterminedusingthelatesteditionoftheAASHTOSEISMIC.

Inlieuofspecificdata,thereinforcementpropertiesprovidedinTable4.3.2-1 shallbeused.

7. Isolation Bearings

Isolationbearingsmaybeusedforbridgewideningprojectstoreducetheseismicdemandthroughmodificationofthedynamicpropertiesofthebridge.IsolationbearingsshallbedesignedinaccordancewithAASHTOGuide Specifications for Seismic IsolationandshallconformtoSection9.3.

15.4.4 SeismicRetrofittingofExistingBridgesSeismicretrofittingofexistingbridgesshallbeperformedinaccordancewiththeFHWApublicationFHWAHRT06032,Seismic Retrofitting Manual for Highway Structures: Part 1 – Bridgesasfollows:• Article1.5.3ThespectralresponseparametersshallbedeterminedusingUSGS2014SeismicHazardMapsandSiteCoefficientsdefinedinSection4.2.3.

• Article7.4.2SeismicLoadinginTwoorThreeOrthogonal Revisethefirstparagraphasfollows: Whencombiningtheresponseoftwoorthreeorthogonaldirectionsthedesignvalueofanyquantityofinterest(displacement,bendingmoment,shearoraxialforce)shallbeobtainedbythe100-30percentcombinationruleasdescribedinAASHTOGuide SpecificationsArticle4.4.

• DeleteEq.7.44andreplacewiththefollowing:Lp=themaximumof[(8800εydb)or(0.08L+4400εydb)] (7-44)

• DeleteEq.7.49andreplacewiththefollowing:

Thehorizontalstrutbetweenexistingcolumnsmayberemoved.Theexistingcolumnsshallthenbeanalyzedwiththenewunbracedlengthsandretrofittedifnecessary.

6. NonStructuralElementStiffnessMedianbarriersandotherpotentiallystiffeningelementsshallbeisolatedfromthecolumnstoallowcolumndeformation.DeformationcapacitiesofexistingbridgemembersthatdonotmeetcurrentdetailingstandardsshallbedeterminedusingtheprovisionsofSection7.8oftheRetrofitting Manual for Highway Structures: Part 1 – Bridges,FHWA-HRT-06-032. DeformationcapacitiesofexistingbridgemembersthatmeetcurrentdetailingstandardsshallbedeterminedusingthelatesteditionoftheAASHTO Guide Specifications for LRFD Seismic Bridge Design.Inlieuofspecificdata,thereinforcementpropertiesprovidedinTable4.3.2-1shallbeused.

7. Isolation BearingsIsolationbearingsmaybeusedforbridgewideningprojectstoreducetheseismicdemandthroughmodificationofthedynamicpropertiesofthebridge.IsolationbearingsshallbedesignedinaccordancewithAASHTOGuide Specifications for Seismic Isolation andshallconformtoSection4.2.2.

15.4.4 Seismic Retrofitting of Existing BridgesSeismicretrofittingofexistingbridgesshallbeperformedinaccordancewiththeFHWApublicationFHWA-HRT-06-032, Seismic Retrofitting Manual for Highway Structures: Part 1 –Bridges asfollows:

• Article7.4.2SeismicLoadinginTwoorThreeOrthogonalDirectionsRevisethefirstparagraphasfollows:Whencombiningtheresponseoftwoorthreeorthogonaldirectionsthedesignvalueofanyquantityofinterest(displacement,bendingmoment,shearoraxialforce)shallbeobtainedbythe100-30percentcombinationruleasdescribedinAASHTO Guide SpecificationsArticle 4.4.

• DeleteEq.7.49andreplacewiththefollowing:

• DeleteEq.7.51andreplacewiththefollowing:

yfi

mip VV

VVφφ

+

−−

= 25

yjfji

jhjip VV

VVφφ

+

−= 24

• DeleteEq.7.51andreplacewiththefollowing:

Thehorizontalstrutbetweenexistingcolumnsmayberemoved.Theexistingcolumnsshallthenbeanalyzedwiththenewunbracedlengthsandretrofittedifnecessary.

6. NonStructuralElementStiffnessMedianbarriersandotherpotentiallystiffeningelementsshallbeisolatedfromthecolumnstoallowcolumndeformation.DeformationcapacitiesofexistingbridgemembersthatdonotmeetcurrentdetailingstandardsshallbedeterminedusingtheprovisionsofSection7.8oftheRetrofitting Manual for Highway Structures: Part 1 – Bridges,FHWA-HRT-06-032. DeformationcapacitiesofexistingbridgemembersthatmeetcurrentdetailingstandardsshallbedeterminedusingthelatesteditionoftheAASHTO Guide Specifications for LRFD Seismic Bridge Design.Inlieuofspecificdata,thereinforcementpropertiesprovidedinTable4.3.2-1shallbeused.

7. Isolation BearingsIsolationbearingsmaybeusedforbridgewideningprojectstoreducetheseismicdemandthroughmodificationofthedynamicpropertiesofthebridge.IsolationbearingsshallbedesignedinaccordancewithAASHTOGuide Specifications for Seismic Isolation andshallconformtoSection4.2.2.

15.4.4 Seismic Retrofitting of Existing BridgesSeismicretrofittingofexistingbridgesshallbeperformedinaccordancewiththeFHWApublicationFHWA-HRT-06-032, Seismic Retrofitting Manual for Highway Structures: Part 1 –Bridges asfollows:

• Article7.4.2SeismicLoadinginTwoorThreeOrthogonalDirectionsRevisethefirstparagraphasfollows:Whencombiningtheresponseoftwoorthreeorthogonaldirectionsthedesignvalueofanyquantityofinterest(displacement,bendingmoment,shearoraxialforce)shallbeobtainedbythe100-30percentcombinationruleasdescribedinAASHTO Guide SpecificationsArticle 4.4.

• DeleteEq.7.49andreplacewiththefollowing:

• DeleteEq.7.51andreplacewiththefollowing:

yfi

mip VV

VVφφ

+

−−

= 25

yjfji

jhjip VV

VVφφ

+

−= 24

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-24 WSDOT Bridge Design Manual M 23-50.17 June 2017

A. SeismicAnalysisRequirements

Themulti-modespectralanalysisofSeismic Retrofitting ManualSection5.4.2.2(asaminimum)shallbeusedtodeterminetheseismicdisplacementandforcedemandstoidentifyseismicallydeficientelementsoftheexistingstructure.Prescriptiverequirements,suchassupportlength,shallbeconsideredmandatoryandshallbeincludedintheanalysis.SeismiccapacitiesshallbedeterminedinaccordancewiththerequirementsoftheSeismic Retrofitting Manual.DisplacementcapacitiesshallbedeterminedbytheMethodD2–StructureCapacity/Demand(Pushover)MethodofSeismic Retrofitting ManualSection5.6.Theseismicanalysisneedonlybeperformedfortheupperlevel(1,000yearreturnperiod)groundmotionswithalifesafetyseismicperformancelevel.

B. SeismicRetrofitDesign

Table111,Chapters8,9,10,11,andAppendicesDthruFoftheSeismic Retrofitting Manualshallbeusedinselectinganddesigningtheseismicretrofitmeasures.

C. Earthquake Restrainers

LongitudinalrestrainersshallbehighstrengthsteelrodsconformtoASTMF1554Grade105,includingSupplementRequirementsS2,S3andS5.Nuts,andcouplersifrequired,shallconformtoASTMA563GradeDH.WashersshallconformtoAASHTOM293.Highstrengthsteelrodsandassociatedcouplers,nutsandwashersshallbegalvanizedafterfabricationinaccordancewithAASHTOM232.Thelengthoflongitudinalrestrainersshallbelessthan24feet.

D. Isolation Bearings

Isolationbearingsmaybeusedforseismicretrofitprojectstoreducethedemandsthroughmodificationofthedynamicpropertiesofthebridgeasaviablealternativetostrengtheningweakelementsofnon-ductilebridgesubstructuremembersofexistingbridge.IsolationbearingsshallbedesignedinaccordancewiththerequirementoftheAASHTO Guide Specifications for Seismic IsolationandshallconformtoSection9.3.

WSDOT Bridge Design Manual M 23-50.17 Page 15-25 June 2017

15.5 Concrete Structures15.5.1 General

Designofconcretestructuresforroadwayelementssuchasbridges,lids,retainingwalls,noisewalls,three-sidedstructures,trafficbarrier,pedestrianbarrier,signstructures,bridgeapproachslabs,etc.shallbebasedontherequirementscitedhereinandinthecurrentAASHTOLRFD,AASHTOSEISMIC,WSDOTSpecialProvisionsandtheWSDOTStandard Specifications.

15.5.2 MaterialsA. Concrete

1. Cast-in-place(CIP)Concrete

Cast-in-place(CIP)concreteshallmeettherequirementsofTable5.1.1-1:

Component or Application

Minimum Numerical Class andMinimumCompressive

Strength at 28 days (psi)Letter Suffix

CompressiveStrength for use in Design = f’c (psi)

Commercial Concrete; Non-structural Concrete; Sidewalks; Curbs; Gutters

3000 - Numerical Class

General Structural Concrete including Spread Footings; Walls; Columns; Crossbeams; Box Girders; Slabs; Barriers; etc .

4000 - Numerical Class

Bridge Approach Slabs 4000 A Numerical ClassBridge Decks 4000 D Numerical ClassPiles and Shafts 4000/5000 P Numerical ClassUnderwater Seals 4000 W 0 .6 times Numerical

Class

Table 5.1.1-1

2. Modulus of Elasticity

Forcalculationofthemodulusofelasticity,theunitweightofplainconcrete(wc)shallbetakenas0.155kcfforprestressedconcretegirdersand0.150kcffornormal-weightconcreteunlessprojectspecificdataisavailable.Thecorrectionfactor(K1)shallbetakenas1.0unlessprojectspecificdataisavailable.

3. ShrinkageandCreep

Shrinkageandcreepshallbecalculatedwithrelativehumidity(H)takenas75percentunlessprojectspecificdataisavailable.Thematurityofconcrete(t)shallbetakenas2000days.Indeterminingtheageofconcreteattimeofloadapplication(ti)onedayofacceleratedcuringbysteamorradiantheatshallbetakenasequaltosevendaysofnormalcuring.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-26 WSDOT Bridge Design Manual M 23-50.17 June 2017

4. Grout

Groutpadswiththicknessexceeding4″shallbereinforcedwithsteelreinforcement.Non-shrinkgroutconformingtoStandard Specifications Section9-20.3(2)shallbeusedinkeywaysbetweenprestressedconcretegirders.

5. Mass Concrete

Concreteplacementswithaleastdimensionofgreaterthan6-feetshallbeconsideredmassconcrete,exceptthatshaftsneednotbeconsideredmassconcrete.

Thetemperatureofmassconcreteduringplacementandcuringshallnotexceed160°F.Thetemperaturedifferencebetweenthegeometriccenterofthemassconcreteandthecenterofnearbyexteriorsurfacesduringplacementandcuringshallnotexceed35°F.

AthermalcontrolplanshallbesubmittedbytheDesign-Builderforreviewandcommentformassconcreteplacements.Thethermalcontrolplanmayincludesuchthingsas:athermalanalysis;temperaturemonitorsandequipment;insulation;concretecoolingbeforeplacement;concretecoolingafterplacement,suchasbymeansofinternalcoolingpipes;useofsmaller,lessfrequentplacements;orothermethodsproposedbytheDesign-BuilderandacceptedbytheWSDOTEngineer.

Concretemixdesignsmaybeoptimized(suchasbyusinglow-heatcement,flyashorslagcement,low-water/cementratio,lowcementitiousmaterialscontent,largeraggregate,etc.)aslongastheconcretemixmeetsotherprojectrequirements.

6. Shotcrete

Shotcreteshallnotbeusedforpermanentstructures,includingexteriorwallfasciasurfaces,unlessallowedbyRFPCriteria.Shotcretemaybeusedfortemporaryapplications.

7. Lightweight Aggregate Concrete

Lightweightaggregateconcreteshallnotbeused,unlessallowedbyRFPCriteria.

B. Reinforcing Steel

1. Grades

SteelreinforcingbarsshallconformtoStandard Specifications Section9-07.2andSection15.4.2.T.UseofASTMA706Grade80steelreinforcingbarsshallconformtoSection5.1.2

2. CompressiveDevelopmentLength

Theminimumcompressivedevelopmentlengthshallbe1′-0″.

3. Splices

Minimumlapsplicelengths,forbothtensionandcompression,shallbe2′-0″.Whentwobarsofdifferentdiametersarelapspliced,thelengthofthelapspliceshallbethelargerofthelapspliceforthesmallerbarorthedevelopmentlengthforthelargerbar.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-27 June 2017

4. WeldedWireReinforcementinPrestressedConcreteGirders,Walls,Barriers and Deck Panels

Weldedwirereinforcementmaybeusedtoreplacesteelreinforcingbarsinprestressedconcretegirders,walls,barriers,anddeckpanels.

Weldedwirereinforcementshallbedeformed.

Longitudinalwiresandweldsshallbeexcludedfromregionswithhighsheardemands,includinggirderwebs.Longitudinalwiresforanchorageofweldedwirereinforcementshallhaveanareaof40percentormoreoftheareaofthewirebeinganchoredasdescribedinASTMA497butshallnotbelessthanD4.

5. Reinforcing Bar Dowels and Resin Bonded Anchors

AllowabletensileloadsandminimumrequiredembedmentforreinforcingbardowelsshallbeinaccordancewithSection5.5.4.A.4.Ifitisnotpossibletoobtainthisembedment,theallowableloadonthedowelshallbereducedbytheratiooftheactualembedmentdividedbytherequiredembedment.

Beforecoredrilling,existingreinforcementshallbelocatedbynon-destructivemethodsorbychippingifexistingreinforcementcannotbedamaged.Coredrilledholesshallberoughened.

C. Prestressing Steel

PrestressingsteelshallbeAASHTOM203Grade270lowrelaxationforstrandsandAASHTOM275TypeIIforbars.

Therefinedestimateforcomputingtime-dependentlossesshallbeused.

Partialprestressingisnotpermitted.

15.5.3 Design ConsiderationsA. ServiceandFatigueLimitStates

TheexposurefactorforAASHTOLRFDSection 5.6.7“ControlofCrackingbyDistributionofReinforcement”shallbebaseduponaClass2exposurecondition.

ConcretestressesinprestressedmembersshallbelimitedtotheallowablestressesshowninTable5.2.1-1.

B. StrengthLimitState

ThesheardesignofprestressedmembersshallbebasedonthegeneralprocedureofAASHTOLRFDSection5.7.3.4.2.Thesheardesignofnon-prestressedmembersshallbebasedoneitherthegeneralprocedure,orthesimplifiedprocedureofAASHTOLRFDSection5.7.3.4.1.AASHTOLRFDSection5.8.3.4.3“SimplifiedProcedureforPrestressedandNon-prestressedSections”shallnotbeused.

Themaximumspacingofshearandtorsionreinforcementshallbe18inches.

C. Post-Tensioning

A2″minimumclearanceshallbeprovidedbetweenpost-tensioningductswithouterdiametergreaterthan3″.A1″minimumclearanceshallbeprovidedbetweenpost-tensioningductswithouterdiameterlessthanorequalto3″.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-28 WSDOT Bridge Design Manual M 23-50.17 June 2017

Confinementreinforcementshallbeprovidedtoconfinecurvedpost-tensioningtendonsinaccordancewithSection5.8.1.F.

Thesizeoftheanchoragezoneintheplaneofanchorplatesshallbelargeenoughtoprovideaminimumof1″clearancefromtheplatestoanyfreeedge.

Structureshorteningeffectsduetopost-tensioningshallbeincludedinthedesign.

Thecambershallbeshownontheplansandshallincludetheeffectofbothdeadloadandfinalprestressing.

Allpost-tensioninganchoragesinwebsofboxgirderormulti-stemsuperstructureshallbeverticallyaligned.Tendonsadjacenttopost-tensioninganchoragesshallmeettheminimumtangentlengthandminimumtendonradiirequirementsofSection5.8.1.D.

15.5.4 SuperstructuresA. ReinforcedConcreteSuperstructures

TheuseofCIPreinforcedconcretebridgesuperstructureswithoutpost-tensioningshallberestrictedtowideningexistingreinforcedconcretebridgesuperstructures.Longitudinalpost-tensioningshallbeprovidedforallnewCIPreinforcedconcretebridgesuperstructures.

B. BoxGirderSuperstructures

1. IntermediateDiaphragmsforCurvedConcreteBoxGirderBridges

Intermediatediaphragmsshallbeprovidedforcurvedconcreteboxgirderbridgeswithcenterlineradius,R,lessthan800feet.Minimumdiaphragmspacingshallbeasfollows:

For600feet≤R<800feet-atmidspan.

For400feet≤R<600feet-at⅓pointsofspan.

ForR<400feet-at¼pointsofspan.

2. TemperatureEffects

Thermalstressesshallbeinvestigatedindesignusingthefollowingcriteria:

a. Ameantemperature50°Fwithrise45°Fandfall45°Fforlongitudinalanalysisusingone-halfofthemodulusofelasticity(MaximumSeasonalVariation.)

b. Thesuperstructureboxgirdershallbedesignedtransverselyforatemperaturedifferentialbetweeninsideandoutsidesurfacesof±15°Fwithnoreductioninmodulusofelasticity(MaximumDailyVariation).

c. Thesuperstructureboxgirdershallbedesignedlongitudinallyforatopslabtemperatureincreaseof20°Fwithnoreductioninmodulusofelasticity.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-29 June 2017

3. Drains

Drainsshallbeplacedinthebottomslabatthelowpointsofeachcell.DrainholedetailsshallbeinaccordancewithFigure5.3.8-1.

C. PrestressedConcreteGirderSuperstructures

1. WSDOTStandardGirderTypesandConstructionSequences

PrestressedconcretegirdersshallbeaWSDOTstandardgirdertypeinaccordancewithAppendices5.6-A1-1and5.6-A1-9.

PrestressedconcretegirdersuperstructuresshallfollowaconstructionsequenceinaccordancewithAppendix5.6-A1-2.

2. SuperstructureContinuity

Prestressedconcretegirdersuperstructuresshallbedesignedfortheenvelopeofsimplespanandcontinuousspanloadingsforallpermanentandtransientloads.Loadsappliedbeforeestablishingcontinuity(typicallybeforeplacementofcontinuitydiaphragms)needonlybeappliedasasimplespanloading.Continuityreinforcementshallbeprovidedatsupportsforloadsappliedafterestablishingcontinuity.

3. ContinuousStructureConfiguration

Girdertypesandspacingshallbeidenticalinadjacentspansoverintermediatepiers.Girdertypesandspacingmaybechangedatexpansionjoints.

4. Girder Ends

PrestressedconcretegirdersshallhaveastandardendtypeinaccordancewithSection5.6.2.E.PrestressingstrandsatgirderendsshallbeextendedintodiaphragmsandmadecontinuousinaccordancewithSection5.1.3.D.

Girderendskewanglesfortrapezoidaltub,slab,wideflangedeck,wideflangethindeckanddeckbulb-teeprestressedconcretegirdersshallbelimitedto30degrees.Girderendskewanglesforallotherprestressedconcretegirdersshallbelimitedto45degrees.

Thesplittingresistanceofpre-tensionedanchoragezonesshallbeasdescribedinAASHTOLRFDSection5.9.4.4.1.Theendverticalreinforcementshallnotbelargerthan#5barsandspacingshallnotbelessthan2½″.Theremainingsplittingreinforcementnotfittingwithintheh/4zonemaybeplacedbeyondtheh/4zoneataspacingof2½″.

5. Diaphragms

Diaphragmsforprestressedconcretegirdersuperstructuresshallbecast-in-placeconcrete.

Diaphragmsshallbeorientedparalleltogirdersupportskew.Oncurvedbridges,diaphragmsshallbeplacedonradiallines.IntermediateandenddiaphragmsshallbeinaccordancewithAppendices5.6-A1-1and5.6-A1-9.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-30 WSDOT Bridge Design Manual M 23-50.17 June 2017

Intermediatediaphragmsshallbeprovidedforallprestressedconcretegirderbridges(exceptslabs)atthefollowinglocations:• 1/5pointsofspanforspanlength>160′-0″.• ¼pointsofspanfor120′-0″<spanlength≤160′-0″.• ⅓pointsofspanfor80′-0″<spanlength≤120′-0″.• Midpointofspanfor40′-0″<spanlength≤80′-0″.• Nodiaphragmrequirementforspanlength≤40′-0″.

Intermediatediaphragmsshallbefulldepthforstructurescrossingoverroadswithaveragedailytraffic(ADT)greaterthan50,000,inaccordancewithSection5.6.4.C.4.

6. Barrier and Sidewalk Load Distribution

Thedeadloadofonetrafficbarrierorsidewalkshallnotbedistributedovermorethanthreegirderwebs.

7. CompositeAction

CompositesectionpropertiesincludingeffectiveflangewidthofthecompositedeckshallbeinaccordancewithSection5.6.2.B.

8. Dead Loads

Thebridgedeckdeadloadtobeappliedtoagirdershallbebasedonthefullbridgedeckthickness.Thepad/haunchweightduetothemaximumpad/haunchheightshallbeaddedtothatloadoverthefulllengthofthegirder.

Whenthedepthofthepad/haunchbetweenthetopoftheprestressedconcretegirderandtheundersideofthedeckatthecenterlineofthegirderexceeds6″,reinforcementshallbeprovidedinthepadinaccordancewithFigure5.6.4-2.

9. GirderStirrups

Girderstirrupsshallbefieldbentoverthetopmatofreinforcementinthebridgedeckunlesspre-benthooksareallowedbytheWSDOTstandardgirdertypeorthepre-benthooksarewithinthecoreoftheCIPdeck(theinsideedgeofthehookterminatesabovethebottommatofthedeckbars).

10.TransformedSectionProperties

Transformedsectionpropertiesshallnotbeusedfordesignofprestressedconcretegirders.Grosssectionpropertiesshallbeused.

11. Deck Shrinkage

TheelasticgaininprestressingstrandsduetoslabshrinkageshallbecomputedinaccordancewithAASHTOLRFDSection5.9.3.4.3.d.DeckshrinkageshallbeconsideredasanexternalforceappliedtothecompositesectionfortheServiceI,ServiceIII,andFatigueIlimitstates.Thedeckshrinkagestrainshallbecomputedas50-percentofthestraindeterminedbyAASHTOLRFDEquation5.4.2.3.3-1.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-31 June 2017

12. DeckGirderSuperstructures

Theterm“deckgirder”referstoaprestressedconcretegirderwhosetopflangeorsurfaceisthedrivingsurface,withorwithoutanoverlay,includingslabanddeckbulb-teegirders.

DeckgirderswithoutacompositeCIPdeckslabshallhaveaminimumconcretecoverof2″overthetopmat.Thetopmatofreinforcementinthetopflangeshallbeepoxy-coated.

13. Slab Girders

Slabgirderspansbetweencenterlinebearingsshallbelimitedtotheprestressedconcretegirderheightmultipliedby30.Aminimum5″compositeCIPbridgedeckshallbeplacedoverslabgirdersdirectlysupportingtrafficloadings.TheCIPconcretebridgedeckshallataminimumbeClass4000Dconcretewithonelayerof#5epoxycoatedreinforcementinboththetransverseandlongitudinaldirections.Thelongitudinalreinforcementshallbespacedat12inchesmaximumandthetransversereinforcementshallbespacedat6inchesmaximum.

14. Deck Bulb-Tee Girders

Deckbulb-teegirdersshallbelimitedtopedestrianbridges,temporarybridgesandtowideningexistingsimilarstructures.

Deckbulb-teegirdersshallhaveanHMAorconcreteoverlay.AwaterproofingmembraneshallbeprovidedwithanHMAoverlay.

15.WideFlangeDeckGirders

Wideflangedeckgirdersshallbelimitedtopedestrianbridges,temporarybridgesandtowideningexistingsimilarstructures.

WideflangedeckgirdersshallhaveanHMAorconcreteoverlay.AwaterproofingmembraneshallbeprovidedwithanHMAoverlay.

16. Wide Flange Thin Deck Girders

Wideflangethindeckgirdersshallhaveaminimum5″thickcompositeCIPbridgedeck.TheCIPconcretebridgedeckshallataminimumbeClass4000Dconcretewithonelayerof#5epoxycoatedreinforcementinboththetransverseandlongitudinaldirections.Thelongitudinalreinforcementshallbespacedat12inchesmaximumandthetransversereinforcementshallbespacedat6inchesmaximum.

17. Tub Girders

Drainsshallbeplacedinthecenterlineofthebottomflangeatthelowpointsofeachcell.DrainholedetailsshallbeinaccordancewithAppendices5.6-A1-1 and5.6-A1-9.

18.SplicedPrestressedConcreteGirders

ClosurejointsshallbeCIPconcretewithaminimumlengthof2′-0″.Thesequenceofplacingconcretefortheclosurejointsanddeckshallbespecifiedintheplans.

ConcretecovertowebstirrupsattheCIPclosureatpierdiaphragmsshallnotbelessthan2½″.IfintermediatediaphragmlocationscoincidewithCIPclosuresbetweenprecastsegments,thentheconcretecoverattheCIPclosuresshallnotbelessthan2½″.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-32 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.5.5 Concrete Bridge DecksConcretebridgedecksshallbedesignedusingtheTraditionalDesignofAASHTOLRFDSection9.7.3.

Forwebspacinginexcessof12feetorcantileveroverhanginexcessof6feet,transversepost-tensioningshallbeprovidedinthedeck.

Forstructuresthatincludesidewalks,theconstructionjointbetweenthesidewalkandthedeckshallbeasmoothsurface.

Longitudinalexpansionorisolationjointsinbridgedecksarenotpermitted.

A. BridgeDeckRequirements

Theminimumbridgedeckthicknessshallbe5″forslabanddeckbulb-teeprestressedconcretegirdersuperstructures,7.5″forotherconcretesuperstructures,8.0″forsteelgirdersuperstructures,and8.5″(including3.5″stay-in-placedeckpaneland5″CIPconcretedeck)forsuperstructureswithSIPdeckpanels.Thisminimumthicknessmaybereducedby0.5″forbridgeswithDeckProtectionSystems2,3and5.

Thedistancefromthetopofthebridgedecktothetopofthegirderatcenterlinebearingatcenterlineofgirderisrepresentedbythe“A”Dimension.ItshallbecalculatedandshownintheplansinaccordancewithAppendix5-B1.

Aroughenedsurfaceorashearkeyshallbeprovidedatdeckconstructionjoints.

B. BridgeDeckReinforcement

Toptransversereinforcementshallbehookedatthedeckslabedgeunlessatrafficbarrierisnotused.

LongitudinaldeckslabreinforcementshallbeprovidedinaccordancewithSection5.7.2.B.

Theminimumclearancebetweentopandbottomreinforcingmatsshallbe1″.

TheminimumcoveroverthetoplayerofreinforcementshallbeinaccordancewiththeappropriateDeckProtectionSystem.Theminimumcoverbelowthebottomlayerreinforcementshallbe1.0″.

Theminimumamountofreinforcementineachdirectionshallbe0.18in2/feetforthetopmatand0.27in2/feetforthebottommat.

Themaximumbarspacinginbothtransverseandlongitudinaldirectionsforthetopmat,andtransversedirectionofthebottommatshallnotexceed12″.Themaximumbarspacingforthebottomlongitudinaldirectionwithintheeffectivelength,asspecifiedinAASHTOLRFDSection9.7.2.3,shallnotexceedthedeckthickness.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-33 June 2017

C. Stay-in-Place(SIP)DeckPanels

SIPdeckpanelsshallbeprecastconcreteandtheirdetailsshallbeinaccordancewithBridgeStandardDrawing5.6-A10-1.SIPsteeldeckformsarenotpermitted.

SIPdeckpanelsshallnotbeusedinlongitudinalnegativemomentregionsofcontinuoussuperstructures,unlessthedeckislongitudinallypost-tensioned.

Forabridgewideningorphasedconstruction,SIPdeckpanelsshallnotbeusedinthebayadjacenttotheexistingstructure.

SIPdeckpanelsshallnotbeusedonprestressedconcretegirderswithflangeslessthan12″wide.

SIPdeckpanelsshallnotbeusedonsteelgirderbridgesuperstructures.

D. Bridge Deck Protection

Allnewbridgedecks,precastorcast-in-placeslabs,anddeckgirderstructuresshallutilizeadeckprotectionsysteminaccordancewiththissectionandSection5.7.4.A.WideningofexistingbridgedecksandslabbridgesshallbeinaccordancewithSection5.7.4.B.

E. Bridge Deck HMA Paving

Asphaltresurfacingincludingbituminoussurfacetreatment(BST)onbridgedecksandslabbridgesshallbeinaccordancewiththeBridgedeckConditionReport(BCR)providedforeachbridge.ConstructionshallbeinaccordancewiththebridgepavingspecificationsincludedintheRFP.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-34 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.6 Steel Structures15.6.1 Design Considerations

A. Codes,Specification,andStandards

Steelhighwaybridgesshallbedesignedtothefollowingcodesandspecifications:• AASHTOLRFD,latestedition• AASHTOSEISMIC

Thefollowingcodesandspecificationsshallgovernsteelbridgeconstruction:• WSDOTStandard Specifications,latestedition• AASHTO/AWSD1.5M/D1.5:Bridge Welding Code,latestedition

B. WSDOT Steel Bridge Practice

Unshoredcompositeconstructionisusedforplategirderandboxgirderbridges.Shearconnectorsshallbeplacedthroughoutpositiveandnegativemomentregions,forfullcompositebehavior.Aminimumofonepercentlongitudinaldecksteel,inaccordancewithAASHTOLRFDArticle6.10.1.7,shallbeplacedinnegativemomentregions.Forservicelevelstiffnessanalysis,suchascalculatingliveloadmomentenvelopes,thebridgedeckshallbeconsideredcompositeanduncrackedfortheentirebridgelength.Fornegativemomentatstrengthlimitstates,thebridgedeckshallbeignoredwhilereinforcingsteelisincludedforstressandsectionpropertycalculations.

Stiffenersusedtoconnectcrossframesshallbeweldedtotopandbottomflanges.Jackingstiffenersshallbeusedadjacenttobearingstiffeners,ongirderordiaphragmwebs,inordertoaccommodatefuturebearingreplacement.Coordinatejackplacementinsubstructureandgirderdetails.

Steelframingshallconsistofmaingirdersandcrossframes.Bottomlateralsystemsshallonlybeusedwhenrequiredfortorsionalstabilityincurvedbridgesandwhentemporarybracingisnotpractical.Whenlateralsystemsareused,theyshallbedetailedcarefullyforadequatefatiguelife.

StandardcorrosionprotectionforsteelbridgesistheStandard Specifications four-coatpaintsystemwestoftheCascadesandwherepaintisrequiredforappearance.UnpaintedweatheringsteelshallonlybeusedeastoftheCascades.

WSDOTdoesnotallowtheuseofsteelstay-in-placedeckforms.

C. PreliminaryGirderProportioning

LiveloaddeflectionsshallbelimitedinaccordancewiththeoptionalcriteriaofAASHTOLRFDArticles2.5.2.6.2and3.6.1.3.2.

Thesuperstructuredepthshallbeshownasthedistancefromthetopofthebridgedecktothebottomoftheweb.Onstraightbridges,interiorandexteriorgirdersshallbedesignedanddetailedasidentical.Spacingshouldbesuchthatthedistributionofwheelloadsontheexteriorgirderisclosetothatoftheinteriorgirder.Thenumberofgirderlinesshouldbeminimized,withamaximumspacingof14-16feet.Steelbridgesshallberedundant,withthreeormoregirderslinesforIgirdersandtwoormoreboxesforboxgirders,exceptasotherwiseallowedbytheRFPCriteria.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-35 June 2017

D. Bridge Steels

UseAASHTOM270/ASTMA709grades50or50Wforplategirdersandboxgirders.UseofAASHTOM270/ASTMA709GradeHPS70Wispermissiblebutavailabilityislimitedandshallbeconfirmedpriortoactualuseindesign.AASHTOM270gradesHPS50WandHPS100WmayonlybeusedifallowedbytheRFPCriteria.Forwideflangebeams,useAASHTOM270/ASTMA709Grade50S or ASTMA992.Forancillarymemberssuchasexpansionjointheaders,utilitybrackets,bearingcomponentsorsmallquantitiesoftees,channels,andangles,ASTMM270/ASTMA709bridgesteelsareacceptablebutarenotrequired.Inthesecases,equivalentASTMdesignatedsteelsmaybeused.

Allmainload-carryingmembersorcomponentssubjecttotensilestressshallbeidentifiedintheplansandshallmeettheminimumCharpyV-notch(CVN)fracturetoughnessvaluesasspecifiedinAASHTOLRFDTable6.6.2-2,temperaturezone2.Fracturecriticalmembersorcomponentsshallalsobedesignatedintheplans.

StructuraltubesandpipesarenotconsideredprequalifiedundertheBridge Welding Code.TheyarecoveredundertheStructuralWeldingCodeAWSD1.1.StructuraltubingASTMA500shallnotbeusedfordynamicloadingapplications.ASTMA1085isanewercoldformedandweldedHSSsectionspecificationthatisaGr50steel.SupplementsforheattreatingandCVNsareincludedandmayalsobespecified.CVNtestsaretypicallyperformedintheflatsoftheHSSsquareorrectangulartubesections.CVNvaluesinthebendradiusofthetubesarelowerthanvaluesobtainedintheflats.Heattreatingofthesectionscanimprovethevalues,butnodataiscurrentlyavailable.ASTMA1085shallalsonotbespecifiedfordynamicloadingapplications.AvailabilityandminimumtonnageordersshallbeinvestigatedpriortospecifyingASTMA1085.

E. Plate Sizes

Platethicknessesoflessthan5/16inchesshallnotbeusedforbridgeapplications.

F. Fasteners

Allboltedconnectionsshallbefrictiontype(slip-critical).AssumeClassBfayingsurfaceswhereinorganiczincprimerisused.

General Guidelines for Steel Bolts

A. ASTMF3125GRA325&GRF1852

Highstrengthsteel,headedboltsforuseinstructuraljoints.Theseboltsmaybehot-dipgalvanizedbutshallnotbeusedinstructuresthatarepainted.Donotspecifyforanchorbolts.

B. A449

Highstrengthsteelboltsandstudsforgeneralapplicationsincludinganchorbolts.RecommendedforusewherestrengthsequivalenttoASTMF3125GR A325bolts(upto1”diameter)aredesiredbutcustomgeometryorlengthsarerequired.Theseboltsmaybehot-dipgalvanized.DonotusetheseasanchorboltsforseismicapplicationsduetolowCVNimpacttoughness.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-36 WSDOT Bridge Design Manual M 23-50.17 June 2017

C. F1554-Grade105

Higherstrengthanchorboltstobeusedforlargersizes(1½″to4″).Whenusedinseismicapplications,specifysupplementalCVNrequirementS5.Lowergradesmayalsobesuitableforsignstructurefoundations.Thisspecificationshallbeusedforseismicrestrainerrods,andmaybegalvanized.TheequivalentAASHTOM314shallnotbespecifiedasitdoesnotincludetheCVNsupplementalrequirements.

D. ASTMF3125GR A490&GRF2280

Highstrengthalloysteel,headedboltsforuseinstructuraljoints.Theseboltsshallnotbegalvanized,becauseofthehighsusceptibilitytohydrogenembrittlement.Inlieuofgalvanizing,theapplicationofanapprovedzincrichpaintmaybespecified.Donotspecifyforanchorbolts.

E. A354-GradeBD

Highstrengthalloysteelboltsandstuds.ThesearesuitableforanchorboltswherestrengthsequaltoA490boltsaredesired.Theseboltsshallnotbegalvanized.Ifusedinseismicapplications,specifyminimumCVNtoughnessof25feet-lbat40°F.

15.6.2 Girder BridgesA. Tub or Box Girders

Steelboxgirdersshallbetrapezoidaltubsections.Tubgirderswillbereferredtohereinasboxgirders,asinAASHTOLRFDArticle6.11.

Atoplateralsystemshallbeplacedinsidethegirderandshallbetreatedasanequivalentplatefordesign,closingtheopensectionandprovidingtorsionalstiffnessuntilthebridgedeckisfullycured.StabilityoftheshapeshallbeensuredforallstagesofconstructioninaccordancewithAASHTOLRFDArticle6.11.3.Boxgirderbridgeswithamultipleboxgirdercrosssectionshallhaveasinglebearingperbox.Forbridgesofasingleboxgirdercrosssection,twobearingsperboxshallbeused.Platediaphragmswithaccessholesshallbeusedinplaceofpiercrossframes.

Withtheexceptionofeffectsfrominclinedwebs,topflangesandwebsshallbedesignedasiftheywerepartofindividualI-girders.

Inordertomaximizewebspacingwhileminimizingbottomflangewidth,placewebsoutofplumbonaslopeof1in4.Whenrequiredtostiffenbottomflangesincompressionteesectionsshallbeusedforlongitudinalstiffeners.Channelbracingmaybeusedatcrossframelocationsfortransversestiffeners.Bottomflangestiffenersshallbeterminatedatfieldsplices.Otherwise,carefullygroundweldterminationsarerequiredintensionregionswithhighstressrange.Stiffenerplatesshallbeweldedacrossthebottomflangeatcrossframelocations,andshallnotbecombinedwithwebverticalstiffeners.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-37 June 2017

B. FractureCriticalSuperstructures

Non-redundant,fracturecriticalsingletubsuperstructures,andtwinI-girdersystems,mayonlybeconsideredifallowedbyRFPCriteria.UBITaccessorsomeformofpermanentfalsedeckingorotherinspectionaccessisrequiredforfracturecriticalinspections.ThemaximumroadwaywidthforeitherasingleboxortwinI-girdersuperstructureis27feet.Whereroadwaywidthexceeds27feet,additionalwebs/girdersshallbeused.Mainlinestructuresexceeding38feetinwidthshallusefourwebs/girdersminimum.

Increasedverticalclearancefrommainlinetrafficshallbeprovidedforeitherofthesebridgetypes.Theminimumis20feet.ThewebdepthsmaybereducedbelowAASHTOLRFDTable2.5.2.6.3-1minimumsprovidedliveloaddeflectioncriteriaaremet.However,webdepthlessthan5′-0″isnotpermitted.Thelimitstateloadmodifierrelatingtoredundancy,ηr=1.05,asspecifiedinAASHTOLRFDSection1.3.4,shallbeusedinthedesignofnon-redundantsteelstructures.Forloadratingnon-redundantbridges,asystemfactorof0.85isrequiredintheAASHTOManual for Bridge Evaluation(MBE)ontheaxialandflexuralcapacityofthegirders.ThegirderdesignshallsatisfyboththeAASHTOLRFDcodeandtheMBE.

TheAASHTOLRFDapproximateliveloaddistributionfactorsarenotapplicabletothesegirdertypes.Thelevelruleorthepreferredrefinedanalysisshallbeused.Wherehighlycurved,onlyarefinedanalysisshallbeused.

15.6.3 Design of I-GirdersA. LimitStatesforAASHTOLRFD

ThefatigueliveloadspecifiedinAASHTOLRFDArticle3.6.1.4shallbeusedforcheckinggirderdetailsinaccordancewitharticle6.6.Itisgenerallypossibletomeettheconstantamplitudefatiguelimit(CAFL)requirementfordetailswithgoodfatigueperformance.LimitingthecalculatedfatiguerangetotheCAFLensuresinfinitefatiguelife.WebsshallbecheckedforfatigueloadinginaccordancewithAASHTOLRFDArticle6.10.5.3,usingthecalculatedfatiguestressrangeforflexureorshear.Flangesandwebsshallmeetstrengthlimitstaterequirementsforbothconstructionandfinalphases.

Piercrossframesshallbedesignedforseismicloading,extremeeventloadcombination.BoltsshallbetreatedasbearingtypeconnectionswithAASHTOLRFDArticle6.5.4.2resistancefactors.Theresistancefactorforallothermembersis1.0atextremelimitstate.

B. CompositeSection

LiveloadplusimpactshallbeappliedtothetransformedcompositesectionusingEs/Ec,commonlydenotedn.Long-termloading(deadloadofbarriers,signs,luminaries,overlays,etc.)shallbeappliedtothetransformedcompositesectionusing3n.Positivemomentsareappliedtothesecompositesectionsaccordingly;bothforserviceandstrengthlimitstates.Thebridgedeckmaybeconsideredeffectiveinnegativemomentregionsprovidedtensilestressesinthedeckarebelowthemodulusofrupture.ThisisgenerallypossibleforServiceIloadcombinationandfatigueanalysis.Forstrengthlimitstateloadings,thecompositesectionincludeslongitudinalreinforcingwhilethebridgedeckisignored.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-38 WSDOT Bridge Design Manual M 23-50.17 June 2017

C. Flanges

Themaximumflangethicknessis3-inches.Allplatesforflangematerialshallbepurchasedsuchthattheratioofreductionofthicknessfromaslabtoplateshallbeatleast3.0:1.

Asanalternative,platesforflangematerialgreaterthan2″thicknotmeetingthe3.0:1ratioofreductionmaybesuppliedbasedonacceptableultrasonictesting(UT)inspectioninaccordancewithASTMA578.UTscanningandacceptanceshallbeasfollows:• TheentireplateshallbescannedinaccordancewithASTMA578andshallmeetAcceptanceStandardC,and

• Platematerialwithin12-inchesofflangecompletejointpenetrationspliceweldsshallbescannedinaccordancewithASTMA578SupplementaryS1andshallmeetAcceptanceStandardC

D. Webs

Ifdifferentwebthicknessisneeded,thetransitionshallbeataweldedsplice.Horizontalwebsplicesshallnotbeusedunlesswebheightexceeds12′-6″.Allweldedwebsplicesonexteriorfacesofexteriorgirdersandintensionzoneselsewhereshallbegroundsmooth.Websplicesofinteriorgirdersneednotbegroundincompressionzones.

E. TransverseStiffeners

Transversestiffenersshallbeusedinpairsatcrossframelocationsoninteriorgirdersandontheinsideofwebsofexteriorgirders.Theyshallbeweldedtothetopflange,bottomflangeandwebattheselocations.ThisdetailisconsideredfatiguecategoryC’forlongitudinalflangestress.Stiffenersusedbetweencrossframesshallbelocatedononesideoftheweb,weldedtothecompressionflange,andcutshortofthetensionflange.Stiffenerslocatedbetweencrossframesinregionsofstressreversalshallbeweldedtoonesideofthewebandcutshortofbothflanges.Alternatively,theymaybeweldedtobothflangesiffatigueCategoryC’ischecked.

Stiffenedwebsrequireendpanelstoanchorthefirsttensionfield.Thejackingstiffenertobearingstiffenersspaceshallnotbeusedastheanchorpanel.Thefirsttransversestiffenershallbeplacedatnogreaterspacingthan1.5timesthewebdepthfromthebearingorjackingstiffener.

F. LongitudinalStiffeners

Longitudinalstiffenersmaybeusedinlongspanswherewebdepthsexceed10feetinaccordancewithAASHTOLRFDArticle6.10.11.3.Weldterminationsforlongitudinalstiffenersarefatiguepronedetailsandshallbedetailedaccordingly.Longitudinalstiffenerplatesshallbecontinuous,splicesbeingmadewithfullpenetrationweldsbeforebeingattachedtowebs.Transversestiffenersshallbepiecedtoallowpassageoflongitudinalstiffeners.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-39 June 2017

G. BearingStiffeners

Bearingstiffenersshallbeverticalundertotaldeadload.

Piercrossframesmaytransferlargeseismiclateralloadsthroughtopandbottomconnections.Weldsizeshallbedesignedtoensureadequateloadpathfromdeckandcrossframesintobearings.

H. CrossFrames

Crossframesandconnectionsshallbedetailedforrepetitivefabrication,adjustmentinthefield,andopennessforinspectionandpainting.Crossframesconsistingofback-to-backanglesseparatedbygussetplatesarenotpermitted.CrossframesaregenerallypatternedasK-framesorasX-frames.Oversizeholeswillnotbeallowedincrossframeconnectionsifgirdersarecurved.

Intermediatecrossframesforstraightgirderswithlittleornoskewshallbedesignedassecondarymembers.Membersizesshallbeselectedtomeetminimumslendernessrequirementsanddesignconnectionsonlyforanticipatedloads,notfor75percentstrengthofmember.

Crossframesshallbeinstalledparalleltopiersforskewanglesof0degreesto20degrees.Forgreaterskewangles,otherarrangementsmaybeused.Crossframesforcurvedgirderbridgesaremainloadcarryingmembersandtensioncomponentsshallbesodesignatedintheplans.Webstiffenersatcrossframesshallbeweldedtotopandbottomflanges.

I. BottomLaterals

Inaccordancewith6.1.2,bottomlateralsystemsshallbeavoidedexceptwhenrequiredforstabilityincurvedbridgesandshallbeusedonlywhentemporarybracingisnotpractical.

Wherelateralgussetplatesarefilletweldedtogirderwebs,thefatiguestressrangeinthegirderislimitedtoCategoryEwithouttransitionradiusorCategoryDwithcarefullymadetransitionradius.Thegussetplatesshallbeboltedtothegirderwebinregionsofhightensionstressrange.

J. BoltedFieldSpliceforGirders

Fieldsplicesshallbebolted.Boltedwebsplicesshallnotinvolvethinfillmaterial.Thicknesstransitionsforwebs,ifneeded,shallbedonewithweldedshopsplices.

FillersusedinboltedsplicesshallbedevelopedasspecifiedinAASHTOLRFDArticle6.13.6.1.5.SpliceboltsshallbecheckedforStrengthloadcombinationsandslipatServiceIIloadcombination.Whenfayingsurfacesareblastedandprimedwithinorganiczincpaint,aClassBsurfaceconditionshallbeassumed.

K. Camber

Cambershallincludeeffectsofprofilegrade,superelevation,anticipateddeadloaddeflections,andbridgedeckshrinkage(ifmeasurable).Permanentgirderdeflectionsshallbeshownintheplansintheformofcamberdiagramsandtables.Deadloaddeflectionsareduetosteelself-weight,bridgedeckdeadload,andsuperimposeddeadloadssuchasoverlay,sidewalks,andbarriers.Aconstantdistancefromtopofwebtotopofbridgedeckshallbeassumedfordesign,

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-40 WSDOT Bridge Design Manual M 23-50.17 June 2017

howeverformsandhaunchheightshallbeadjustedtomeetbridgedeckthicknessandprofileasspecifiedinStandard Specifications Section6-03.3(39).

Twocambercurvesarerequired,onefortotaldeadloadplusbridgedeckformworkandoneforsteelframingself-weight.Thedifferencebetweenthesecurvesisusedtosetbridgedeckforms.

Girderself-weightshallincludethebasicsectionplusstiffeners,crossframes,welds,shearstuds,etc.Theseitemsmaybeaccountedforbyaddinganappropriatepercentageofbasicsectionweight.Totaldeadloadcambershallconsistofdeflectiondueto:

1. Steelweight,appliedtosteelsection.Include10psfbridgedeckformworkallowanceinthetotaldeadloadcamber,butnotinthesteelweightcamber.Theeffectofremovingformworkissmallinrelationtofirstplacement,duetocompositeactionbetweengirdersandbridgedeck.Itisn’tnecessarytoaccountfortheremoval.

2. Bridgedeckweight,appliedtosteelsection.

3. Trafficbarriers,sidewalks,andoverlays,appliedtolong-termcompositesectionusing3n.Donotincludeweightoffutureoverlaysinthecambercalculations.

4. Bridgedeckshrinkage(if≥¾″).

Trafficbarriers,sidewalks,overlays,andotheritemsconstructedafterthebridgedeckplacementshallbeanalyzedasifappliedtothelong-termcompositesectionfulllengthofthebridge.Themodulusofelasticityofthebridgedeckconcreteshallbereducedtoonethirdofitsshorttermvalue.

Forbridgedeckshrinkagecalculation,applyashrinkagestrainof0.0002tothelong-termcompositesectionusing3n.

Inadditiontogirderdeflections,girderrotationsatbearingstiffenersshallbeshown.CambertoleranceisgovernedbytheBridge Welding CodeAWSD1.5,Chapter3.5.Anoteofclarificationshallbeaddedtotheplancamberdiagram:“Forthepurposeofmeasuringcambertoleranceduringshopassembly,assumetopflangesareembeddedinconcretewithoutadesignedhaunch.”Thisallowsahighorlowdeviationfromthetheoreticalcurve,otherwisenonegativecambertoleranceisallowed.

Ascreedadjustmentdiagramshallbeincludedwiththecamberdiagram.Thisdiagram,withdimensiontable,shallbetheremainingcalculateddeflectionjustpriortobridgedeckplacement,takingintoaccounttheestimatedweightofdeckformworkanddeckreinforcing.Theweightofbridgedeckformworkmaybetakenequalto10psf,ortheassumedformworkweightusedtocalculatetotalcamber.Theweightofreinforcingmaybetakenasthespanaveragedistributeduniformly.Thescreedadjustmentshouldequal:(TotalCamber–SteelCamber)-(deflectionduetoforms+rebar).Thescreedadjustmentshallbeshownateachgirderline.Thiswillindicatehowmuchdeflectionandtwistingisanticipatedduringbridgedeckplacement,primarilyduetospancurvatureand/orskew.Theseadjustmentsshallbeappliedtotheoreticalprofilegrades,regardlessofactualsteelframingelevations.Theadjustmentsshallbedesignated“C”.Thediagramshallbe

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-41 June 2017

designatedas“ScreedSettingAdjustmentDiagram.”Thetableofdimensionsshallbekeptseparatefromthegirdercamber,butatconsistentlocationsalonggirders.Thatis,at1/10thpointsorpanelpoints.Acrosssectionviewshallbeincludedwithcurvedspanbridges,showingeffectsoftwisting.

Forthepurposeofsettingbridgedecksoffitelevations,acorrectionshallbemadetotheplanhaunchdimensionbasedonthedifferencebetweentheoreticalflangelocationsandactualprofiledelevations.Thepresenceofbridgedeckformworkshallbenotedatthetimeofthesurvey.Thepresenceoffalsedeckingneednotbeaccountedforindesignorthesurvey.

L. BridgeDeckPlacementSequence

Thebridgedeckshallbeplacedinaprescribedsequenceallowingtheconcreteineachsegmenttoshrinkwithminorinfluenceonothersegments.Negativemomentregions(segmentsoverinteriorpiers)shallbeplacedafterpositivemomentregionshavehadtimetocure.Successivesegmentsshallnotbeplaceduntilprevioussegmentsattainsufficientstrength.Thedesignershallcheckbridgedecktensilestressesimposedonadjoiningspansegments.

M. Bridge Bearings for Steel Girders

Makebearingselectionconsistentwithrequiredmotionsandcapacities.

N. Surface Roughness and Hardness

Thestandardmeasureofsurfaceroughnessisthemicroinchvalue.SurfaceroughnessshallbeshownontheplansforallsurfacesforwhichmachiningisrequiredunlesscoveredbytheStandard SpecificationsorSpecialProvisions.Surfacehardnessofthermalcutgirderflangesisalsocontrolled.

O. Welding

Theminimumfilletweldsizeshallbeasshowninthefollowingtable.Weldsizeisdeterminedbythethickerofthetwopartsjoinedunlessalargersizeisrequiredbycalculatedstress.Theweldsizeneednotexceedthethicknessofthethinnerpartjoined.

Base Metal Thickness of Thicker Part Joined Minimum Size of Fillet Weld

To ¾″ inclusive ¼″Over ¾″ 5/16″

P. ShopAssembly

Forstraightgirders,aprogressivelongitudinalshopassemblyshallbeperformedtoensureproperfitofsubsections,fieldsplices,andcrossframeconnections,etc.,inthefield.Progressivetransverseassembly,incombinationwithprogressivelongitudinalassemblyshallbeperformedforbridgeswithhorizontalcurvatureorskewsgreaterthan20-degrees.Fortransverseassembly,specifyallcrossframeandpierdiaphragmconnectionstobecompletedwhileassembled.

Duringshopassembly,girdersegmentsshallbeblockedorsupportedintheno-loadcondition(nogravityeffects).ForcurvedI-girders,crossframesshallbefabricatedtofittheno-loadcondition.Designofcrossframesandpierdiaphragms

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-42 WSDOT Bridge Design Manual M 23-50.17 June 2017

shalltakeintoaccounttwistandrotationsofwebsduringconstruction.Thissituationshouldbecarefullystudiedbyfiniteelementanalysistodetermineamountandtypeofmovementanticipatedduringconstruction.Unlikecurvedgirdersrotatingawayfromplumbatmidspan,girderwebsforskewedconstructionshallbekeptplumbatpiers.

Forbridgeswithskewsgreaterthan20-degrees,thefitofgirdersegments,crossframes,andpierdiaphragmsshallbecarefullyanalyzedduringdesigntoselecttheproperfitcondition,whichshallbeeithertheno-loadconditionofthesteeldeadloadcondition.Thedetailing,fabrication,andshopassemblyshallbespecifiedtomatchtheconditionusedintheanalysisanddesign.

15.6.4 Plan DetailsA. General

Detailingpracticeshallfollowindustrystandards.DesignationsforstructuralsteelcanbefoundinAISCDetailing for Steel Construction.DetailingshallalsoconformtonationalunifiedguidelinespublishedbyAASHTO/NSBASteel Bridge Collaboration.

Connectionsinthefieldshallbebolted.Crossframemembersmaybeshopboltedorweldedassembliesandshallbeshippedtothefieldinoneunit.Connectionsofboltedcrossframeassembliesshallbefullytensionedpriortoshipping.Crossframeassembliesshallbefieldboltedtogirdersduringerection.

B. FramingPlan

TheFramingPlanshallshowtiesbetweenthesurveyline,girderlines,backsofpavementseats,andcenterlinesofpiers.Locatepanelpoints(crossframelocations).Providegeometry,bearinglines,andtransverseintermediatestiffenerlocations.Showfieldsplicelocations.Mapoutdifferentlateralconnectiondetails.

C. Girder Elevation

TheGirderElevationisusedtodefineflanges,webs,andtheirsplicelocations.Showshearconnectorspacing,location,andnumberacrosstheflange.Showshearconnectorlocationsonflangespliceplatesorspecificallycalloutwhennoconnectorsarerequiredonspliceplates.Locatetransversestiffenersandshowwheretheyarecutshortoftensionflanges.ShowthetensionregionsofthegirderswithaVforthepurposeoforderingplatematerial,inspectionmethods(NDE),andBridge Welding Codeacceptancecriteria.Identifytensionweldedbuttsplicesforwhichradiographicexamination(RT)isrequired.Permissibleweldedwebsplicesshallbeshown.Iftherearefracturecriticalcomponents,theyshallbeclearlyidentifiedasFCM.

D. TypicalGirderDetails

Specificsheetsshallbedevotedtoshowingtypicaldetailstobeusedthroughoutthegirders.Suchdetailsincludethewelddetails,variousstiffenerplatesandweldconnections,locationsofoptionalwebsplices,anddripplatedetails.Fieldsplicesforflangesshallaccommodateweblocationtoleranceof±¼″inaccordancewiththeAWSBridge Welding Code3.5.1.5.Allowaminimumof¼″foroutofpositionwebplus⅜″forfilletweld,oratotalof⅝″minimumclearbetweentheoretical

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-43 June 2017

faceofwebandedgeofspliceplate.Thebottomflangespliceplateshallbesplittoallowmoisturetodrain(use4equalbottomflangespliceplates).Thefillplatedoesnotneedtobesplit.

Verticalstiffenersusedtoconnectcrossframesshallbeweldedtotopandbottomflangestoreduceout-of-planebendingoftheweb.Allstiffenersshallbecoped,clipped(orcutshortinthecaseoftransversestiffenerswithoutcrossframes)adistancebetween4twand6twtoprovidewebflexibility,inaccordancewithAASHTOLRFDArticle6.10.11.1.1.

F. CrossFrameDetails

Showmembersizes,geometrics(worklinesandworkpoints),andconnectiondetails.Doubleanglesshallnotbeusedforcrossframes.Crossframesshallbecompletesubassembliesforfieldinstallation.

Internalcrossframesandtoplateralsystemsforboxgirdersareshopwelded,primarily.Allconnectiontypesshallbecloselyexaminedfordetailconflictandweldaccess.Clearancebetweenbridgedeckformingandtoplateralmembersshallbeconsidered.

G. CamberDiagramandBearingStiffenerRotation

Cambercurvesshallbedetailedtoprovidedimensionsattenthpoints.Dimensionsmayalsobegivenatcrossframelocations.Inordertoplacebearingstiffenersintheverticalpositionafterbridgedeckplacement,showexpectedgirderrotationsatpiers.

Showdeflectioncamberonly.GeometriccamberforprofilegradeandsuperelevationwillbecalculatedbytheshopdetailerfromhighwayalignmentshownontheLayoutsheets.

Aseparatediagramandtable,withbridgecrosssection,shallbeincludedtoshowhowelevationsatedgesofdeckcanbedeterminedjustbeforeconcreteplacement.Thiswillgiveadjustmentstoaddtoprofilegrades,basedonremainingdeadloaddeflections,withdeckformworkandreinforcingbeingpresent.

H. Bridge Deck

NewbridgedecksforsteelI-girdersorboxgirdersshalluseDeckProtectionSystem1.

Thebridgedeckshallbedetailedinsectionandplanviews.Forcontinuousspans,showasectionshowingnegativemomentlongitudinalreinforcing.Theplanviewsshalldetailtypicalreinforcingandcutofflocationsfornegativemomentsteel.Negativemomentsteelshallnotbeterminatedatonelocation.

Thepaddimensionisassumedtobeconstantthroughoutthespanlength.Ideally,thegirderiscamberedtocompensatefordeadloadsandverticalcurves.However,fabricationanderectiontolerancesresultinconsiderabledeviationfromtheoreticalelevations.Thepaddimensionisthereforeconsideredonlyanominalvalueandisadjustedasneededalongthespanoncethesteelhasbeenerectedandprofiled.Thescreedfortheslabistobesettoproducecorrectroadwayprofile.TheplansshallreferencethisprocedurecontainedinStandard Specifications Section6-03.3(39).Thepaddimensionistobenotedasnominal.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-44 WSDOT Bridge Design Manual M 23-50.17 June 2017

I. HandrailDetails,InspectionLighting,andAccess

WhenrequiredbytheRFPCriteria,includehandrailswithtypicalgirderdetails.Locationsmaybeadjustedtoavoidconflictswithotherdetailssuchaslargegussetplates.Boxgirdersrequirespecialconsiderationforinspectionaccess.Accessholesorhatchesshallbedetailedtoexcludebirdsandthepublic.Theyshallbepositionedwhereladderscanbeusedtogainaccess.Locatehatchesingirderwebsatabutments.Provideforroundtripaccessandpenetrationsatallintermediatediaphragms.Accessforremovingbridgedeckformworkshallbeprovided.Boxgirdersshallhaveelectrical,inspectionlighting,andventilationdetailsfortheaidofinspectionandmaintenance.RefertotheDesign ManualChapter1040forbridgeinspectionlightingrequirements.

Tofacilitateinspection,interiorpaintshallbeFederalStandard595colornumber17925(white).One-wayinspectionofallinteriorspacesshallbemadepossiblebyroundtripinadjoininggirders.Thisrequiressomeformofwalkwaybetweenboxesandhatchoperationfrombothsides.Iflocksareneeded,theymustbekeyedtoonemaster.Airventsshallbeplacedalonggirderwebstoallowfreshairtocirculate.

J. Box Girder Details

Provideatoplateralsystemineachbox,fulllengthofagirder.

Thetoplateralsshallbebolteddirectlytothetopflangeorintermediateboltedgussetplate(inwhichcase,thelateralmembersmaybeweldedtothegussetplate).Inordertomaximizetheclearancefordeckforms,alllateralconnectionsshallprogressdownfromthebottomsurfaceofthetopflange.Thehaunchdistancebetweentopofwebanddecksoffitshallbe6″orgreatertoallowdeckformingtocleartoplateralmembers.

Tofacilitatecontinuousweldingofthebottomflangetowebs,thestiffenersshallbeheldbackandattachedtothebottomflangebyamemberbroughtinafterthebottomlongitudinalweldsarecomplete.

Theoffsetbetweencenterofwebandedgeofbottomflangeshallbe2″

Useteeshapes,eithersinglyorinpairs,forstiffeningwidebottomflanges.

Boxgirderinsideclearheightshallbe5feetormoretoprovidereasonableinspectionaccess.Lessthan5feetinsideclearheightisnotbepermitted.

Drainholesshallbeinstalledatalllowpoints.

Geometricsforboxesshallbereferencedtoasingleworkline,unlessboxwidthtapers.Theboxcrosssectionremainstiedtoacenterlineintersectingthisworklineandnormaltothebridgedeck.Thesectionrotateswithsuperelevationtransitionratherthanwarping.

WSDOT Bridge Design Manual M 23-50.17 Page 15-45 June 2017

15.7 Substructure Design15.7.1 General Substructure Considerations

A. Foundation Seals

Thebottomofseal,ifused,shallbenohigherthanthescourdepthelevation.

B. Scour

Thedesignfloodlocalscourdepth(l00yearevent)shallbeincludedintheStrengthIlimitstateanalysis,andthecheckfloodlocalscourdepth(500yearevent)shallbeincludedintheExtremeEventIIlimitstateanalysis.Whenincludingtheeffectsofscour,thedesignshallconsiderthelossofoverburdenandfoundationsideresistance.

Wherelateralstreammigrationisapossibility,thedesignshallincludeareliability-basedestimateoftheeffectsonthestructure.

C. CombinationofExtremeEventEffects

1. Downdrag

SeismicsoilliquefactioninduceddowndragforcesshallbeincludedintheExtremeEventIlimitstate.Downdragloadsmaybedecoupledfromtheinertialandoverstrengthloadeffects.

2. LateralGroundDisplacement

Wherelateralgrounddisplacement(e.g.lateralspreadingandlateralflow)isexpected,thegrounddisplacementmaybedecoupledfromtheinertialandoverstrengthloadeffects.SeeWSDOTGeotechnical Design ManualSections6.4.2.8and6.5.4.2foradditionalguidanceoncombiningloadswhenlateralgrounddisplacementoccurs.

3. Scour

Theeffectsoflocalscourshallbecombinedwithearthquakeloading.AttheExtremeEventIlimitstate,thedesignshallconsiderascourdepthequalto25percentofthedesignfloodscourdepth.

15.7.2 Foundation Modeling for Seismic LoadsA. General

BridgemodelingforseismiceventsshallbeinaccordancewithrequirementsoftheAASHTOSEISMICSection5.

Ifliquefactionisadesigncondition,thebridgeshallbeanalyzedusingboththestaticandliquefiedsoilconditionsinaccordancewithAASHTOSEISMICSection6.8.

TheLPileprogrammaybeusedforpileandshaftsupportedfoundations.However,theLiquefactionoptionandLiquefiedSandsoiltypeintheLPILEprogramshallnotbeused.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-46 WSDOT Bridge Design Manual M 23-50.17 June 2017

B. BridgeModelSectionProperties

Ingeneral,grosssectionpropertiesmaybeassumedforallmembers,exceptconcretecolumnsandotherductilereinforcedconcretemembers.Seismicresponseanalysisfordeepfoundationsshallbebasedonabracketedapproachusingastiffsubstructureresponseandasoftsubstructureresponse.

1. CrackedPropertiesforColumns

EffectivesectionpropertiesshallbeinaccordancewiththeAASHTOSEISMICSection5.6.

2. ShaftProperties

Theshaftconcretestrengthandconstructionmethodsleadtosignificantvariationinshaftstiffnessdescribedasfollows:

Forastiffsubstructureresponse:

1. Use1.5ƒ′ctocalculatethemodulusofelasticity.

2. UseIgbasedontheactualshaftdiameter.

3. Whenpermanentcasingisused,increaseshaftIgusingthetransformedareaofthecasing.

Forasoftsubstructureresponse:

1. Useƒ′ctocalculatethemodulusofelasticity.

2. UseIgbasedontheactualshaftdiameter.Alternatively,Iemaybeusedwhenitisreflectiveoftheactualloadeffectsintheshaft.

3. Whenpermanentcasingisused,increaseshaftIgusingthetransformedareaofthecasing.

3. Cast-in-PlacePileProperties

Forastiffsubstructureresponse:

1. Use1.5ƒ′ctocalculatethemodulusofelasticity.

2. UsethepileIgplusthetransformedcasingmomentofinertia.

Forasoftsubstructureresponse:

1. Use1.0ƒ′ctocalculatethemodulusofelasticity.

2. UsepileIg,neglectingcasingproperties.

C. SpreadFootingModelingMethods

ThemethodforcalculatingfootingspringsisgiveninSection7.2.7.

D. DeepFoundationModelingMethods

ThemethodusedtomodeldeepfoundationsshallconformtoAASHTOSEISMICSection5.3.

1. GroupEffects

ThereductionfactorsforlateralresistanceduetotheinteractionofdeepfoundationmembersisprovidedinAASHTOSEISMICSection8.12.2.5.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-47 June 2017

2. ShaftCapsandPileFootings

Inareaspronetoscourorlateralspreading,thepassiveresistanceofcapsandpile-supportedfootingsshallbeneglected.

E. DesignofDeepFoundationsforLateralForces

1. DeterminationofTipElevations

Aparametricstudyoranalysisshallbeperformedtoevaluatethesensitivityofthedepthoftheshaftorpiletothegroundleveldisplacementofthestructureinordertodeterminethedepthrequiredforstable,proportionatelateralresponseofthestructure.

2. Design for Lateral Loads

Thestructuraldesignofshaftsandpilesshallconsiderthefollowingconditionsattheapplicablelimitstate:

a. Staticsoilpropertieswithbothstiffandsoftshaftorpileproperties.

b. Dynamicordegradedsoilpropertieswithbothstiffandsoftshaftorpileproperties.

c. Liquefiedsoilpropertieswithbothstiffandsoftshaftorpileproperties.Whenlateralspreadingispossible,additionalloadingconditionswillneedtobeanalyzed.

d. Scourconditionwithstiffandsoftshaftorpileproperties.

15.7.3 Column DesignA. Shear Design

AtStrengthlimitstates,sheardesignshallfollowthe“SimplifiedProcedureforNonprestressedSections”inAASHTOLRFD Section5.8.3.4.1.

B. ColumnSilos

Duetotheconstructionandinspectioncomplicationsofcolumnsilos,theDesign-BuildershallattempttomeetbalancedstiffnessandframegeometryrequirementsbytheothermethodssuggestedinSection4.1.4oftheAASHTOSEISMIC priortouseofcolumnsilos.ColumnsilosshallmeettherequirementsofSection7.3.8.

C. LongitudinalReinforcement

Themaximumreinforcementratioshallbe0.04inSDCsA,B,CandD.Theminimumreinforcementratioshallbe0.007forSDCA,B,andCandshallbe0.01forSDCD.

ForbridgesinSDCA,ifoversizedcolumnsareusedforarchitecturalreasons,theminimumreinforcementratioofthegrosssectionmaybereducedto0.005,providedallloadscanbecarriedonareducedsectionwithsimilarshapeandthereinforcementratioofthereducedsectionisequaltoorgreaterthan0.01and0.133ƒ′c/ƒy.Thecolumndimensionsaretobereducedbythesameratiotoobtainthesimilarshape.

Thereinforcementshallbeevenlydistributedandsymmetricwithinthecolumn.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-48 WSDOT Bridge Design Manual M 23-50.17 June 2017

D. LongitudinalReinforcementSplices

Nosplicesareallowedwhentherequiredlengthoflongitudinalreinforcementislessthantheconventionalmilllengthof60-feet.Splicingoflongitudinalreinforcementshallbeoutsidetheplastichingeregions.ButinSDCA,splicesneedonlybelocatedaminimumof1.5timesthecolumndiameterfromthetopandbottomofthecolumn.

ForbridgesinSDCAandSDCB,nolapsplicesshallbeusedfor#14or#18bars(suchsplicesshallbemechanicalsplicesconformingtoStandard Specifications Section6-02.3(24)C).Eitherlapormechanicalsplicesmaybeusedfor#11barsandsmaller.LapsplicesshallbedetailedasClassBsplices.Thespacingoftransversereinforcementoverthelengthofalapspliceshallnotexceed4-inchesorone-quarteroftheminimummemberdimension.

ForbridgesinSDCCandSDCD,barsshallbesplicedusingmechanicalsplicesconformingtoStandard SpecificationsSection6-02.3(24)F.Splicesshallbestaggered.Thedistancebetweensplicesofadjacentbarsshallbegreaterthanthemaximumof20-bardiametersor24-inches.

E. LongitudinalReinforcementDevelopment

1. Crossbeams

DevelopmentoflongitudinalreinforcementshallbeinaccordancewithAASHTOSEISMICSection8.8.4.Columnlongitudinalreinforcementshallbeextendedintocrossbeamsascloseaspracticablypossibletotheoppositefaceofthecrossbeam.

2. Footings

Longitudinalreinforcementatthebottomofacolumnshouldextendintothefootingandrestonthebottommatoffootingreinforcementwithstandard90degreehooks.Inaddition,developmentoflongitudinalreinforcementshallbeinaccordancewithAASHTOSEISMICSection8.8.4andAASHTOLRFDSection5.11.2.1.

3. Drilled Shafts

EmbedmentshallbespecifiedusingTRACReportWA-RD417.1titled“NoncontactLapSplicesinBridgeColumn-ShaftConnections”.TherequirementsoftheAASHTOSEISMICSection8.8.10fordevelopmentlengthofcolumnbarsextendedintooversizedpileshaftsforSDCCandDshallnotbeused.

ThemodificationfactorinAASHTOLRFDSection5.11.2.1.3thatallowsldtobedecreasedbytheratioof(As required)/(As provided),shallnotbeused.

F. TransverseReinforcement

1. General

Alltransversereinforcementincolumnsshallbedeformed.ColumnsinSDCAandBmayusespirals,circularhoops,orrectangularhoopsandcrossties.ColumnsinSDCCandDshallusecircularhoopreinforcement.However,rectangularhoopswithtiesmaybeusedwhenlarge,oddshapedcolumnsectionsarerequired.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-49 June 2017

2. SpiralSplicesandHoops

Weldedlapsshallbeusedforsplicingandterminatingspirals.Spiralsorbutt-weldedhoopsarerequiredwithinplastichingeregions.Splicesshallbestaggered.Also,whereinterlockinghoopsareusedinrectangularornon-circularcolumns,thesplicesshallbelocatedinthecolumninterior.Circularhoopsforcolumnsshallbeshopfabricatedusingamanualdirectbuttweldorresistancebuttweld.Fieldweldedsplicesandterminationweldsofspiralsofanysizebararenotpermittedintheplastichingeregion,includingazoneextending2’-0”intotheconnectedmember.

G. ReducedColumnSection

ColumnswithoverstrengthforcereducingdetailsshallbedesignedinaccordancewithSection7.3.7.

15.7.4 CrossbeamTwo-stageintegralnon-prestressedcrossbeamsshallbedesignedinaccordancewithSection7.4.1.

15.7.5 Abutment Design and DetailsA. General

1. Bent-TypeAbutments

Abutmentsthatincludeabentcapsupportedoncolumnsorextendedpilesorshaftsshallnotbeused.

2. AbutmentsonStructuralEarth(SE)WallsandGeosyntheticWalls

Bridgeabutmentsmaybesupportedonstructuralearthwallsandgeosyntheticwalls.AbutmentssupportedonthesewallsshallbedesignedinaccordancewiththerequirementsofthisRFPandthefollowingdocuments(listedinorderofimportance):• WSDOTGeotechnical Design ManualSection15.5.3.5• AASHTOLRFD• Design and Construction of Mechanically Stabilized Earth Walls

and Reinforced Soil Slopes,VolumeIandII,FHWA-NHI-10-024,FHWA-NHI-10-025

Wallsdirectlysupportingbridgeabutmentspreadfootingsshallbe30feetorlessintotalheight,measuredfromthetopofthefascialevelingpadtothebottomofthebridgeabutmentfooting.

B. EmbankmentandBackfill

1. General Clearances

TheminimumclearancesfortheembankmentatthefrontfaceofabutmentsshallbeasindicatedonStandardPlansA-50.10.00throughA-50.40.00.

Theminimumclearancebetweenthebottomofthesuperstructureandtheembankmentbelowshallbe3’-0”forgirderbridgesand5’-0”fornon-girder,slab,andboxgirderbridges.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-50 WSDOT Bridge Design Manual M 23-50.17 June 2017

2. AbutmentsonSEWallsandGeosyntheticWalls

ClearancesaroundbridgeabutmentsshallbeprovidedasshowninFigure7.5.2-1.Concreteslopeprotectionshallbeprovided.

3. DrainageandBackfill

3″diameterweepholesshallbeprovidedinallbridgeabutmentwalls.Theseshallbelocated6″abovethefinishgroundlineat12′oncenter.Incaseswheretheverticaldistancebetweenthetopofthefootingandthefinishgroundlineisgreaterthan10′,additionalweepholesshallbeprovided6″abovethetopofthefooting.

Gravelbackfillforwallsshallbeprovidedbehindallbridgeabutments.A3′widthofgravelbackfillshallbeprovidedbehindthecantileverwingwalls.Anunderdrainpipeandgravelbackfillfordrainshallbeprovidedbehindallbridgeabutmentsexceptabutmentsonfillswithastemwallheightof5′orless.

C. AbutmentLoading

1. Earthquake Load

EQ

Forbearingpressureandabutmentstabilitychecks,theseismicinertialforceoftheabutment,PIR,shallbecombinedwiththeseismiclateralearthpressureforce,PAE,asdescribedinAASHTOLRFDSection11.6.5.1.Forstructuraldesignoftheabutment,theseismicinertialforce,PIR,maybetakenas0.0.

Forconventionalfootingsupportedabutments,theseismichorizontalaccelerationcoefficient,kh,shallbetakenasonehalfoftheseismichorizontalaccelerationcoefficientassumingzerodisplacement,kh0.TheseismicactiveearthpressureshallbedeterminedusingtheMononobe-Okabemethod,asdescribedinAASHTOLRFDAppendixA11.

Forpile-orshaft-supportedabutmentsorotherabutmentsthatarenotfreetotranslate1.0inchto2.0inchduringaseismicevent,useaseismichorizontalaccelerationcoefficient,kh,of1.5timesthesite-adjustedpeakgroundacceleration.

Theseismicverticalaccelerationcoefficient,kv,shallbetakenas0.0forabutmentdesign.

2. Bearing Forces

TU

Forstrengthdesign,thebearingshearforcesshallbebasedon½oftheannualtemperaturerange.

D. AbutmentDetails

1. Bearing Seats

Thebearingseatsshallhaveaminimumedgedimensionof3″fromthebearingsshallandsatisfytherequirementsofAASHTOLRFDSection4.7.4.4.OnLabutments,thebearingseatshallbeslopedawayfromthebearingstopreventpondingatthebearings.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-51 June 2017

2. TransverseGirderStops

Allsuperstructuresshallberestrainedagainstlateraldisplacementattheabutmentsandintermediateexpansionpiers.AllprestressedgirderbridgesinWesternWashington(withinandwestoftheCascademountainrange)shallhavegirderstopsbetweenallgirdersatabutmentsandintermediateexpansionpiers.GirderstopsshallbefullwidthbetweengirderflangesexcepttoaccommodatebearingreplacementrequirementsasspecifiedinChapter9. Girderstopsaredesignedusingashearstrengthresistancefactorshallbeϕs = 0.9.

3. AbutmentWalls

Whenconstructionjointsarelocatedinthemiddleoftheabutmentwall,apourstriporanarchitecturalrevealshouldbeusedforacleanappearance.AASHTOLRFDSection5.10.8shallbefollowedfortemperatureandshrinkagereinforcementrequirementsnearconcretesurfacesexposedtodailytemperaturechangesandinstructuralmassconcrete.Theminimumcrosstiereinforcementinabutmentwallsshallbe#4tiebarswith135°hooks,spacedatapproximately2′-0″center-to-centerverticallyandhorizontally.

15.7.6 Abutment Wing Walls and Curtain WallsWallfootingthicknessshallnotbelessthan1’-6”

15.7.7 Footing DesignA. General Footing Criteria

See Figure7.7.1-1forfootingcoverrequirements.FootingssupportedonSEwallsorgeosyntheticwallsshallhaveaminimumof6″ofcover.

B. SpreadFootingDesign

1. Foundation Design

a. Bearing Stress

ThemaximumeffectivewidthforcalculatinguniformbearingstressislimitedtoC+2DasshowninFigure7.7.4-3.

2. Structural Design

a. Footing Thickness and Shear

Theminimumfootingthicknessshallbe1′-0″.Theminimumplandimensionshallbe4′-0″.

b. VerticalReinforcement

Verticalreinforcementshallbedevelopedintothefootingtoadequatelytransferloadstothefooting.Verticalrebarshallbebent90°andextendtothetopofthebottommatoffootingreinforcement.Barsintensionshallbedevelopedusing1.25Ld.Barsincompressionshalldevelopalengthof1.25 Ld,priortothebend.Wherebarsarenotfullystressed,lengthsmaybereducedinproportion,butshallnotbelessthan¾Ld.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-52 WSDOT Bridge Design Manual M 23-50.17 June 2017

c. BottomReinforcement

Reinforcementshallnotbelessthan#6barsat12″centerstoaccountforunevensoilconditionsandshrinkagestresses.

d. TopReinforcement

Topreinforcementforfootingsdesignedfortwo-wayactionshallnotbelessthan#6barsat12″centers,ineachdirectionwhiletopreinforcementforbearingwalldesignedforone-wayactionshallnotbelessthan#5barsat12″centersineachdirection.

C. Pile-SupportedFootingDesign

Theminimumfootingthicknessshallbe2′-0″.Theminimumplandimensionshallbe4′-0.

1. PileEmbedment,Clearance,andRebarMatLocation

Cast-in-placeconcretepileswithreinforcingextendingintofootingsareembeddedaminimumof6″.Theclearanceforthebottommatoffootingreinforcementshallbe1½″betweenthereinforcingandthetopofthepileforCIPpilefootings.SeeFigure7.7.5-2fortheminimumpileclearancetotheedgeoffooting.

2. Concrete Design

Indeterminingtheproportionofpileloadtobeusedforcalculationofshearstressonthefooting,anypilewithitscenter6″ormoreoutsidethecriticalsectionshallbetakenasfullyactingonthatsection.Anypilewithitscenter6″ormoreinsidethecriticalsectionshallbetakenasnotactingforthatsection.Forlocationsinbetween,thepileloadactingshallbeproportionedbetweenthesetwoextremes.

15.7.8 ShaftsA. Axial Resistance

Thebridgeplansshallincludetheendbearingandsidefrictionnominalshaftresistancefortheservice,strength,andextremeeventlimitstatesintheGeneralNotes,asshowninFigure7.8-1-1.

1. AxialResistanceGroupReductionFactors

ThegroupreductionfactorsforaxialresistanceofshaftsforthestrengthandextremeeventlimitstatesshallbetakenasshowninTable7.8.1.1-1.Thesereductionfactorspresumethatgoodshaftinstallationpracticesareusedtominimizeoreliminatetherelaxationofthesoilbetweenshaftsandcaving.Ifthiscannotbeadequatelycontrolledduetodifficultsoilsconditionsorforotherconstructabilityreasons,lowergroupreductionfactorsshallbeusedasrecommendedbythegeotechnicalengineerofrecord.Thesegroupreductionfactorsapplytobothstrengthandextremeeventlimitstates.FortheservicelimitstatetheinfluenceofthegrouponsettlementasrequiredintheAASHTOLRFDandtheAASHTOSEISMICarestillapplicable.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-53 June 2017

B. Structural Design and Detailing

1. Drilledshaftsshallbedesignedforthelesseroftheplasticforcesor1.2timestheelasticseismicforcesofthecolumnaboveinsinglecolumn/singleshaftfoundations.

2. ConcreteClass5000Pshallbespecifiedfortheentirelengthoftheshaftforwetordryconditionsofplacement.

3. Whenshaftsareconstructedinwater,theconcretespecifiedforthecasingshoringsealshallbeClass4000W.

4. Theassumedconcretecompressivestrengthmaybetakenas0.85ƒ′cforstructuraldesignofshafts.Forseismicdesign,theexpectedcompressivestrengthmaybetakenas1.3timesthisvalueinaccordancewithAASHTOSeismicSection8.4.4.

5. Thepresenceofpermanentsteelcasingshallbetakenintoaccountintheshaftdesign(i.e.forstiffness,andetc.),butthestructuralcapacityofpermanentsteelcasingshallnotbeconsideredforstructuraldesignofdrilledshaftsunlessthedesignconformstoSection15.

6. Minimumcoverrequirementsshallbeasspecifiedbelow:• Diameterlessthanorequalto3′-0″=3″• Diametergreaterthan3′-0″andlessthan5′-0″=4″• Diametergreaterthanorequalto5′-0″=6″

7. Theclearspacingbetweenspiralsandhoopsshallnotbelessthan6″ormorethan9″.Theclearspacingbetweenspiralsorhoopsmaybereducedinthesplicezoneinsinglecolumn/singleshaftconnectionsiftheconcreteisvibrated.

8. ThevolumetricratioandspacingrequirementsoftheAASHTOSEISMICforconfinementneednotbemet.

9. #7through#9weldedlapsplicedhoopsareacceptabletouseprovidedtheyarenotlocatedinpossibleplastichingeregions.Weldedsplicesinhoopsforshaftsshallbecompletedpriortoassemblyoftheshaftsteelreinforcingcage.Whenhoopsareused,theplansshallshowastaggeredsplicepatternaroundtheperimeteroftheshaftsothatnotwoadjacentsplicesarelocatedatthesamelocation.

10.Insinglecolumn/singleshaftconfigurations,thespacingoftheshafttransversereinforcementinthesplicezoneshallmeettherequirementsoftheTRACReporttitled,“Noncontact Lap Splices in Bridge Column-Shaft Connections”.Thefactorkrepresentstheratioofcolumntensilereinforcementtototalcolumnreinforcementatthenominalresistance.Intheupperhalfofthesplicezone,kshallbetakenas1.0.Inthelowerhalfofthesplicezone,thisrationcouldbedeterminedfromacolumnmoment-curvatureanalysis.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-54 WSDOT Bridge Design Manual M 23-50.17 June 2017

11.Longitudinalreinforcementshallbeprovidedforthefulllengthofdrilledshafts.Theminimumlongitudinalreinforcementinthesplicezoneofsinglecolumn/singleshaftconnectionsshallbethelargerof0.75percentAgoftheshaftor1.0percentAgoftheattachedcolumn.Theminimumlongitudinalreinforcementbeyondthesplicezoneshallbe0.75percentAgoftheshaft.Theminimumlongitudinalreinforcementinshaftswithoutsinglecolumn/singleshaftconnectionsshallbe0.75percentAgoftheshaft.

12.Theclearspacingbetweenlongitudinalreinforcementshallnotbelessthan6″ormorethan9″.Ifashaftdesignisunabletomeetthisminimumrequirement,alargerdiametershaftshallbeconsidered.

13.Mechanicalsplicesinlongitudinalbarsshallbeplacedinlowstressregionsandstaggered2′-0″minimum.

14.Whereundersizedpermanentslipcasingisused,provideaminimumofconcretecoverof3″forshaftswithadiameterof4′-0″andlargerand1½″forshaftswithadiameterlessthan4′-0″.

15.ReinforcingbarcentralizersshallbedetailedintheplansasshowninSection7.8.2-5.

15.7.9 Piles and PilingA. PileTypes

PilesfornewpermanentbridgesshallbeCIPconcretepiles.

B. PileGroups

Theminimumcenter-to-centerspacingofpilesshallbe30″or2.5pilediameters.

C. Battered Piles

Batteredpilesshallnotbeusedtoresistlateralloadsforpermanentbridgefoundations.

D. Structural Design and Detailing of CIP Concrete Piles

1. ConcreteClass5000PshallbespecifiedforCIPconcretepiles.Thetop10′ofconcreteinthepileshallbevibrated.

2. Forstructuraldesign,thereinforcementaloneshallbedesignedtoresistthetotalmomentthroughoutthelengthofpilewithoutconsideringstrengthofthesteelcasing.Theminimumreinforcementshallbe0.75percentAg forSDCB,CandDandshallbeprovidedforthefulllengthofthepile.MinimumclearancebetweenlongitudinalbarsshallmeettherequirementsinAppendix5.1-A2.

3. Ifthepiletofooting/capconnectionisnotaplastichingezonelongitudinalreinforcementneedonlyextendabovethepileintothefooting/capadistanceequalto1.0ld(tension).Ifthepiletofooting/capconnectionisaplastichingezonelongitudinalreinforcementshallextendabovethepileintothefooting/capadistanceequalto1.25ld.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-55 June 2017

4. Transversespiralreinforcementshallbedesignedtoresistthemaximumshearinthepile.Theminimumspiralshallbea#4barat9″pitch.Ifthepiletofooting/capconnectionisnotaplastichingezonethevolumetricrequirementsofAASHTOLRFDSection5.13.4.6neednotbemet.

E. PileSplices

Concretepilesplicesshalldevelopthefullflexuralandaxialresistanceofthepile.

F. Pile Resistance

ThebridgeplansshallincludetheUltimateBearingCapacity(NominalDrivingResistance,Rndr,fordrivenpiles)intonsasshowninFigure7.9.11-1.

15.7.10 Concrete-Filled Steel TubesA. DesignRequirements

Concrete-filledsteeltubes(CFST),reinforcedconcrete-filledsteeltubes(RCFST)andtheirconnectionsshallbedesignedinaccordancewithSection7.10.TheuseofCFSTandRCFSTrequiresapprovalfromtheWSDOTBridgeDesignEngineerwhenusedasaductileelementaspartofanearthquake-resistingsystem.Additionally,theplastichingemodelingparametersandmethodsmustbeapprovedbytheWSDOTBridgeDesignEngineer.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-56 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.8 Walls and Buried Structures15.8.1 Retaining Walls

A. General

DesignofretainingwallsshallbebasedontherequirementsandguidancecitedhereinandinthecurrentAASHTOLRFD,AASHTOSEISMIC,AASHTOLRFD Bridge Construction Specifications,WSDOTGeneral&BridgeSpecialProvisionsandtheStandard Specifications M41-10unlessotherwisecitedherein.

Retainingwallsandtheircomponentsthatareinserviceforamaximumof36monthsareconsideredtobetemporary.TemporaryretainingwallsneednotbedesignedfortheExtremeEventLimitStates.

B. Loads

RetainingwallsandtheircomponentsshallbedesignedforallapplicableloadsdefinedinthecurrentAASHTOLRFDChapter3.

TheliveloadfactorforExtremeEvent-ILimitStateloadcombination,γeqasspecifiedintheAASHTOLRFDTable3.4.1-1forallpermanentretainingwallsshallbetakenequalto0.50.

C. Design of Reinforced Concrete Cantilever Retaining Walls

1. Standard Plan Reinforced Concrete Cantilever Retaining Walls

ThestandardplanreinforcedconcreteretainingwallshavebeendesignedinaccordancewiththerequirementsoftheAASHTOLRFD,4thEdition,2007,andinterimsthrough2008.SeeSection8.1foracompletelistofthedesigncriteriausedforthesewalls.DetailsforconstructionandthemaximumbearingpressureinthesoilaregivenintheStandard Plans SectionD.

2. NonStandard Reinforced Concrete Retaining Walls

Reinforcedconcreteretainingwallscontainingdesignparameterswhichexceedthoseusedinthestandardreinforcedconcreteretainingwalldesignareconsideredtobenon-standard.

Foradditionaldesigncriteria,refertoSection8.1.4B

D. Design of Cantilever Soldier Pile and Soldier Pile Tieback Walls

TypicalsoldierpilewalldetailsareprovidedintheAppendix8.1-A1.

1. GroundAnchors(Tiebacks)

Eitherthe“tributaryareamethod”orthe“hingemethod”asoutlinedinAASHTOLRFDSectionC11.9.5.1shallbeconsideredacceptabledesignprocedurestodeterminethehorizontalanchordesignforce.

Therecommendedfactoreddesignloadoftheanchor,recommendedanchorinstallationangles(typically10°–45°),noloadzonedimensions,andanyotherspecialrequirementsforwallstabilityshallbeasprovidedbythegeotechnicalinvestigationperformedfortheprojectbythegeotechnicalengineerofrecord,andtheassociatedgeotechnicalreportbasedonthatinvestigation.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-57 June 2017

TheminimumverticalanchorspacingshallbethesameasdefinedinAASHTOLRFDSection11.9.4.2fortheminimumhorizontalanchorspacing.

Theanchorlockoffloadis60percentofthecontrollingfactoreddesignloadfortemporaryandpermanentwalls(seeGeotechnical Design Manual Chapter15).

Permanentgroundanchorsshallhavedoublecorrosionprotectionconsistingofanencapsulation-protectedtendonbondlengthasspecifiedintheWSDOTGeneralSpecialProvisions.TypicalpermanentgroundanchordetailsareprovidedintheAppendix8.1-A1.

Temporarygroundanchorsmayhaveeitherdoublecorrosionprotectionconsistingofanencapsulation-protectedtendonbondlengthorsimplecorrosionprotectionconsistingofgrout-protectedtendonbondlength.

2. Design of Soldier Pile

RefertoSection8.1.5Bfordesigncriteria

3. Design of Lagging

Ifconstructionoperationsarelikelytooccuraboveandbehindthesoldierpilewallalignment,thelaggingshallbedesignedforanadditional250psfsurchargeduetotemporaryconstructionload.

a. TemporaryTimberLagging

TemporarylaggingisasdefinedintheStandard Specifications Section616.3(6).TemporarytimberlaggingshallbedesignedinaccordancewithStandard SpecificationsSection616.3(6)B.

b. PermanentLagging

PermanentlaggingisasdefinedintheStandard Specifications Section6.16.3(6).Permanentlaggingshallbedesignedfor100percentofthelateralloadthatcouldoccurduringthelifeofthewallinaccordancewithAASHTOLRFDSections11.8.5.2and11.8.6forsimplespanswithoutsoilarching.

TimberlaggingshallbedesignedinaccordancewithAASHTOLRFDSection8.6.Thesizeeffectfactor(CFb)shallbeconsidered1.0unlessaspecificsizeisshowninthewallplans.Thewetservicefactor(CMb)shallbe0.85.Theloadappliedtolaggingshallbeappliedatthecriticaldepth.Laggingsizemaybesteppedovertheheightofthewall.

TimberlaggingdesignedasapermanentstructuralelementshallconsistoftreatedDouglasFirLarch,gradeNo.2orbetter.Hemfirwoodspecies,duetotheinadequatedurabilityinwetcondition,shallnotbeusedforpermanenttimberlagging.

4. Design of Fascia Panels

RefertoSection8.1.5Dfordesigncriteria.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-58 WSDOT Bridge Design Manual M 23-50.17 June 2017

E. Design of Structural Earth Walls

1. Pre-approvedProprietaryStructuralEarthWalls

Structuralearth(SE)wallsystemsmeetingestablishedWSDOTdesignandperformancecriteriahavebeenlistedas“preapproved”bytheBridgeandStructuresOfficeandtheMaterialsLaboratoryGeotechnicalBranch.AlistofcurrentpreapprovedproprietarywallsystemsandtheirlimitationsisprovidedintheGeotechnical Design Manual Appendix15D.FortheSEwallshopdrawingreviewprocedure,seetheGeotechnical Design Manual Chapter15.

F. Design of Standard Plan Geosynthetic Walls

DetailsforconstructionaregivenintheStandard Plans SectionD.

G. Design of Soil Nail Walls

SoilnailwallsshallbedesignedinaccordancewiththeFHWAPublicationFHWA-NHI-14-007“Geotechnical Engineering Circular No. 7 Soil Nail Walls”.TheseismicdesignparametersshallbedeterminedinaccordancewiththemostcurrenteditionoftheAASHTOSEISMIC.TypicalsoilnailwalldetailsareprovidedinSection8.1.

H. MiscellaneousItems

RefertoSection8.1.9fordesigncriteria.

I. Joints

Everyjointinthewallshallprovideforexpansion.Forcast-in-placeconstructionaminimumof½inpremoldedfillershallbespecifiedinthejoints.Acompressiblebackupstripofclosedcellpolyethylenefoamorbutylrubberwithasealantonthefrontfaceisusedforprecastconcretewalls.

Forcantileveredandgravitywallsconstructedwithoutatrafficbarrierattachedtothetop,expansionjointspacingshallbeamaximumof24feetoncenters.Forcantileveredandgravitywallsconstructedwithatrafficbarrierattachedtothetop,expansionjointspacingshallbeamaximumof48feetoncentersorthatdeterminedforadequatedistributionofthetrafficcollisionloading.

Forcounterfortwalls,expansionjointspacingshallbeamaximumof32feetoncenters.

Forsoldierpileandsoldierpiletiebackwallswithconcretefasciapanels,jointspacingshallbe24–32feetoncenters.

Nojointsotherthanconstructionjointsshallbeusedinfootingsexceptatbridgeabutmentsandwheresubstructurechangessuchasspreadfootingtopilefootingoccur.Inthesecases,thefootingshallbeinterruptedbya½inpremoldedexpansionjointthroughboththefootingandthewall.Themaximumspacingofconstructionjointsinthefootingshallbe120feet.Thefootingconstructionjointsshouldhavea6inchminimumoffsetfromtheexpansionjointsinthewall.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-59 June 2017

15.8.2 Noise Barrier WallsA. General

DesignofnoisebarrierwallsshallbebasedontherequirementsandguidancecitedhereinandinthecurrentAASHTOLRFD,AASHTOSEISMIC,AASHTOLRFD Bridge Construction Specifications,WSDOTGeneral&BridgeSpecialProvisionsandtheStandard SpecificationsM41-10unlessotherwisecitedherein.

B. Loads

NoisebarrierwallsandtheircomponentsshallbedesignedforallapplicableloadsdefinedinthecurrentAASHTOLRFDChapter3.

WindloadsandonnoisebarriersshallbeasspecifiedinChapter3.

Seismicloadshallbeasfollows:

SeismicDeadLoad=As × f × D (8 .2-1)

Inwhich:

A × f≥0.10 (8 .2-2)Where:

As = Peakseismicgroundaccelerationcoefficientmodifiedbyshort-periodsitefactor

D = Deadloadofthenoisebarrierandit’scomponentsf =DeadloadcoefficientasspecifiedinTable8.2-1.

C. Design

1. Standard Plan Noise Barrier Walls

StandardplannoisebarrierwallshavebeendesignedinaccordancewiththeAASHTOGuide Specifications for Structural Design of Sound Barriers,1989andinterimsthrough2002.TheseismicdesignwasbasedonaPGAof0.35gwhichcorrespondstoapeakbedrockaccelerationof0.3gwithanamplificationfactorof1.18forstiffsoil.DetailsforconstructionofthesewallsareshownintheStandard Plans SectionD.

TheDesign ManualChapter740tabulatesthedesignwindspeedsandvariousexposureconditionsusedtodeterminetheappropriatewalltype.

ThedesignparametersusedinthestandardplannoisewallfoundationdesignaresummarizedintheGeotechnical Design ManualChapter17.

2. Non-Standard Noise Barrier Walls

Noisebarrierwallscontainingdesignparameterswhichexceedthoseusedinthestandardnoisebarrierwalldesignareconsideredtobenon-standard.

a. Noise Barrier Walls on Bridges and Retaining Walls

RefertoSection8.2.3B1fordesigncriteria.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-60 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.8.3 Buried StructuresA. General

InaccordancewithcurrentWSDOTpolicy,onlythecast-in-placereinforcedconcreteandprecastconcretearch,box,andellipticalstructuresshallbeusedforburiedhighwayandhydraulicstructureswithspansequalorgreaterthan20feet(measuredparalleltoroadwaycenterline).

ThetermculvertusedinthischapterandintheStandard Specifications M41-10appliestoallburiedhydraulicstructuresonly.Thetermtunnelappliestoallburiedhighwaystructures.

B. WSDOT Designed Standard Culverts

ForWSDOTdesignedStandardCulvertstheWSDOTBridgeandStructuresOfficehasdevelopedculvertstandardsforthePrecastReinforcedConcreteSplitBoxCulvert(PRCSBC)andPrecastReinforcedConcreteThree-SidedStructures(PRCTSS)withspanlengthsfrom20’to60’.SeeSection8.4forthelistofBridgeStandardDrawingsforBuriedStructurescontainingthegeometrytable,typicalsectionsandgeneraldetails.SeeAppendix8.3-B1to8.3-B3fortheDesignCriteriaused.

C. GeneralDesignRequirements

DesignofburiedstructuresshallbeinaccordancewiththerequirementsandguidancecitedhereinandinthecurrentAASHTOLRFD,AASHTOSEISMIC, Special Provisions andtheStandard Specifications M41-10.

Allburiedstructuresshallbedesignedforaminimumservicelifeof75years.

Thespanlengthshallbethewidestopeningfrominteriorfacetointeriorfaceasmeasuredalongthecenterlineoftheroadway.

Allburiedstructureswithspanlengthsgreaterthan20feetshallbeloadratedinaccordancewithSection13.

1. ApplicationofLoads

RefertoSection8.3.3.B

2. Buried Structure Wingwall and Headwall Design

RefertoSection8.3.3.D

3. BuriedStructureSeismicDesign

RefertoSection8.3.3.E

D. Design of Box Culverts

BoxculvertsshallbedesignedinaccordancewithStandard Specifications Section7-02.3(6).RefertoSection8.3.4foradditionaldesigncriteriaspecifictoboxculverts.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-61 June 2017

E. Design of Precast Reinforced Concrete Three-Sided Structures

PrecastreinforcedconcretethreesidedstructuresshallbedesignedandconstructedinaccordancewithStandard Specifications Section7-02.3(6).Precastreinforcedconcretethreesidedstructuresarelimitedtospansof26feetorless.RefertoSection8.3.5foradditionaldesigncriteriaspecifictoprecastreinforcedconcretethreesidedstructures.

F. Design of Detention Vaults

Designofcompletelyenclosedburieddetentionsvaultsshallnotbepermitted.

G. Design of Tunnels

Ventilation,safetyaccess,firesuppressionfacilities,warningsigns,lighting,emergencyegress,drainage,operation,andmaintenanceareextremelycriticalissuesassociatedwiththedesignoftunnelsandwillrequiretheexpertiseofgeologists,tunnelexperts,andmechanicalengineers.

Formotorvehiclefireprotection,astandardhasbeenproducedbytheNationalFireProtectionAssociation,NFPA502–Standard for Road Tunnels, Bridges, and Other Limited Access Highways.ThisdocumentshallbeusedforallWSDOTtunnels.NFPA502–StandardforRoadTunnels,Bridges,andOtherLimitedAccessHighways,usestunnellengthtodictateminimumfireprotectionrequirements:

300feetorless:nofireprotectionrequirements 300–800feet:minorfireprotectionrequirements 800feetormore:majorfireprotectionrequirements

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-62 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.9 Bearings and Expansion Joints15.9.1 ExpansionJoints

A. General Considerations

Bridgesshallbedesignedtoaccommodatemovementsfromallsources,includingthermalfluctuations,concreteshrinkage,prestressingcreep,andelasticpost-tensioningshortening.

Whereseismicisolationbearingsareused,expansionjointsshallbedesignedtoaccommodateseismicmovementsinordertoallowtheisolationbearingstofunctionproperly.

Expansionjointsshallbedesignedtoaccommodatemovementwhileminimizingimpositionofsecondarystressesinthestructure.Expansionjointsystemsshallbesealedtopreventwater,salt,anddebrisinfiltrationtosubstructureelementsbelow.Theyshallalsobedesignedtomaximizedurabilitywhileprovidingarelativelysmoothridingsurface.

Semi-integralconstructionshallbesubjecttothebridgelengthlimitationsstipulatedbelow.Insemi-integralconstruction,concreteenddiaphragmsarecastmonolithicallywiththebridgedeck.Girdersaresupportedonelastomericbearings,whicharesupportedonastuborcantileverabutment.Approachslabanchors,inconjunctionwithacompressionseal,shallconnectthemonolithicenddiaphragmtothebridgeapproachslab.

1. Concrete Bridges

Semi-integralconstructionshallbeusedforprestressedconcretegirderbridgesunder450feetlongandforpost-tensionedsplicedconcretegirderandcast-in-placepost-tensionedconcreteboxgirderbridgesunder400feetlong.Stub“L”andcantilever“L”typeabutmentswithexpansionjointsatthebridgeendsshallbeusedwherebridgelengthexceedsthesevalues.

2. Steel Bridges

“L”typeabutmentsshallbeusedwithexpansionjointsattheendsformultiplespanbridges.

Theuseofintermediateexpansionjointsshallbeavoidedwhereverpossible.

Forthepurposesofthissection,expansionjointsarebroadlyclassifiedintothreecategoriesbasedupontheirtotalmovementrangeasfollows:

SmallMovementRangeJoints TotalMovementRange<=1¾inch

MediumMovementRangeJoints 1¾inch<TotalMovementRange<5inch

LargeMovementRangeJoints TotalMovementRange>=5inch

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-63 June 2017

B. General Design Criteria

Expansionjointsandbearingsshallbedesignedinterdependentlyandinconjunctionwiththeanticipatedbehavioroftheoverallstructure.

Shrinkageanduniformthermalvariationmovementsshallbecalculatedasfollows:

1. ShrinkageEffects

Theshrinkagestrainusedforsizingexpansionjointsthatareinstalled30to60daysfollowingconcretedeckplacementshallbenolessthan0.0002.Thisvalueshallbecorrectedforrestraintconditionsimposedbyvarioussuperstructuretypesasfollows:

∆shrink

= β×µ×Ltrib (9 .1 .2-1)

Where:Ltrib = Tributarylengthofthestructuresubjecttoshrinkageβ = Ultimateshrinkagestrainafterexpansionjointinstallation;estimatedas

0.0002inlieuofmorerefinedcalculationsµ = Restraintfactoraccountingfortherestrainingeffectimposedby

superstructureelementsinstalledbeforetheconcreteslabiscast0.0forsteelgirders,0.5forprecastprestressedconcretegirders,0.8forconcreteboxgirdersandT-beams,1.0forconcreteflatslabs

2. ThermalEffects

InlieuoftheproceduredescribedinAASHTOLRFDArticle3.12.1,uniformthermalmovementrangeshallbecalculatedusingthemaximumandminimumanticipatedbridgesuperstructureaveragetemperaturesnotedbelow.ForthepurposeofcombiningloadcasesinaccordancewithAASHTOLRFDArticle3.4.1,theloadfactorusedforuniformthermal(TU)displacementsshallbetakenas1.0.

ConcreteBridges: 0°Fto100°F

SteelBridges(easternWashington) -30°Fto120°F

SteelBridges(westernWashington) 0°Fto120°F

Totaluniformthermalmovementrangeshallbecalculatedas:

∆temp = α × Ltrib × δT (9 .1 .2-2)

Where:Ltrib = Tributarylengthofthestructuresubjecttothermalvariationα = Coefficientofthermalexpansion;0.000006in./in./°Fforconcrete

and0.0000065in./in./°FforsteelδT Bridgesuperstructureaveragetemperaturerangeasafunctionof

bridgetypeandlocation

InaccordancewithStandard SpecificationsM41-10,contractdrawingsshallstatedimensionsatanormaltemperatureof64°Funlessspecificallynotedotherwise.Constructionandfabricationactivitiesatstructureaveragetemperaturesotherthan64°FrequiretheContractororfabricatortoadjustlengthsofstructuralelementsandconcreteformsaccordingly.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-64 WSDOT Bridge Design Manual M 23-50.17 June 2017

Stripsealandmodularexpansionjointsystemsaretypicallyinstalledinpreformedconcreteblockoutsafterthebridgedeckconcretehasbeencast.Intheseinstances,concreteshallbeplacedintheblockoutwiththeexpansionjointdevicesetatagapthatcorrespondstothetemperatureofthealreadyconstructedbridgedeckatthetimeconcreteisplacedintheblockout.Inordertoaccomplishthis,expansiondevicegapsettingsshallbespecifiedonthecontractdrawingsasafunctionofsuperstructureambientaveragetemperature.Generally,thesesettingsshallbespecifiedfortemperaturesof40°F,64°F,and80°F.

C. SmallMovementRangeJoints

Elastomericcompressionsealsshallbeusedforallsmallmovementrangeapplicationsfornewbridges.Elastomericcompressionsealsorpouredsiliconesealantmaybeusedforrehabilitationofexistingsmallmovementrangeexpansionjointsandwidenings.

1. CompressionSeals

Compressionsealsshallbedesignedandinstalledtoeffectivelysealajointagainstallwateranddebrisinfiltration.Compressionsealsshallextendcontinuouslyacrossthefullroadwaywidthandupintotrafficbarriers.Nofieldsplicesofcompressionsealsareallowed.

Compressionsealsshallbeinstalledagainstsmooth,straightverticalconcretefaces.Concretesurfacesmaybeeitherformedorsawcut.PolyesterorelastomericconcretenosingmaterialshallbeusedforrehabilitationofexistingcompressionsealjointsinaccordancewithSection9.1.3Dbelow.

Fordesignpurposes,theminimumandmaximumworkingwidthsofthesealshallbe40percentand85percentoftheuncompressedwidth.Thesemeasurementsaretakenperpendiculartothejointaxis.Compressedsealwidthatthenormalconstructiontemperatureof64°Fmaybetakenas60percentoftheseal’suncompressedwidth.Forskewedjoints,bridgedeckmovementsshallbeseparatedintocomponentsperpendicularandparalleltothejointaxis.Sheardisplacementofthesealoverthefullexpectedtemperaturerangeshallbelimitedto22percentofitsuncompressedwidth.

2. Rapid-CureSiliconeSealants

Rapid-curesiliconesealantsmaybeinstalledagainsteitherconcreteorsteel.Concreteorsteelsubstratesurfacesshallbethoroughlycleanedbeforethesealantisinstalled.

Rapid-curesiliconesealantsshallbedesignedandinstalledbaseduponthemanufacturer’srecommendations.

3. AsphalticPlugJoints

Asphalticplugjointsarenotallowed.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-65 June 2017

4. Headers

Expansionjointheadersfornewconstructionshallbethesameclassstructuralconcreteasusedforthebridgedeckandshallbecastintegrallywiththedeck.

Expansionjointheadersinstalledaspartofarehabilitativeand/oroverlayprojectshallbeeitherpolyesterconcreteorelastomericconcrete.ExpansionjointheadersshallbeinaccordancewithGeneralSpecialProvisionsintheRFPAppendix.

ConcreteheadersshallbeconstructedoneachsideofanexpansionjointwhenanHMAoverlayisinstalledatopanexistingconcretebridgedeck.

Forbridgeoverlays,modifiedconcreteoverlay(MCO)materialmayproviderigidsidesupportforanelastomericcompressionsealorarapidcuresiliconesealantbeadwithouttheneedforseparatelyconstructedelastomericconcreteorpolyesterconcreteheaders.Suchmodifiedconcreteoverlayheadersmayutilizeweldedwirefabricasreinforcement.

D. MediumMovementRangeJoints

1. Steel Sliding Plate Joints

Steelslidingplatesshallbelimitedtothefollowingspecificapplications:

i) sidewalksandcrosswalks

ii) modularexpansionjointupturnsattrafficbarriers

iii)bridgedeckapplicationsinvolvingunusualmovements(translationandlargerotations)notreadilyaccommodatedbymodularexpansionjoints.

AllapplicationssubjecttopedestriantrafficshallmeetADArequirementsandshallincludeanon-skidsurface.Non-pedestriantrafficapplicationsshallbegalvanizedorpaintedtoprovidecorrosionresistance.

2. StripSealJoints

Anelastomericstripsealexpansionjointshallconsistofapreformedelastomericglandmechanicallylockedintosteeledgerailsembeddedintotheconcretedeckoneachsideofanexpansionjointgap.Unfoldingoftheelastomericsealaccommodatesmovement.Edgerailsshallbeanchoredtotheconcretedeck.Thesystemshallbedesignedanddetailedtoaccommodatethereplacementofdamagedorwornsealswithminimaltrafficdisruption.

Eitherastandardanchorageoraspecialanchoragemaybeusedforastripsealexpansionjoint.Thespecialanchorageincorporatessteelreinforcementbarloopsweldedtointermittentsteelplates,whichinturnareweldedtothesteelshape.Thespecialanchorageshallbeusedforveryhightrafficvolumesorapplicationssubjecttosnowplowhits.Inapplicationshighlysusceptibletosnowplowhitsandconcomitantdamage,theintermittentsteelplatesshallbedetailedtoprotrude¼″abovethebridgedecksurfacetolaunchthesnowplowbladeandpreventitfromcatchingontheforwardextrusion.

Thestandardanchoragerequiresaminimum7inchdeepblockout.Thespecialanchoragerequiresaminimum9inchdeepblockout.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-66 WSDOT Bridge Design Manual M 23-50.17 June 2017

3. Bolt-down Panel Joints

Bolt-downpaneljointsarenotallowed.

Onbridgeoverlayandexpansionjointrehabilitationprojects,existingbolt-downpaneljointsshallbereplacedwithrapid-curesiliconesealantjointsorstripsealexpansionjoints.

E. LargeMovementRangeJoints

1. Steel Finger Joints

Steelfingerjointsmayonlybeusedwheremodularexpansionjointsareincapableofaccommodatingthemovementsorareotherwisenotfeasible.Elastomericormetaltroughsshallbeinstalledbeneathsteelfingerjointstocatchandredirectrunoffwater.

Thesteelfingersshallbedesignedtosupporttrafficloadswithsufficientstiffnesstoprecludeexcessivevibration.Inadditiontolongitudinalmovement,fingerjointsshallaccommodaterotationanddifferentialverticaldeflectionacrossthejoint.Fingerjointsshallbefabricatedwithaslightdownwardtapertowardtheendsofthefingersinordertominimizepotentialforsnowplowbladedamage.

2. ModularExpansionJoints

Modularexpansionjointsshallprovidewatertightwheelloadtransferacrossexpansionjointopenings.Modularexpansionjointsaregenerallyshippedinacompletelyassembledconfiguration.Modularexpansionjointslongerthan40feet.maybeshippedinsegmentstoaccommodateconstructionstagingand/orshippingconstraints.

a. OperationalCharacteristics

Modularexpansionjointsshallcompriseaseriesofsteelcenterbeamsorientedparalleltotheexpansionjointaxis.Elastomericstripsealsorbox-typesealsshallattachtoadjacentcenterbeams,preventinginfiltrationofwateranddebris.Thecenterbeamsshallbesupportedonsupportbars,whichspanintheprimarydirectionofanticipatedmovement.Thesupportbarsshallbesupportedonslidingbearingsmountedwithinsupportboxes.Polytetrafluoroethylene(PTFE)-stainlesssteelinterfacesshallbeusedbetweenelastomericsupportbearingsandsupportbars.

ModularexpansionjointsystemsshallmeetthefatigueresistancecharacterizationrequirementsspecifiedintheSpecialProvisionformodularexpansionjointsattimeofcontractaward.

CenterbeamfieldsplicesshallbecarefullydesignedandconstructedtomitigatefatiguesusceptibilityinaccordancewiththeSpecialProvisions.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-67 June 2017

b. MovementDesign

Modularexpansionjointsshallbesizedtoaccommodate115percentofcalculatedtotalmovementrange.Contemporarymodularexpansionjointspermitapproximately3inchesofservicemovementperelastomericsealelement.Extremeeventmovementrangesofupto5inchperelastomericsealelementareallowedprovidedthatsupportbarsandsupportboxesaresizedanddetailedtoaccommodatethelargercumulativemovementwithoutstructurallydamagingthemodularexpansionjointordetachinganyelastomericstripsealelements.Tominimizeimpactandwearonbearingelements,themaximumgapbetweenadjacentcenterbeamsshallbelimitedto3½inch.

Tofacilitatetheinstallationofamodularjointattemperaturesotherthanthe64°Fnormaltemperature,theplansshallspecifyexpansiongapdistancesface-to-faceofedgebeamsasafunctionofthesuperstructuretemperatureatthetimeofinstallation.

c. ReviewofShopDrawingsandStructuralDesignCalculations

Modularexpansionjointsshallbedesigned,tested,fabricated,QA\QCinspected,andinstalledinaccordancetheGeneralSpecialProvisionintheRFPAppendix,includingsubmittalofdesigncalculations,fatiguetestingresults,weldprocedures,andshopdrawings.

Theexpansionjointsystemshallbedesignedtoensurecompleteconcreteconsolidationunderneathallsupportboxes.Aminimumverticalclearanceof2inchshallbeprovidedbetweenthebottomofeachsupportboxandthetopoftheconcreteblockout.Alternatively,whenverticalclearanceisminimal,groutpadsmaybeplacedunderneathsupportboxesbeforecastingtheconcretewithintheblockout.

d. Construction Considerations

Temperatureadjustmentdevicesshallberemovedassoonaspossibleafterconcreteplacementintheblockout.

15.9.2 BearingsA. General Considerations

Bearingsandexpansionjointsshallbedesignedinterdependentlyandinconjunctionwiththeanticipatedbehavioroftheoverallstructure.

B. Force Considerations

Bridgebearingsshallbedesignedtotransferallanticipatedloadsfromthesuperstructuretothesubstructure.BearingdesigncalculationsshallbebasedupontherelevantloadcombinationsandloadfactorsstipulatedintheAASHTOLRFD.Impactneednotbeappliedtoliveloadforcesinthedesignofbearings.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-68 WSDOT Bridge Design Manual M 23-50.17 June 2017

C. MovementConsiderations

Themovementrestrictionsimposedbyabearingshallbecompatiblewiththemovementsallowedbyanadjacentexpansionjoint.Bothbearingsandexpansionjointsshallbedesignedconsistentwiththeanticipatedloadanddeformationbehavioroftheoverallstructure.Designrotationsshallbecalculatedasfollows:

1. ElastomericandFabricPadBearings

Themaximumservicelimitstaterotationforbearingsthatdonothavethepotentialtoachievehardcontactbetweenmetalcomponentsshallbetakenasthesumofunfactoreddeadandliveloadrotationsplusanallowanceforfabricationandconstructionuncertaintiesof0.005radians.

2. HLMR Bearings

High-loadmulti-rotational(HLMR)bearingsincludesphericalbearings,discbearings,cylindricalbearingsandpotbearings.

BothserviceandstrengthlimitstaterotationsshallbeusedinthedesignofHLMRbearings.Theserotationsshallbeshownontheplanstoallowthemanufacturertoproperlydesignanddetailabearing.

DeformableelementssuchaspolyetherurethanediscsandPTFEshallbedesignedforservicelimitstateloadsandrotations.Theservicelimitstaterotationshallincludeanallowanceforuncertaintiesof±0.005radians.

Themaximumstrengthlimitstaterotationshallbeusedtoassurethatpotentialhardcontact(metal-to-metalormetal-to-concrete)isprevented.Fordiscbearings,thestrengthlimitstaterotationshallincludeanallowanceof±0.005radiansforuncertainties.ForotherHLMRbearingsthestrengthlimitstaterotationshallincludeanallowanceof±0.005radiansforfabricationandinstallationtolerancesandanadditionalallowanceof±0.005radiansforuncertaintiesinaccordancewiththeAASHTOLRFD Bridge Design Specifications.

D. Detailing Considerations

HLMRbearingsshallbedesigned,detailed,fabricated,andinstalledtofacilitateinspection,maintenance,andeventualreplacement.Jackingpointsshallbeidentifiedinthecontractdrawingssothatbearingscanbereset,repaired,orreplaced.

PrestressedconcretegirderbridgeshavingendTypeA(semi-integral)neednotbedetailedtoaccommodateelastomericbearingreplacementatabutments.PrestressedconcretegirderbridgeshavingendTypeB(L-typeabutments)shallbedesignedanddetailedtoaccommodateelastomericbearingreplacementatabutments.Specifically,girderstopsandenddiaphragmsshallbedetailedtoaccommodatetheplacementofhydraulicjacks.Thestandardenddiaphragmsforlong-spangirdersmaynothavesufficientflexuralandshearcapacitytosupportjackinginducedstresses.Sufficientsteelreinforcementshallbeprovidedtoaccommodateshearforcesandbendingmomentsinducedbyjacking.(GirderendTypesAandBaredepictedChapter5)Intermediatepiersofprestressedconcretegirderbridgeshavingsteelreinforcedelastomericbearingsshallalsobedesignedanddetailedtofacilitatebearingreplacement.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-69 June 2017

E. BearingTypes

1. ElastomericBearings

SteelreinforcedelastomericbearingsshallbedesignedusingtheAASHTOLRFDMethodBprocedure.Shearmodulusshallbespecifiedontheplansas165psiat73degFwithoutreferencetodurometerhardness.

ElastomericbearingsshallconformtotherequirementsofAASHTOM251-Plain and Laminated Elastomeric Bridge Bearings.ShimsshallbefabricatedfromASTMA1011Grade36steelunlessnotedotherwiseontheplans.Bearingsshallbelaminatedin½inchthickelastomericlayerswithaminimumtotalthicknessof1inch.Foroverallbearingheightslessthan5inches,aminimumof¼inchofsideclearanceshallbeprovidedoverthesteelshims.Foroverallheightsgreaterthan5inches,aminimumof½inchofsideclearanceshallbeprovided.Liveloadcompressivedeflectionshallbelimitedto1/16inch.Compressivedeadloadandliveloadshallbespecifiedontheplans.

Withrespecttowidth,elastomericbearingsshallbedesignedanddetailedasfollows:

i. Forprestressedconcretewideflangegirders(WF36GtoWF100G),theedgeofthebearingpadshallbesetbetween1inchminimumand9inchmaximuminsideoftheedgeofthegirderbottomflange.

ii. ForprestressedconcreteI-girders,bulb-teegirders,anddeckbulb-teegirders,theedgeofthebearingpadshallbeset1inchinsideoftheedgeofthegirderbottomflange.

iii. Forallprestressedconcretetubgirders,theedgeofthebearingshallbeset1inchinsideoftheedgeofthebottomflange.Bearingpadsforprestressedconcretetubgirdersshallbecenteredclosetothecenterlineofeachweb.

iv. Forallprestressedconcreteslabsonebearingpadandcorrespondinggroutpadisrequiredforeachendoftheprestressedconcreteslab.Thecenterlineofthebearingandgroutpadshallcoincidewiththecenterlineoftheprestressedconcreteslab.Theneedforsteelshimsshallbeassessedduringthebearingdesign.

Inordertofacilitatecompressiveloadtesting,futurebearingreplacement,andverticalgeometrycoordination,thefollowingtableshallbeincludedinthePlans:

Bearing Design TableServiceILimitState

Dead load reaction --------- kipsLive load reaction (w/o impact) --------- kipsUnloaded height --------- inchesLoaded height (DL) --------- inchesShear modulus at 73º F --------- psi

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-70 WSDOT Bridge Design Manual M 23-50.17 June 2017

Intheconstructionofprecastprestressedconcretegirderandsteelgirderbridges,elastomericbearingsneednotbeoffsettoaccountfortemperaturevariationduringerectionofthegirders.Girdersmaybesetatopelastomericbearingsattemperaturesotherthanthemeanofthetemperaturerange.Thisshallbestatisticallyreconciledbyassumingamaximumthermalmovementineitherdirectionof:

Δtemp=0.75∙α∙L∙(TMaxDesign–TMinDesign)

whereTMaxDesignisthemaximumanticipatedbridgedeckaveragetemperatureandTMinDesignistheminimumanticipatedbridgedeckaveragetemperatureduringthelifeofthebridge.

Forprecastprestressedconcretegirderbridges,themaximumthermalmovement,Δtemp,shallbeaddedtoshrinkageandlong-termcreepmovementstodeterminetotalbearingheightrequired.Theshrinkagemovementforthisbridgetypeshallbehalfthatcalculatedforacast-in-placeconcretebridge.

2. Fabric Pad Sliding Bearings

Fabricpadslidingbearingsincorporatefabricpadswithapolytetrafluoroethylene(PTFE)-stainlesssteelslidinginterfacetopermitlargetranslationalmovements.

UnfilledPTFEshallbeusedforfabricpadslidingbearings.

UnfilledPTFEshallberecessedhalfitsdepthintoasteelbackingplate,whichshallbebondedtothetopofafabricpad.Thestainlesssteelsheetshallbesealweldedtoasteelsoleplateattachedtothesuperstructure.

a. Fabric Pad Design

Maximumserviceloadaveragebearingpressureforfabricpadbearingdesignshallbe1,200psi.Maximumserviceloadedgebearingpressureforfabricpadbearingdesignshallbe2,000psi.

b. PTFE – Stainless Steel Sliding Surface Design

PTFEshallbeatleast3/16inchthickandrecessed3/32inchintoaminimum½inchthicksteelplatethatisbondedtothetopofthefabricpad.

StainlesssteelsheetshallbefinishedtoaNo.8(Mirror)finishandshallbesealweldedtothesoleplate.

3. Pin Bearings

Steelpinbearingsmaybeusedtosupportheavyreactionswithmoderatetohighlevelsofrotationaboutasinglepredeterminedaxis.

4. RockerandRollerTypeBearings

Rockerbearingsandsteelrollerbearingsarenotallowedfornewbridges.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-71 June 2017

5. SphericalBearings

WovenPTFEshallbeusedonthecurvedsurfacesofsphericalbearings.Whensphericalbearingsaredetailedtoaccommodatetranslationalmovement,wovenPTFEshallbeusedontheflatslidingsurfacealso.

Sphericalbearingsshallbedetailedwiththeconcavesurfaceorienteddownward.Structuralanalysisoftheoverallstructureshallrecognizethecenterofrotationofthebearingnotbeingcoincidentwiththeneutralaxisofthegirderabove.

Thecontractdrawingsshallshowthediameterandheightofthesphericalbearinginadditiontoalldead,live,andseismicloadings.Soleplateconnections,baseplate,anchorbolts,andanyappurtenancesforhorizontalforcetransfershallbedetailedontheplans.ThesphericalbearingmanufacturershallsubmitshopdrawingsanddetailedstructuraldesigncalculationsofsphericalbearingcomponentsforreviewandcommentbyWSDOT.

6. Disc Bearings

Discbearingscomposedofanannularshapedpolyetherurethanediskwithasteelshear-resistingpininthecentermaybeused.AflatPTFE-stainlesssteelsurfacemaybeincorporatedintothebearingtoalsoprovidetranslationalmovementcapability.

7. SeismicIsolationBearings

Seismicisolationbearingsmaybeused,subjecttotherestrictionsoutlinedinSections4.2.2 and9.3.3.

F. Miscellaneous Details

1. TemporarySupportbeforeGroutingMasonryPlate

ThemasonryplateofanHLMRbearingshallbesupportedonagroutpadthatisinstalledafterthebearingandsuperstructuregirdersabovehavebeenerected.ThissequenceallowstheContractortolevelandslightlyadjustthehorizontallocationofthebearingbeforeimmobilizingit.Twomethodsfortemporarilysupportingthemasonryplateareacceptable:

a. ShimPacks

Multiplestacksofsteelshimplatesmaybeplacedatoptheconcretesurfacetotemporarilysupporttheweightofthegirdersontheirbearingsbeforegrouting.

b. Two-stepGroutingwithCastSleeves

Atwo-stepgroutingprocedurewithcast-in-placevoidedcoresmaybeusedforsmallerHLMRsnotgenerallysubjectedtouplift.Steelstudsareweldedtotheundersideofthemasonryplatetocoincidewiththevoidedcores.Withtemporaryshimsinstalledbetweenthetopoftheconcretesurfaceandtheundersideofthemasonryplate,thevoidedcoresarefullygrouted.Oncethefirststagegrouthasattainedstrength,theshimsareremoved,themasonryplateisdammed,andgroutisplacedbetweenthetopoftheconcretesurfaceandtheundersideofthemasonryplate.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-72 WSDOT Bridge Design Manual M 23-50.17 June 2017

2. Anchor Bolts

Anchorboltsshallbedesignedtoresistallhorizontalshearforcesanddirecttensionforceduetouplift.

AnchorboltsshallbeASTMA449wherestrengthsequaltoASTMA325arerequiredandASTMA354,GradeBD,wherestrengthsequaltoASTMA490arerequired.AnchorboltsshallbeASTMF1554boltswithsupplementalCharpytestrequirementsinapplicationsinwhichtheboltsaresubjecttoseismicloading.

G. ContractDrawingRepresentation

Highloadmulti-rotationalbearingsshallbedepictedschematicallyinthecontractdrawings.Eachbearingmanufacturerhasuniquefabricatingmethodsandproceduresthatallowittofabricateabearingmosteconomically.Depictingthebearingsschematicallywithloadsandgeometricrequirementsprovideseachmanufacturertheflexibilitytoinnovativelyachieveoptimaleconomy.

H. ShopDrawingReview

High-loadmulti-rotationalbearingsshallbedesigned,tested,fabricated,QA\QCinspected,andinstalledinaccordancewiththeSpecialProvisionsintheRFPAppendix,includingsubmittalofdesigncalculationsandshopdrawings.

I. BearingReplacementConsiderations

Bearingsshallbedesignedanddetailedtopermitthereplacementofallelementssubjecttowear.Superstructureandsubstructureelementsshallbedesignedanddetailedtoaccommodateliftingofthesuperstructureusinghydraulicjackstofacilitatebearingelementreplacement.

Forbearingreplacements,theDesign-Buildershallshowanticipatedliftingloadsonthecontractdrawings.Limitationsonliftheightshallalsobespecified.Considerationshallbegiventoliftheightasitrelatestoadjacentexpansionjointselementsandadjoiningsectionsofrailing.Restrictionsondifferentialliftheightbetweenmultiplejacksshallbespecifiedtominimizestressesinducedinadjacentstructuralelements.

Jacksshallbesizedfor200percentofthecalculatedliftingload.

WSDOT Bridge Design Manual M 23-50.17 Page 15-73 June 2017

15.10 Signs, Barriers, Bridge Approach Slabs, and Utilities15.10.1 Sign and Luminaire Supports

A. Loads

1. General

ThereferenceusedindevelopingthefollowingofficecriteriaistheAASHTO“LRFD for Structural Supports for Highway Signs, Luminaires, and Traffic Signals,” First Edition Dated 2015, and shall be the basis for analysis and design.

2. DesignLife(Section11.5,AASHTO2015)

a. AnInfinitelifefatiguedesignwillbeusedforluminairesupports,overheadsignstructures,andtrafficsignalstructures.ThenumberofcyclesastructuremustwithstandwillbebasedontheADTTofa75yeardesignlifewitheachtruckinducingonecycleinaccordancewithAASHTOLRFDStandard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals First Edition,dated2015 includinginterims.

b. Roadsidesignstructureswillusea10yeardesignlife.

3. Dead Loads

Sign(includingpanelandwindbeams,doesnot includevert.bracing) 3.25lbs/ft2 Luminaire(effectiveprojectedareaofhead=3.3sqfeet) 60lbs/each FluorescentLighting 3.0lbs/ft StandardSignalHead 60lbs/each MercuryVaporLighting 6.0lbs/ft SignBrackets Calc. StructuralMembers Calc. 5footwidemaintenancewalkway (includingsignmountingbracketsandhandrail) 160lbs SignalHeadw/3lenses (effectiveprojectedareawithbackingplate=9.2sqfeet) 60lbs/each

4. Live Load

Aliveloadconsistingofasingleloadof500lbdistributedover2.0feettransverselytothemembershallbeusedfordesigningmembersforwalkwaysandplatforms.Theloadshallbeappliedatthemostcriticallocationwhereaworkerorequipmentcouldbeplaced,see2015AASHTOSpecifications Section3.6.

5. WindLoads

A3secondgustwindspeedshallbeusedintheAASHTOwindpressureequation.The3secondwindgustmapinAASHTOisbasedonthewindmapinANSI/ASCE7-10.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-74 WSDOT Bridge Design Manual M 23-50.17 June 2017

Thebasicwindspeedof115mphshallbeusedincomputingdesignwindpressureusingEquation3.8.1-1ofAASHTOSection3.8.1. Thisisbasedonthehighriskcategorywithameanrecurrenceintendedof1700yearsperAASHTOTable3.8-1.

TheAlternateMethodofWindPressuresgiveninAppendixCoftheAASHTO2009Specificationsshallnotbeused.

6. Fatigue Design

FatiguedesignshallconformtoAASHTOSection11withtheexceptionoftubeshape.AASHTOdoesnotprovidefatiguecalculationsfortubeshapeswithlessthan8sides.ThereforeincalculatingtheConstantAmplitudeFatigueThreshold,DT(Table11.9.3.1-2,AASHTO2015)wastakentobethelargerouterflattoflatdistanceoftherectangulartube.FatigueCategoriesarelistedinTable11.6-1.OverheadCantileverandBridgeSign&signalstructures,highmastluminaires(HMLT),poles,andbridgemountedsignbracketsshallconformtothefollowingfatiguecategories.

FatigueCategoryI:Overheadcantileversignstructures(maximumspanof30feetandnoVMSinstallation),overheadsignbridgestructures,highlevel(highmast)lightingpoles80feetortallerinheight,bridge-mountedsignbrackets,andallsignalbridges.Gantryorpolestructuresusedtosupportsensitiveelectronicequipment(tolling,weigh-in-motion,transmitter/receiver antennas,transponders,etc.)shallbedesignedforFatigueCategoryI, andshallalsomeetanydeflectionlimitationsimposedbytheelectronicequipmentmanufacturers.

FatigueCategoryII:ForstructuresnotexplicitlyfallingintoCategoryIorIII.

FatigueCategoryIII:Lightingpoles50feetorlessinheightwithrectangular,squareornon-taperedroundcrosssections,andoverheadcantilevertrafficsignalsatintersections(maximumcantileverlength65feet).

Signbridges,cantileversignstructures,signalbridges,andoverheadcantilevertrafficsignalsmountedonbridgesshallbeeitherattachedtosubstructureelements(e.g.,crossbeamextensions)ortothebridgesuperstructureatpierlocations.Mountingthesefeaturestobridgesasdescribedabovewillhelptoavoidresonanceconcernsbetweenthebridgestructureandthesigningorsignalstructure.

The“XYZ”limitationshowninTable10.1.4-2shallbemetforMonotubeCantilevers.The“XYZ”limitationconsistsoftheproductofthesignarea(XY)andthearmfromthecenterlineofthepoststothecenterlineofthesign(Z).SeeAppendix10.1-A2-1fordetails.

7. Ice and Snow Loads

A3psficeloadmaybeappliedaroundallthesurfacesofstructuralsupports,horizontalmembers,andluminaires,butappliedtoonlyonefaceofsignpanels(Section3.7,AASHTO2015).

Walk-throughVMSshallnotbeinstalledinareaswhereappreciablesnowloadsmayaccumulateontopofthesign,unlesspositivestepsaretakentopreventsnowbuild-up.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-75 June 2017

8. GroupLoadCombinations

Sign,luminaire,andsignalsupportstructuresaredesignedusingtheloadfactorsfromTable10.1.1-1,AASHTO2015.

B. Bridge Mounted Signs

1. Vertical Clearance

AllnewsignsmountedonbridgestructuresshallbepositionedsuchthatthebottomofthesignorlightingbracketdoesnotextendbelowthebottomofthebridgeasshowninFigure10.1.2-1.

Bridgemountedsignbracketsshallbedesignedtoaccountfortheweightofaddedlights,andforthewindeffectsonthelightstoensurebracketadequacyiflightingisattachedinthefuture.

2. Geometrics

a. Signsshallbeinstalledatapproximaterightanglestoapproachingmotorists.Forstructuresaboveatangentsectionofroadway,signsshallbedesignedtoprovideasignskewwithin5degreesfromperpendiculartothelowerroadway(seeFigure10.1.2-2).

b. Forstructureslocatedonorjustbeyondahorizontalcurveofthelowerroadway,signsshallbedesignedtoprovideasignchordskewwithin5degreesfromperpendiculartothechord-pointdeterminedbytheapproachspeed(seeFigure10.1.2-3).

c. Thetopofthesignshallbelevel.

3. Aesthetics

a. Thesupportstructureshallnotextendbeyondthelimitsofthesign.

b. Thesignsupportshallbedetailedinsuchamannerthatwillpermitthesignandlightingbrackettobeinstalledlevel.

4. SignPlacement

a. Signsshallneverbeplacedunderbridgedeckoverhangsordirectlyunderthedriplineofthebridge.

b. Aminimumof2inchesofclearanceshallbeprovidedbetweenbacksideofthesignsupportandedgeofthebridge,seeFigure10.1.2-5.

5. Installation

a. Resinbondedanchorsorcast-in-placeASTMF593Group1,ConditionAanchorrodsshallbeusedtoinstallthesignbracketsonthestructure.Sizeandminimuminstallationdepthshallbegivenintheplansorspecifications.Theresinbondedanchorsshallbeinstallednormaltotheconcretesurface,andshallnotbecoredrilled.Resinbondedanchorsshallnotbeplacedthroughthewebsorflangesofprestressedorpost-tensionedgirders.Resinbondedanchorsshallnotbeusedatoverheadlocationsotherthanwithhorizontalhole/anchoralignment.

b. Bridgemountedsignstructuresshallnotbeplacedonbridgeswithsteelsuperstructures.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-76 WSDOT Bridge Design Manual M 23-50.17 June 2017

6. Installing/ReplacingSignPanelsonExistingBridgeMountedSign Brackets

Wheninstallinganewsignpanelonanexistingbridgemountedsignbracket,theinstallationshallconformtothefollowing.

a. AllhardwareshallbereplacedinaccordancewithStandard Specifications Section9-28.11.

b. Theareaofthenewsignpanelshallnotexceedtheareaoftheoriginallydesignedsignpanel.

c. TheWSDOTinspectionreportforthebridgemountedsignbracketshallbereviewedtoensuretheassemblyisingoodcondition.Ifthereisnoinspectionreport,thenaninspectionshallbeperformedtoestablishthecurrentconditionoftheassembly.

7. MaterialSpecifications

a. MaterialspecificationsshallbeasshowninBridgeStandardDrawings 10.1-A6-1.

b. Allnon-stainlesssteelpartsshallbegalvanizedinaccordancewithAASHTOM111afterfabrication.BoltsandhardwareshallbegalvanizedinaccordancewithAASHTOM232.

C. Monotube Sign Structures Mounted on Bridges

1. Design Loads

DesignloadsforthesupportsoftheSignBridgesshallbecalculatedbasedonassuminga12footdeepsignovertheentireroadwaywidth,underthesignbridge,regardlessofthesignareainitiallyplacedonthesignbridge.ForCantileverdesignloads,guidelinesspecifiedinSection10.1.1shallbefollowed.ThedesignloadsshallfollowthesamecriteriaasdescribedinSection10.1.1.Loadsfromthesignbridgeshallbeincludedinthedesignofthesupportingbridge.

Incaseswhereasignstructureismountedonabridge,thesignstructure,fromtheanchorboltgroupandabove,shallbedesignedtoAASHTOStandard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals,FirstEdition,dated2015,includinginterims.TheconcretearoundtheanchorboltgroupandtheconnectingelementstothebridgestructureshallbedesignedtothespecificationsinthismanualandAASHTOLRFD.LoadsfromthesignstructuredesigncodeshallbetakenasunfactoredloadsforuseinAASHTOLRFD Bridge Design Specifications.

2. Vertical Clearance

VerticalclearanceforMonotubeSignStructuresshallbe20′-0″minimumfromthebottomofthelowestsigntothehighestpointinthetraveledlanes.SeeBridgeStandardDrawings10.1-A1-1,10.1A2-1,and10.1-A3-1forsamplelocationsofMinimumVerticalClearances.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-77 June 2017

3. Geometrics

Signstructuresshallbeplacedatapproximaterightanglestoapproachingmotorists.DimensionsanddetailsofsignstructuresareshownintheWSDOTStandardPlansG-60.10,G-60.20,G-60.30,G-70.10,G-70.20,G-70.30andBridgeStandardDrawings 10.1-A1-1,10.1-A1-2,and10.1-A1-3and10.1-A1-1,10.1-A1-2,and10.1-A1-3.Whenmaintenancewalkwaysareincluded,refertoStandardPlansG-95.10,G-95.20,andG-95.30.

D. Monotube Sign Structures

1. Sign Bridge Conventional Design

Table10.1.4-1providestheconventionalstructuraldesigninformationtobeusedforaSignBridgeLayout,BridgeStandardDrawings 10.1-A1-1;alongwiththeStructuralDetailsheets,whichareBridgeStandardDrawings 10.1-A1-1and10.1-A1-3;andGeneralNotes,BridgeStandardDrawings 10.1-A5-1; andMiscellaneousDetails,Appendix10.1-A5-2.Signbridgespanlengthsshallnotexceed180-feet.

2. Cantilever Conventional Design

Table10.1.4-2providestheconventionalstructuraldesigninformationtobeusedforaCantileverLayout,BridgeStandardDrawings 10.1-A2-1;alongwiththeStructuralDetailsheets,whichareBridgeStandardDrawings 10.1-A2-2and10.1-A2-3;andGeneralNotes,Appendix10.1-A5-1;andMiscellaneousDetails,Appendix10.1-A5-2. Cantileverarmlengthsshallnotexceed35-feet.CantileversignstructuresshallnotbeusedtosupportVMSsigns.

3. Balanced Cantilever Conventional Design

BridgeStandardDrawings 10.1-A3-1;alongwiththeStructuralDetailsheets,BridgeStandardDrawings 10.1-A3-2and10.1-A3-3,GeneralNotes,BridgeStandardDrawings 10.1-A5-1;andMiscellaneousDetails,Appendix10.1-A5-2 providestheconventionalstructuraldesigninformationtobeusedforaBalancedCantileverLayout,BalancedCantileversaretypicallyforVMSsignapplicationsandshallhavethesigndeadloadbalancedwithamaximumdifferenceofone-thirdtotwo-thirdsdistribution.

4. Monotube Sheet Guidelines

ThefollowingguidelinesapplywhenusingtheMonotubeSignStructureBridgeStandardDrawings 10.1-A1-1,10.1-A1-2,and10.1-A1-3;10.1-A2-1,10.1-A2-2,and10.1-A2-3;10.1-A3-1,10.1-A3-2,and10.1-A3-3;10.1A4-1,10.1A4-2,and10.1A4-3;and10.1-A5-1,10.1-A5-2,and10.1-A5-3.

Eachsignstructureshallbedetailedtospecify:

i. SignstructurebaseElevation,Station,andNumber.

ii. TypeofFoundation1,2,or3shallbeusedfortheMonotubeSignStructures,unlessanon-conventionaldesignisrequired.TheaverageLateralBearingPressureforeachfoundationshallbenotedontheFoundationsheet(s).

iii. Ifapplicable,labeltheElevationView“LookingBackonStationing”.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-78 WSDOT Bridge Design Manual M 23-50.17 June 2017

5. VMSInstallation

a. VMSunitsshallnotbeinstalledonunbalancedcantileverstructures.

b. VMSinstallationonSignBridgestructuresdesignedinaccordancewithAASHTO2015shallbeinstalledinaccordancewiththefollowing:

i. Onspans120feetandgreateruptotwoVMSunitsmaybeinstalledwithamaximumweightof4,000lbs.each.MaintenancewalkwaysmaybeinstalledbetweenVMSunits,butmaynotexceed160lbs/ft,orexceed50percentofthestructurespanlength.

ii. Onspanslessthan120feetuptothreeVMSunitsmaybeinstalledwithamaximumweightof4,000lbs.each.MaintenancewalkwaysmaybeinstalledbetweenVMSunits,butmaynotexceed160lbs/ft.

c. ThenumberofVMSinstalledonSignBridgestructuresdesignedpriortoAASHTO2015shallbereducedbyoneasdefinedinD.2-aandb.

E. Foundations

1. MonotubeSignStructureFoundationTypes

Thefoundationtypetobeusedshallbebasedonthegeotechnicalinvestigationperformedandgeotechnicalreportcompletedbythegeotechnicalengineerofrecord.Standardfoundationdesignsforstandardplantruss-typesignstructuresareprovidedinStandardPlansG-60.20, G-60.30,G-70.20,andG-70.30. MonotubesignstructurefoundationsareBridgeDesignOfficeconventionaldesignsandshallbeasdescribedinthefollowingparagraphs:

a. FoundationType1,isthepreferredfoundationtype.AfoundationType1consistsofadrilledshaftwithitsshaftcap.ThedesignoftheshaftdepthsshownintheSignBridgeStandardDrawingsarebasedonalateralbearingpressureof2,500psf.ThedesignershallchecktheseshaftdepthsusingLRFDmethodology.ForType1foundationdetailsandshaftdepthsseeSignBridgeStandardDrawings10.1-A4-1and10.1-A4-2.TheGeotechnicalreportforFoundationType1shouldincludethesoilfrictionangle,soilunitweight,allowablebearingpressureandtemporarycasingifrequired.TemporarycasingshallbeproperlydetailedinallFoundationType1sheetsiftheGeotechnicalEngineerrequiresthem.

b. FoundationType2isdesignedforalateralbearingpressureof2,500psf.SeeBridgeStandardDrawing10.1-A4-3forBridgeDesignOfficeconventionalFoundationType2designinformation.ThedesignershallchecktheseshaftdepthsusingLRFDmethodology.

c. FoundationType3replacesthefoundationType2forpoorsoilconditionswherethelateralbearingpressureisbetween2,500psfand1,500psf.SeeBridgeStandardDrawing10.1-A4-3forBridgeDesignOfficeconventionalFoundationType3designinformation.ThedesignershallchecktheseshaftdepthsusingLRFDmethodology.

d. BarrierShapeFoundationsarefoundationsthatincludeabarriershapecaponthetopportionofFoundationTypes1,2,and3.FoundationdetailsshallbemodifiedtoincludeBarrierShapeCapdetails.SeeBridgeStandardDrawing10.1-A5-1detailsasingleslopebarrier.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-79 June 2017

2. Luminaire,SignalStandard,andCameraPoleFoundationTypes

LuminairefoundationoptionsareshownonWSDOTStandardPlanJ-28.30. SignalStandardandCameraPolefoundationoptionsareprovidedonWSDOTStandardPlansJ-26.10andJ-29.10respectively.

3. Foundation Design

Shafttypefoundationsconstructedinsoilforsignbridges,cantileversignstructures,luminaires,signalstandardsandstrainpolesshallbedesignedinaccordancewiththecurrenteditionoftheAASHTOLRFD Standard Specifications For Highway Signs, Luminaires, and Traffic Signals;Section13.16;DrilledShafts.

NoprovisionsforfoundationtorsionalcapacityareprovidedinSection10.13oftheAASHTOStandard Specifications for Highway Signs, Luminaires, and Traffic Signals.Thefollowingapproachcanbeusedtocalculatetorsionalcapacityofsignstructure,luminaire,andsignalstandardfoundations:

TorsionalCapacity,φTn,φTn=F*tanφD

Where:F =Totalforcenormaltoshaftsurface(kip)

D =Diameterofshaft(feet)φ =Soiltofoundationcontactfrictionangle(degree),usesmallestfor

variablesoils

a. Monotube Sign Bridge and Cantilever Sign Structures Foundation Type1Design

Thestandardembedmentdepth“Z”,showninthetableonMonotubeSignStructure BridgeStandardDrawing10.1-A4-1,shallbeusedasaminimumembedmentdepthandshallbeincreasediftheshaftisplacedonaslopedsurface,oriftheallowablelateralbearingpressuresarereducedfromthestandard2500psf.Thestandarddepthassumedthatthetop4feetoftheC.I.P.capisnotincludedinthelateralresistance(i.e.,shaftdepth“D”inthecodementionedabove),butisincludedintheoverturninglengthofthesignstructure.Thesign structureshaftfoundationGSPsunderSection8-21intheRFPAppendixshallapplyforallFoundationType1shafts.

b. MonotubeSignStructuresFoundationType2and3

ThesefoundationdesignsareBridgeDesignOfficeconventionandshallnotbeadjusted.

c. Monotube Sign Structures Non-Conventional Design Foundations

Thegeotechnicalengineerofrecordshallidentifyanylocationswherethefoundationtypes(1,2,or3)willnotwork.Attheselocations,thedesignforcesarecalculated,usingtheAASHTOLRFD Standard Specifications for Structural Supports for Highway Signs, Luminaires, and traffic Signals,andappliedatthebottomofthestructurebaseplate.Theseforcesarethenconsideredserviceloadsandthenon-conventionaldesignfoundationisdesignedwiththeappropriateService,Strength,and

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-80 WSDOT Bridge Design Manual M 23-50.17 June 2017

ExtremeLoadCombinationLimitStatesandcurrentdesignpracticesoftheAASHTOLRFDandthismanual.TheanchorrodarrayshallbeusedfromTables10.1.4-1and10.1.4-2andshallbelongenoughtodeveloptherodsintotheconfinedconcretecoreofthefoundation.Therodlengthandthereinforcementforconcreteconfinement,showninthetopfourfeetoftheFoundationType1,shallbeusedasaminimum.

d. Signal Foundation Design

ThetrafficsignalstandardGSPsintheRFPSection8-20shallapplyforfoundationsinsubstandardsoils.

F. Truss Sign Bridges: Foundation Sheet Design Guidelines

IfaTrusssignstructureisused,refertoWSDOTStandard Plansforfoundationdetails.TherearefouritemsthatshouldbeaddressedwhenusingtheWSDOTStandard Plans,whichareoutlinedbelow.

a. Determineconduitneeds.Ifnoneexist,deleteallreferencestoconduit.Ifconduitisrequired,verifyastosizeandquantity.

b. Showsignbridgebaseelevation,number,dimensionandstation.

c. TheconcretebarriertransitionsectionshallbeinaccordancewiththeStandard Plans.

d. ThequantitiesshallbebasedontheStandard Plansdetailsasneeded.

15.10.2 BridgeTrafficBarriersA. General Guidelines and Policy

ThedesigncriteriafortrafficbarriersonstructuresshallbeinaccordancewithChapter13oftheAASHTOLRFDwiththefollowingsupplementalguidelines.

WSDOTstandard42-inchhighSingleSlopeconcretebarriershallbeusedforbarriersonnewbridgesandbridgeapproachslabs.WSDOTstandard34-inchor42-inchSingleSlopeconcretebarriershallbeusedforbarriersonexistingbridges,bridgerehabilitationprojects,andretainingwalls,includinggeosyntheticwallsandstructuralearthwalls.

Useof32-inchor42-inchF-Shapeconcretebarriershallbelimitedforcontinuityoffstructureorwithinacorridor.UseofPedestrianconcretebarriershallbelimitedforlocationswithsidewalk.Useof42-inchor54-inchcombinationbarriers(32-inchor34-inchconcretebarrierincreasedinheightbymetalrailing)maybeusedonlyifallowedbytheRFPCriteria.SeeChapter10AppendixforavailableWSDOTstandardbridgebarrierdesigns.

BarriersshallbedesignedforminimumTestLevel4(TL-4)designcriteriaregardlessofthebarrierheight.TheTestLevelshallbespecifiedinthePlans.

ATestLevel5(TL-5)barriershallbeusedonnewstructuresfor“T”intersections,forbarriersonstructureswitharadiusofcurvaturelessthan500feet(TL-4isacceptableforbarrierontheinsideofthecurve),locationswithAverageDailyTruckTraffic(ADTT)greaterthan10percent,andlocationswithapproachspeedsat50mphorgreater(e.g.freewayoff-ramps).

SeeAASHTOLRFDChapter13foradditionalTestLevelselectioncriteria.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-81 June 2017

B. Design Criteria

1. StructuralCapacity

AASHTOLRFDAppendixA13shallbeusedtodesignbarriersandtheirsupportingelements(i.e.deck).

ConcretebarriersshallbedesignedusingyieldlineanalysisasdescribedinAASHTOLRFDSectionA13.3.1.

DeckoverhangssupportingconcretebarriersshallbedesignedinaccordancewithAASHTOLRFDSectionA13.4asmodifiedbySection10.2.4.A.

2. Geometry

Thetrafficfacegeometryispartofthecrashtestandshallnotbemodified.

Concreteclearcovershallmeetminimumconcretecoverrequirementsandshallbeincreasedtoaccommodaterusticationgroovesorpatternsforarchitecturalreasons.Concretecovershallbeincreasedto2½″fortrafficfaceofbarrierforslipformmethodofconstruction.

The3″toedimensionoftheF-ShapebarriershallbeincreasedtoaccommodateHMAoverlaystoamaximumof6″.

Fordesigninganddetailingbridgedeckswithasuperelevationof8percentorless,theexteriorbarrierand/orthemedianbarriershallbeorientedperpendiculartothebridgedeck.Bridgedeckswithasuperelevationofmorethan8percent,thebarrieronthelowsideofthebridgeand/ormedianbarriershallbeorientedperpendiculartoan8percentsuperelevatedbridgedeck,andthebarrieronthehighsideofthebridgeshallbeorientedperpendiculartothebridgedeck.

3. MiscellaneousDesignInformation

SteelreinforcementbarsS1andS2orS3andS4andW1andW2(orequivalentbars)fromChapter10AppendixbarrierstandarddrawingsshallbeincludedintheBarList.

SteelreinforcementbarsS1,S3,AS1,AS3,andW1(orequivalentbars)fromChapter10Appendixbarrierstandarddrawingsshallbeepoxycoated.

AnymodificationstoChapter10AppendixbarrierstandarddrawingsortoWSDOTStandard Plans shallnotalterorcompromisethestructuralintegrityand/orcrashtestperformanceofbarrier.ModificationsshallbesubmittedforreviewandacceptancebyWSDOTforconcurrencewithdesignpolicies.

15.10.3 At Grade Concrete BarriersDifferentialgradeconcretebarrierswithagradedifferencegreaterthan4′-0″shallbedesignedasreinforcedconcreteretainingwallswithatrafficbarrieratthetopandabarriershapeatthecutface.

Differentialgradeconcretebarrierswithagradedifference4′-0″orlessshallbedesignedinaccordancetoAASHTOLRFDbarrierloadingwiththefollowingguidelines.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-82 WSDOT Bridge Design Manual M 23-50.17 June 2017

Fulldepthexpansionjointswithsheardowelsatthetopshallbeprovidedat120′maximumspacing.

Barriershallbecontinuousorhaveshearconnectionsbetweenbarriersectionsifprecast.

A. DifferentialGradeConcreteBarrierDesignCriteria

1. StructuralCapacity

ThestructuralcapacityofthedifferentialgradeconcretebarriershallbedesignedfortherequiredTestLevel(TL)vehicleimpactdesignforcesinaccordancewithAASHTOLRFDChapters5and13.

Anysectionalongthedifferentialgradeconcretebarriershallnotfailinshear,bending,ortorsionwhenthebarrierissubjectedtotheTLimpactforces.

ThetorsioncapacityofthedifferentialgradeconcretebarriershallbeequaltoorgreaterthanthetrafficbarriermomentgeneratedbytheTLimpactforcesappliedtothetopofthebarrier.

2. Global Stability

GlobalstabilityshallbeinaccordancewithSection10.3.1.A.

3. Geometry

Thetopofthedifferentialgradeconcretebarriershallhaveaminimumwidthof6″withaminimum6″cleardistancetoeachsideofluminaireorsignpoleifmountedontopofthedifferentialgradeconcretetrafficbarrier.ThetransitionflarerateshallfollowtheDesign Manual M22-01.

Barrierbottomshallbeembeddedaminimum6″belowroadway.Roadwaysubgradeandballastshallbeextendedbelowwholewidthofdifferentialgradeconcretebarrier.

B. TrafficBarrierMomentSlabDesignCriteria

1. StructuralCapacity

ThestructuralcapacityofthetrafficbarriermomentslabshallbedesignedfortherequiredTLimpactforcesinaccordancewithAASHTOLRFDChapters5and13.

Anysectionalongthemomentslabshallnotfailinshear,bending,ortorsionwhenthebarrierissubjectedtotheTLimpactforces.

Themomentslabreinforcementshallbedesignedtoresistforcesdevelopedatthebaseofthebarrier.MomentslabsupportingconcretebarriershallbedesignedinaccordancetoDeckOverhangDesigninaccordancewithAASHTOLRFDSectionA13.4asmodifiedbySection10.2.4.A.

ThetorsioncapacityofthemomentslabshallbeequaltoorgreaterthanthetrafficbarriermomentgeneratedbytheTLimpactforces.

2. Global Stability

See Section10.3.2.B.2.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-83 June 2017

3. Geometry

Momentslabsshallhaveaminimumwidthof4.0feetmeasuredfromthepointofrotationtotheheeloftheslabandaminimumaveragedepthof0.83feet.

4. SoilReinforcement

DesignofthesoilreinforcementshallbeinaccordancewiththeGeotechnical Design ManualChapter15.

5. WallPanel

ThewallpanelsshallbedesignedtoresistthedynamicpressuredistributionsasdefinedintheGeotechnical Design ManualChapter15.

Thewallpanelshallhavesufficientstructuralcapacitytoresistthemaximum design rupture load for the wall reinforcement designed in accordance with the Geotechnical Design ManualChapter15.

C. Precast Concrete Barrier

ConcretebarrierType2andType4shallbeusedinaccordancetoSection10.3.4.

15.10.4 BridgeTrafficBarrierRehabilitationA. General Guidelines and Policy

WhenidentifiedintheRFP,deficientrailsshallbeimprovedorreplacedwithinthelimitsofroadwayresurfacingprojectsinaccordancetoSection10.4.

RetrofitshallbeanapprovedcrashtestedrailsystemorshallbedesignedtothestrengthrequirementssetforthbySection2ofAASHTOStandard Specifications for Highway Bridges,17thedition.

See Section10.4.4andWSDOT Design Manualforreplacementcriteria.

See Section10.4.5and10.4.6foravailablebridgerailretrofitandbridgerailreplacementdesigns.

B. Design Criteria

1. StructuralCapacity

Astrengthandgeometricreviewshallberequiredforallbridgerailrehabilitationprojects.TheAASHTOLFDloadof10kipsshallbeusedintheretrofitofexistingtrafficbarriersystemsconstructedpriortotheyear2000.

Ifthestrengthoftheexistingbridgerailandtheirsupportingelements(i.e.deck)areunabletoresista10kipbarrierimpactdesignloadorhasnotbeencrashtested,thenmodificationsorreplacementwillberequiredtoimproveitsredirectionalcharacteristicsandstrength.

IfthedesignofthebridgerehabilitationincludesotherbridgecomponentsthatwillbedesignedusingAASHTOLRFDthenthefollowingminimumequivalentExtremeEvent(CT)trafficbarrierloadingcanbeused:

Flexure=(1.3)*(1.67)*(10kip)/(0.9)=24.10kip

Shear=(1.3)*(1.67)*(10kip)/(0.85)=25.54kip

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-84 WSDOT Bridge Design Manual M 23-50.17 June 2017

2. Geometry Standardthriebeamguardrailpostspacingis6′-3″exceptfortheSL-1

WeakPost,whichisat8′-4″.Postspacingcanbeincreasedupto10′-0″ifthethriebeamguardrailisnested(doubledup).

Guardrailshallbecontinuouswithoutgaps. DesignFguardrailendsectionsshallbeusedattheapproachandtrailing

endofthesegaps. StandardPlanthriebeamguardrailtransitionsshallbeusedateachcorner

ofthebridge. PlacementoftheretrofitsystemwillbedeterminedfromtheWSDOT

Design Manual.

15.10.5 Bridge RailingA. General Guidelines and Policy Pedestrianandbicycle/pedestrianrailingsshallbedesignedinaccordancewith

AASHTOLRFDChapter13withthefollowingsupplementalguidelines. Railingsshallbedesignedforvehicularimpactloadorbesuccessfullycrashtested

unlesslocationislowspeed,locationisoutsideofDesignClearZoneasdefinedinDesign Manual Chapter1600,orlocationhasminimalsafetyconsequencefromcollapseofrailing.

Minimumheightof54″shallbeprovidedforbicyclerailingsonstructures. FallProtectionrailingshallmeettherequirementsofWAC296-155. See Section10.5.2foravailablebridgerailingdesigns.

15.10.6 Bridge Approach SlabsBridgeapproachslabsarerequiredforallnewandwidenedbridges.

Bridgerunoffattheabutmentsshallbecarriedoffandcollectedatleast10feetbeyondthebridgeapproachslab.

A. BridgeApproachSlabDesignCriteria

Thestandardbridgeapproachslabdesignisbasedonthefollowingcriteria:

1. ThebridgeapproachslabisdesignedasaslabinaccordancewithAASHTOLRFD.(StrengthLimitState,IM=1.33,noskew).

2. Thesupportattheroadwayendisassumedtobeauniformsoilreactionwithabearinglengththatisapproximately⅓thelengthoftheapproachslab,or25′/3=8′.

3. TheEffectiveSpanLength(Seff),regardlessofapproachlength,isassumedtobe: 25′approach–8′=17′.

4. Longitudinalreinforcingbarsdonotrequiremodificationforskewedapproachesupto30degreesorforslablengthsgreaterthan25′.

5. Thebridgeapproachslabisdesignedwitha2″concretecovertothebottomreinforcing.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-85 June 2017

B. BridgeApproachSlabDetailing

Theminimumdimensionfromthebridgeis25′.

AS1barsshallbeepoxycoated.Bendingdiagramsshallbeshownforallcustomreinforcement.AllBridgeApproachSlabsheetswillhavetheAP2andAP7bars.Ifthereisatrafficbarrier,thenAP8,AS1,andAS2barsshallbeshown.

C. SkewedBridgeApproachSlabs

Forallskewedabutments,theroadwayendofthebridgeapproachslabshallbenormaltotheroadwaycenterline.Skewsgreaterthan20-degreesrequireanalysistoverifythebottommatreinforcement,andmayrequireexpansionjointmodifications.

Theroadwayendoftheapproachmaybesteppedtoreducethesizeortoaccommodatestagingconstructionwidths.Atnopointshalltheroadwayendoftheapproachslabbecloserthan25′tothebridge.Thesecriteriaapplytobothnewandexistingbridgeapproachslabs.Ifstepped,thedesignshallprovidetheabsoluteminimumnumberofstepsandthelongitudinalconstructionjointshallbelocatedonalaneline.SeeFigure10.6.4-1forclarification.

Inaddition,forbridgeswithtrafficbarriersandskewsgreaterthan20degrees,theAP8barsshallberotatedintheacutecornersofthebridgeapproachslabs.Typicalplacementisshownintheflaredcornersteeldetail,seeFigure10.6.4-2.

D. ApproachAnchorsandExpansionJoints

Forsemi-integralabutmentsorstubabutments,thejointdesignshallbecheckedtoensuretheavailablemovementofthestandardjointisnotexceeded.Forbridgeapproachslabswithbarrier,thecompressionsealshallextendintothebarrier.

LTypeAbutments

UseapinnedconnectioninaccordancewithSection10.6.5.

E. BridgeApproachSlabAdditionorRetrofittoExistingBridges

Bridgeapproachslabsonexistingbridgesshallbepinnedtotheexistingpavementseat,orattachedwithapproachanchors.

Thepinningoptionisonlyallowedonsemi-integralabutmentsasabridgeapproachslabadditionorretrofittoanexistingbridge.Figure10.6.6-1showsthepinningdetail.Asthisdetaileliminatestheexpansionjointbetweenthebridgeapproachslabandthebridge,themaximumbridgesuperstructurelengthislimitedto150′.Additionally,iftheroadwayendofthebridgeapproachslabisadjacenttoPCCProadway,thenthedetailshowninFigure10.6.6-2applies.PCCPdoesnotallowforasmuchmovementasHMAandajointisrequiredtoreducethepossibilityofbuckling.

Whenpinningisnotapplicable,thenthebridgeapproachslabshallbeattachedtothebridgewithapproachanchors.Iftheexistingpavementseatislessthan10inches,theseatshallbemodifiedtoprovideanacceptable,widerpavementseat.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-86 WSDOT Bridge Design Manual M 23-50.17 June 2017

Whenabridgeapproachslabisaddedtoanexistingbridge,thefinalgradeofthebridgeapproachslabconcreteshallmatchtheexistinggradeoftheconcretebridgedeck,includingbridgeswithasphaltpavement.TheexistingdepthofasphaltonthebridgeshallbeshowninthePlansandanequaldepthofasphaltplacedonanewbridgeapproachslab.Iftheexistingdepthofasphaltisincreasedordecreased,thefinalgradeshallalsobeshownonthePlans.

F. BridgeApproachSlabStaging

Ensurestagingfollowstrafficcontrol.

AddmechanicalspliceoptionasshowninFigure10.6.6-3whenneeded.

15.10.7 TrafficBarrieronBridgeApproachSlabsAgapbetweenthebridgeapproachslabandwingwall(orretainingwall)shallbeshowninthedetails.Theminimumgapistwicethelong-termsettlement,or2inchesasshowninFigure10.7-1.

Whenthetrafficbarrierisplacedonthebridgeapproachslab,• Barriershallextendtotheendofthebridgeapproachslab• Conduitdeflectionorexpansionfittingsshallbecalledoutatthejoints• Junctionboxlocationsshallstartandendintheapproach• Thetransversetopreinforcingintheslabshallbesufficienttoresistatrafficbarrierimpactload.

A. BridgeApproachSlaboverWingWalls,CantileverWallsorGeosynthetic Walls

Allwallsthatarecast-in-placebelowthebridgeapproachslabshallcontinuethebarriersoffitlinetogradeasshowninFigure10.7.1-1.

B. BridgeApproachSlaboverSEWalls

ThebarriersoffitlineshallmatchthatfortheSEWbarrierstartingatthebridgeexpansionjointasshowninFigures10.7.2-1and10.7.2-2.

15.10.8 Utilities Installed with New ConstructionA. GeneralConcepts

TheutilitiesincludedunderthissectionarethosedescribedinStandard Specifications Section6-01.10.BridgeplansshallincludeallhardwarespecificationsanddetailsfortheutilityattachmentasdescribedintheRFP.

1. Coating and Corrosion Protection

Whenthebridgeistoreceivepigmentedsealer,anyexposedutilitylinesandhangersshallbepaintedtomatchthebridge.Whenapigmentedsealerisnotrequired,steelutilityconduitsandhangersshallbepaintedorgalvanizedforcorrosionprotection.TheRFPCriteriashallspecifycleaningandpaintingprocedures.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-87 June 2017

B. Utility Design Criteria

AllutilitiesshallbedesignedtoresistStrengthandExtremeEventLimitsStates.UtilitysupportdesigncalculationsshallbestampedwithaStateofWashingtonProfessionalEngineerstamp,signedanddated.

Positiveresistancetoloadsshallbeprovidedinalldirectionsperpendiculartoandalongthelengthoftheutilityasrequiredbytheutilityengineer.

Dynamicfluidactionduetoloadsshallberesistedoffofthebridge.

Whereutilitiesareinsulated,theinsulationsystemshallbedesignedtoallowtheintendedmotionrangeofthehardwaresupportingtheutility.

Conduitshallberigid.

1. Utility Location

Utilitiesshallbelocated,suchthatafailurewillnotresultindamagetothebridge,thesurroundingarea,orbeahazardtotraffic.Theutilityshallbeinstalledbetweengirders.Utilitiesandsupportsshallnotextendbelowthebottomofthesuperstructure.Utilitiesshallbeinstallednolowerthan1foot0inchesabovethebottomofthegirders.Utilitiesshallnotbeattachedabovethebridgedecknorattachedtotherailingsorposts.

2. TerminationattheBridgeEnds

Utilityconduitandencasementsshallextend10feetminimumbeyondtheendsofthestructure.Utilitiesoffthebridgeshallbeinstalledpriortopavingofapproaches.

3. UtilityExpansion

Theutilitiesshallbedesignedwithasuitableexpansionsystemasrequiredtopreventlongitudinalforcesfrombeingtransferredtobridgemembers.

4. Utility Blockouts

Blockoutsshallbeprovidedinallstructuralmembersthatprohibitthepassageofutilities,suchasgirderenddiaphragms,piercrossbeams,andintermediatediaphragms.Theseblockoutsshallbelargeenoughtofitdeflectionfittings,andshallbeparalleltotheutility.Formultipleutilities,anoteshallbeaddedtotheplansthatthedeflectionfittingsshallbestaggeredsuchthatnofittingislocatedadjacenttoanother,ortheblockoutsshallbedesignedtofitbothfittings.Expansionfittingsshallbestaggered.

5. GasLinesorVolatileFluids

PipelinescarryingvolatilefluidsthroughabridgesuperstructureshallbedesignedinaccordancewithWAC480-93,Gas Companies—Safety, and Minimum Federal Safety Standard,Title49CodeofFederalRegulations(CFR)Sectionpart192. WAC468-34-210,Pipelines - Encasement,describeswhencasingisrequiredforcarryingvolatilefluidsacrossstructures.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-88 WSDOT Bridge Design Manual M 23-50.17 June 2017

6. Water Lines

TransversesupportorbracingshallbeprovidedforallwaterlinestocarryStrengthandExtremeEventLateralLoading.Inboxgirders(closedcell),aruptureofawaterlinewillgenerallyfloodacellbeforeemergencyresponsecanshutdownthewatermain.ThisshallbedesignedforasanExtremeEventIIloadcase,wheretheweightofwaterisadeadload(DC).Additionalweepholesoropengrating,orfulllengthcasingextending10-feetbeyondtheendofthebridgeapproachslabshallbeusedtooffsetthisExtremeEvent(seeFigure10.8.3-1).

7. SewerLines

Sewerlinesshallmeetthesamedesigncriteriaaswaterlines.

8. Electrical(PowerandCommunications)

Telephone,televisioncable,andpowerconduitshallbegalvanizedRigidMetalConduit(RGS)orRigidPolyvinylChlorideConduit(PVC).Wheresuchconduitisburiedinconcretecurbsorbarriersorhascontinuoussupport,suchsupportisconsideredtobeadequate.Wherehangersorbracketssupportconduitatintervals,themaximumdistancebetweensupportsshallbeinaccordancewithSection10.8.6.

C. Box/Tub Girder Bridges

Utilitiesshallbelocatedbetweengirdersorunderthebridgedecksoffitwhenthereinforcedconcreteboxortubgirdersarelessthan4feetinsideclearheight.

ContinuousSupportandConcretePedestals

Specialutilities(suchaswaterorgasmains)inboxgirderbridgesshalluseconcretepedestals.Continuoussupportsshallnotbeused.

D. TrafficBarrierConduit

Allnewbridgeconstructionshallinstalltwo2-inchgalvanizedRigidMetalConduit(RGS)orRigidPolyvinylChlorideConduit(PVC)inthetrafficbarriers.PVCconduitmaybeusedonlyinstationary-formbarriers,andwillconnecttoRGSusingaPVCadaptorwhenexitingthebarrier.RGSconduitmaybeusedinstationary-formbarriers,butitshallbeusedinslipformbarriers.

Eachconduitshallbestubbed-outintoitsownconcretejunctionboxateachcornerofthebridge.

Thegalvanizedsteelconduitshallbewrappedwithcorrosionresistanttapeatleastonefootinsideandoutsideoftheconcretestructure,andthisrequirementshallbesostatedontheplans.Thecorrosionresistanttapeshallbe3MScotch50,Bishop5,NashuaAVI10,orapprovedequal.

Pullboxesshallbeprovidedatamaximumspacingof180feet.Forfiberopticsonly,spacingshallnotexceed360feet.ThepullboxsizeshallconformtothespecificationsoftheNationalElectricCodeorbeaminimumof8inchesby8inchesby18inchestofacilitatepullingofwires.Galvanizedsteelpullboxes(orjunctionsboxes)shallmeetthespecificationsofthe“NEMAType4X”standardforstationary-formbarrier,shallmeetthespecificationsofthe“NEMA3R”

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-89 June 2017

andbeadjustableindepthforslipformbarrier,andtheNEMAjunctionboxtypeshallbestatedontheplans.Stainlesssteelpullboxesmaybeusedasanoptiontothegalvanizedsteel.

Inthecaseofexistingbridges,anarea2feetinwidthshallbereservedforconduitbeginningatapointeither4feetor6feetoutsidethefaceofusableshoulder.

E. ConduitTypes

AllelectricalconduitsshallbegalvanizedRigidMetalConduit(RGS)orRigidPolyvinylChlorideConduit(PVC).

F. UtilitySupports

Allutilityinstallationsshalladdresstemperatureexpansioninthedesignofthesystemorexpansiondevices.

Utilitysupportsshallbedesignedsothatanyloadsimposedbytheutilityinstallationdonotoverstresstheconduit,supports,bridgestructure,orbridgemembers.

Designsshallprovidelongitudinalandtransversesupportforloadsfromgravity,earthquakes,temperature,inertia,etc.

a. PipeHangers

Verticalsupportsshallbespacedat5footmaximumintervalsfortelephoneandpowerconduits,andataspacingtoresistdesignloadsforallotherutilities.Forheavypipesovertraffic(10″watermainorlarger),aSafetyFactorof1.5shallbeusedtoresistverticalloadsforStrengthdesign.

Thecast-in-placeinsertshallbeatleast6″longandhotdippedgalvanizedinaccordancewithAASHTOM111 or AASHTOM232.

Theinsertshallnotinterferewithreinforcementinthebridgedeck.Theinsertsshallbeinstalledlevellongitudinallyandtransversely.

Transversesupportsshall,ataminimum,belocatedateveryotherverticalsupport.BridgeStandardDrawings10.8-A1-1and10.8-A1-2depicttypicalutilitysupportinstallationsandplacementatabutmentsanddiaphragms.

15.10.9 UtilityInstallationonExistingBridgesUtilityinstallationonexistingbridgesshallbeinaccordancewithSection10.9.

15.10.10 Resin Bonded AnchorsFastsetepoxyanchorsshallnotbeusedforresinbondedanchors.

Forresinbondedanchorsusedinpermanentsustainedtensionapplications,theadhesiveanchorsystemsshallbetestedforlongtermsustainedloadperformanceinaccordancewithACI355.4.

Undercutanchorsshallbestainlesssteel.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-90 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.10.11 Drainage DesignAlldrainagesystemexpansionjointsshallbewatertight.

1. Geometrics

Bridgesshallhaveaminimumtransverseslopeof.02′/feetandaminimumlongitudinalslopeof0.5percent.

2. Hydrology

Hydrologicalcalculationsaremadeusingtherationalequation.A10yearstormeventwitha5minutedurationistheintensityusedforallinletsexceptforsagverticalcurveswherea50yearstormintensityisrequired.

3. OnBridgeSystems

Drainsshallonlybeplacedonbridgestructureswhenrequiredbybridgedeckdrainagehydraulicsanalysisandwherealignmentandsuperelevationgeometrycannotbeadjustedtocompensate.Theminimumpipediametershallbe6incheswithnobendsgreaterthan45°withinthesystem.

WSDOT Bridge Design Manual M 23-50.17 Page 15-91 June 2017

15.11 Detailing PracticesStructuraldetailingshallmeettherequirementsofthisChapter.

15.11.1 Standard PracticesA. Drawing Orientation and Layout Control

• Contractplansshallbeprinted,sealed,signedandsubmittedon11″×17″paper.Alternatively,theContractplansmaybesubmittedinanelectronicformatacceptedbyWSDOTencryptedwithavalidelectronicsignature.

• Drawingsshallbeorganizedsotheintentofthedrawingiseasilyunderstood.

1. Northarrowshallbeplacedonlayoutsandfooting/foundationlayouts.

2. Relateddetailsshallbegroupedtogetherinanorderlyarrangement,lineduphorizontallyandverticallyanddrawntothesamescale.

3. ThePlanviewlayoutofstructuresshallbeorientedfromlefttorightinthedirectionofincreasingstateroutemileposts.Forlayoutsofexistingbridgesundergoingwidening,expansionjointorthriebeamretrofit,orotherstructuralmodification,thisorientationrequirementmayresultinthebridgelayoutbeingoppositefromwhatisshownintheoriginalplans.Insuchcases,thebridgelayoutorientationandpieridentificationshallbelaidouttobeconsistentwiththeWSDOTBridgePreservationOfficeinspectionrecords.

4. ExceptfortheLayout,wallelevationsaretoshowtheexposedfaceregardlessofdirectionofstationing.TheLayoutsheetstationingshallreadincreasinglefttoright.Theelevationsheetsshallrepresenttheviewinthefieldasthewallisbeingbuilt.

B. Lettering

1. General

i. Letteringshallbeuppercaseonly,slantedatapproximately68degrees.Generaltextistobeapproximately⅛″high.

ii. Textshallbeorientedsoastobereadfromthebottomorrightedgeofthesheet.

iii. Detailtitlesshallbeasimilarfontasgeneraltext,abouttwiceashighandofaheavierweight.Theyshallbeunderlinedwithasinglelinehavingthesameweightasthelettering.

iv. TheTrueTypefonts“BridgeTechItalic”(BRIDT__.TTF,BRIDRG__.TTF)shallbeused,exclusiveoftitleblocks,andmaybedownloadedforusebytheDesign-BuilderfromtheWSDOTBridgeandStructureswebsite.

2. Dimensioning

i. Adimensionshallbeshownonceonadrawing.Duplicationandunnecessarydimensionsshallbeavoided.

ii. Alldimensionfiguresshallbeplacedabovethedimensionline,sothattheymaybereadfromthebottomortherightedgeofthesheet.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-92 WSDOT Bridge Design Manual M 23-50.17 June 2017

iii. Whendetailsorstructuralelementsarecomplex,utilizetwodrawings,onefordimensionsandtheotherforreinforcingbardetails.

iv. Dimensions12inchesormoreshallbegiveninfeetandinchesunlesstheitemdimensionedisconventionallydesignatedininches(forexample,16″øpipe).

v. Dimensionsthatarelessthanoneinchoveranevenfoot,thefractionshallbeprecededbyazero(forexample,3′-0¾″).

vi. Dimensionsshallbeplacedoutsidetheview,preferablytotherightorbelow.However,intheinterestofclarityandsimplicityitmaybenecessarytoplacethemotherwise.

C. Line Work

1. Alllineworkshallbeofsufficientsize,weight,andclaritysothatitcanbeeasilyreadona11″x17″sheet.

2. Thelinestyleusedforaparticularstructuraloutline,centerline,etc.,shallbekeptconsistentwhereverthatlineisshownwithinasetofplans.

3. Lineworkshallhaveappropriategradationsofwidthtogivelinecontrast.Careshallbetakenthatthethinlinesaredenseenoughtoshowclearlywhenreproduced.

4. Whendrawingstructuralsectionsshowingreinforcingsteel,theoutlineofthesectionsshallbeaheavierlineweightthanthereinforcementsteel.

5. Theorderoflineprecedence(whichofapairofcrossinglinesisbroken)shallbeasfollows:

i. Dimensionlinesareneverbroken.

ii. Leaderlinefromacallout.

iii. Extensionline.

D. Scale

1. Plansshallbedrawnusingstandardarchitecturalorengineeringscales.Alldetailsshallbeaccuratelydrawntoscale.Scalesshallnotbeshownintheplans.

2. Theminimumscaleforasectiondetailwithrebarshallbe⅜″=1′.Theminimumscaletobeusedonsteeldetailsshallbe¾″=1′.

E. GraphicSymbols

Graphicsymbolsshallbeinaccordancewiththefollowing:

1. Structuralsteelshapes:SeetheAISC Steel Construction Manual.

2. Weldingsymbols:Seethe Lincoln Welding Chart.

3. SymbolsforhatchingdifferentmaterialsareshownonAppendix11.1-A2.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-93 June 2017

F. Structural Sections, Views and Details

1. Wheneverpossible,sectionsandviewsshallbetakenlookingtotheright,aheadonstationing,ordown.

2. Theorientationofadetaildrawingshallbeidenticaltothatoftheplan,elevation,etc.,fromwhichitistaken.Wherethereisaskewinthebridgeanysectionsshallbetakenfromplanviews.

3. Thedefaultvieworientationistobelookingaheadonstationing.Otherorientationsshallbenoted.

4. Acircledividedintoupperandlowerhalvesshallidentifystructuralsections,views,anddetails.ExamplesareshowninAppendix11.1-A3.

5. Breaksinlinesareallowableprovidedthattheirintentisclear.

G. Miscellaneous

1. Calloutarrowsshallcomeoffeitherthebeginningorendofthesentence.Thismeansthetoplineoftextforarrowscomingofftheleftofthecalloutorthebottomlineoftextforarrowspointingright.

H. RFC Revisions

1. ChangesmadetoReleasedForConstruction(RFC)plansheetsshallbecloudedwiththeexceptionoftableentrieswhichshallbeshadedinaccordancewiththePlans Preparation Manual Appendix5.Subsequentchangesshallbecloudedorshadedandthecloudingandshadingfrompreviouschangesshallberemoved.

2. Changesshallbemarkedwithanumberinacircleinatriangle.

3. ChangesshallbenotedintherevisionblockatthebottomofthesheetusingLucidaConsolefont12pt.

I. Title Block

1. Theprojecttitleshallbedisplayedintheplansheettitleblock.ThetitleconsistsofLine1specifyingthehighwayroutenumber(s),Line2andpossiblyLine3specifyingthetitleverbiage.Bridgestructuresshallhaveafourthline,inasmallerfont,tospecifythebridgenameandnumberinaccordancewiththeBridge ListM23-09andSections2.3.1.Aand2.3.2.A.

2. Thehighwayroutenumber(s)inLine1shallbeconsistentwithWSDOTnamingpractice.Interstateroutes(5,82,90,182,205,405,and705)shallbespecifiedasI-(number).USroutes(2,12,97,97A,101,195,197,395,and730)shallbespecifiedasUS(number).AllotherroutesshallbespecifiedasSR(number).ProjectsincludingtwohighwayroutesshallincludebothroutenumbersinLine1,asin“US2AndI-5”.Projectsincludingthreeormorehighwayroutesshallbespecifiedwiththelowestnumberedroute,followedby“EtAl”,asin“SR14EtAl”.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-94 WSDOT Bridge Design Manual M 23-50.17 June 2017

J. ReinforcementDetailing

1. Contractdocumentsshallconveyallnecessaryinformationforfabricationofreinforcingsteel.InaccordancewithStandard Specifications Section6-02.3(24),reinforcingsteeldetailsshowninthebarlistshallbeverifiableintheplansandothercontractdocuments.

2. Size,spacing,orientationandlocationofreinforcementshallbeshownontheplansheets.

3. Reinforcementshallbeidentifiedbymarknumbersinsidearectangle.Reinforcingbarmarksshallbecalledoutatleasttwice.Thereinforcementincludingthespacingiscalledoutinoneview(suchasaplanorelevation).Thereinforcementwithoutthespacingiscalledoutagaininatleastoneotherviewtakenfromadifferentangle(suchasasection).

4. EpoxycoatingforreinforcementshallbeshownintheplansbynotinganEinsideatriangle.

5. Thespacingforreinforcementshallbeonadimensionlinewithextensionlines.Donotpointtoasinglebarandcalloutthespacing.Reinforcementspacingcalloutsshallincludeadistance.Ifthedistanceisanunusualnumber,giveamaximumspacing.Donotuse“equalspaces”asin“23equalspaces=18′-9″.Also,neverusetheword“about”asin23spaces@about10″=18′-9″.Insteadtheseshouldread“23spaces@10″max.=18′-9″.

6. Reinforcementgeometryshallbeclearinplandetails.Congestedareas,oddlybentbars,etc.canbeclarifiedwithadditionalviews/details/sectionsoradjacentbendingdiagrams.Inbendingdiagrams,reinforcementdimensionsshallbegivenout-to-out.Itmaybenecessarytoshowedgesofreinforcementwithtwoparalleledgelinestoclearlyshowworkingpointsanddimensions.

7. Reinforcementlengths,angles,etc.neednotbecalledoutwhentheycanbedeterminedfromstructuralmembersizes,coverrequirements,etc.Anchorage,embedmentandextensionlengthsofreinforcementshallbedimensionedintheplans.

8. StandardhooksinaccordancewithAASHTOLRFDSection5.10.2.1neednotbedimensionedorcalledout,butshallbedrawnwiththeproperangle(90º,135ºor180º).SeismichooksperAASHTOLRFD Section5.10.2.2(usedfortransversereinforcementinregionsofexpectedplastichinges)shallbecalledoutontheplanswhenevertheyareused.

9. Thelocation,lengthandstaggeroflapsplicesshallbeshownontheplansheets.Tablesofapplicablelapsplicelengthsareacceptablewithassociatedstaggerrequirements.Type,locationandstaggerofmechanicalandweldedsplicesofreinforcementshallbeshown.

10.WhereconcretecoverrequirementsdifferfromthosegiveninthestandardnotesorStandard Specifications Section6-02.3(24)C,theyshallbeshownintheplans.Itshallbeclearwhetherthecoverrequirementreferstotiesandstirrupsorthemainlongitudinalbars.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-95 June 2017

15.11.2 BridgeOfficeStandardDrawingsandOfficeExamplesA. General

TheBridgeandStructuresOfficeprovidesstandarddrawingsandexamplesheetsofvariouscommonbridgeelements.

B. Use of Standards

Thestandarddrawingsshallbeconsideredasnothingmorethanexamplesofitemslikegirdersortrafficbarrierswhichareoftenusedandareverysimilarfromjobtojob.

Theyshallbemodifiedtofittheparticularaspectsofthestructure.Theyarenotintendedtobeincludedinaplansetwithoutclosescrutinyforapplicabilitytothejob.

15.11.3 Plan SheetsPlansheetsshallbeassembledintheorderofconstructionandshallincludetheitemslistedbelow.• Layout• GeneralNotes/ConstructionSequence• Footing/FoundationLayout• Piles/Shafts• Abutments• IntermediatePiers/Bents• BearingDetails• FramingPlan• TypicalSection• Girders/Diaphragms• BridgeDeckReinforcement(Planandtransversesection)• ExpansionJoints(ifneeded)• TrafficBarrier• BridgeApproachSlab

A. Layout• TheLayoutsheetshallcontain,butisnotlimitedto:

– PlanViewwithascendingstationsfromlefttoright– ElevationViewshownasanoutsideviewofthebridgeandshallbevisuallyalignedwiththeplanview.

• Alignmentlines,verticalcurvesandroadwaysuperelevationdiagrams.– Testholelocations(designatedby3/16inchcircles,quartered)toplanview.– Elevationviewoffootings,seals,piles,etc.ShowelevationatBottomoffootingand,ifapplicable,thetypeandsizeofpiling.

– Generalnotesabovelegendonrighthandside,usuallyinplaceofthetypicalsection.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-96 WSDOT Bridge Design Manual M 23-50.17 June 2017

– Title“LAYOUT”inthetitleblockandsheetnumberinthespaceprovided.– Otherfeatures,suchaslighting,conduit,signs,excavation,riprap,etc.asdeterminedbythedesigner.

B. General Notes/Construction Sequence

C. Footing Layout• AnabutmentwithaspreadfootinghasaFootingLayout.AnabutmentwithpilesandpilecaphasaFoundationLayout.

• TheFootingLayoutisaplanofthebridgewhosedetailsarelimitedtothoseneededtolocatethefootings.Theintentofthefootinglayoutistominimizethepossibilityoferroratthisinitialstageofconstruction.

• TheFoundationLayoutisaplanofthebridgewhosedetailsarelimitedtothoseneededtolocatetheshaftsorpiles.TheintentoftheFoundationlayoutistominimizethepossibilityoferroratthisinitialstageofconstruction.

• Otherrelatedinformationand/ordetailssuchaspedestalsizes,andcolumnsizesareconsideredpartofthepierdrawingandshouldnotbeincludedinthefootinglayout.

• TheFootingLayoutshouldbeshownonthelayoutsheetifspaceallows.Itneednotbeinthesamescale.Whenthegeneralnotesandfootinglayoutcannotbeincludedonthefirst(layout)sheet,thefootinglayoutshouldbeincludedonthesecondsheet.

• Longitudinally,footingsshouldbelocatedusingthesurveylinetoreferencesuchitemsasthefooting,centerlinepier,centerlinecolumn,orcenterlinebearing,etc.

• Whensealsarerequired,theirlocationsandsizesshouldbeclearlyindicatedonthefootinglayout.

• TheWallFoundationPlanforretainingwallsissimilartotheFootingPlanforbridgesexceptthatitalsoshowsdimensionstothefrontfaceofwall.

• Appendix11.1-A4isanexampleofafootinglayoutshowing:– Thebasicinformationneeded.– Themethodofdetailingfromthesurveyline.

D. Piles/Shafts

E. Abutment• Bridgeelementsthathavenotyetbeenbuiltwillnotbeshown.Forexample,thesuperstructureisnottobeshown,dashedornot,onanysubstructuredetails.

• Elevationinformationforsealsandpilesorshaftsmaybeshownontheabutmentorpiersheets.

• Viewsaretobeorientedsothattheyrepresentwhatthecontractororinspectorwouldmostlikelyseeontheground.Pier1elevationisoftenshownlookingbackonstationing.AnoteshouldbeaddedundertheElevationPier1titlesaying“Shownlookingbackonstationing”.

F. IntermediatePiers/Bents• Eachpiershallbedetailedseparatelyasageneralrule.Iftheintermediatepiersareidenticalexceptforheight,thentheycanbeshowntogether.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-97 June 2017

F. Bearing Details

G. FramingPlan• GirderLinesmustbeidentifiedintheplanview(Gir.A,Gir.B,etc.).

H. TypicalSection• Girderspacing,whichistiedtothebridgeconstructionbaseline• Bridgedeckthickness,aswellaswebandbottomslabthicknessesforboxgirders

• “A”dimension• Limitsofpigmentedsealer• Profilegradeandpivotpointandcrossslopes• Utilitylocations• Curbtocurbroadwaywidth• Soffitanddripgroovegeometry

I. Girders/Diaphragms• PrestressedgirdersheetscanbecopiedfromtheBridgeandStructuresOfficelibrarybuttheyshallbemodifiedtomatchtheprojectrequirements.

J. BridgeDeckReinforcement• Planandtransversesectionviews

K. ExpansionJoints

L. TrafficBarrier• TrafficbarriersheetscanbecopiedfromtheStandard Plansbuttheymustbemodifiedtomatchtheprojectrequirements.

M.BridgeApproachSlab• ApproachslabsheetscanbecopiedfromtheStandard Plansandmodifiedasnecessaryfortheproject.

N. Barlist• Thebarlistsheetsdonotrequirestampingbecausetheyarenotofficiallypartofthecontractplanset.

15.11.5 Structural SteelA. General

Flatpiecesofsteelaretermedplates,bars,sheetsorstrips,dependingonthedimensions.

B. Bars

Upto6incheswide,0.203inch(3/16inch)andoverinthickness,or6inchesto8incheswide,0.230inch(7/32inch)andoverinthickness.

C. Plates

Over8incheswide,0.230inch(7/32inch)andoverinthickness,orover48incheswide,0.180in(11/64inch)andoverinthickness.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-98 WSDOT Bridge Design Manual M 23-50.17 June 2017

D. Strips

Thinnerpiecesupto12incheswidearestripsandover12inchesaresheets.AcompletetableofclassificationmaybefoundintheAISCManual of Steel Construction,8thEd.Page6-3.

E. Labeling

Thefollowingtableshowstheusualmethodoflabelingsomeofthemostfrequentlyusedstructuralsteelshapes.Notethattheinchessymbol(″)isomitted,butthefootsymbol(′)isusedforlengthincludinglengthslessthanafoot.

Page 11-10 Bridge Design Manual M 23-50 August 2006

Detailing Practice Chapter 11

E. Labeling

• The following table shows the usual method of labeling some of the most frequently used structural steel shapes. Note that the inches symbol (“) is omitted, but the foot symbol (‘) is used for length including lengths less than a foot.

Chapter 15 Structural Design Requirements for Design-Build Contracts

WSDOT Bridge Design Manual M 23-50.17 Page 15-99 June 2017

15.11.6 Aluminum Section DesignationsThedesignationsusedinthetablesaresuggestedforgeneraluse.

Section Designation ExampleI-Beams I DEPTH × WT 14 × 3 .28Wide-Flange Sections WF DEPTH × WT WF4 × 4 .76Wide-Flange Sections, Army-Navy Series

WF(A-N) DEPTH × WT WF(A-N)4 × 1 .79

American Standard Channels

C DEPTH × WT C4 × 1 .85

Special Channels CS DEPTH × WT CS4 × 3 .32Wing Channels CS(WING) WIDTH × WT CS(WING)4 × 0 .90Army-Navy Channels C(A-N) DEPTH × WT C(A-N)4 × 1 .58Angles L LL × LL × TH L3 × 3 × 0 .25Square End Angles LS LL × LL × TH LS2 × 2 × 0 .187Bulb Angles BULB L LL1 × LL2 × TH1 × TH2 BULB L4 × 3 .5 × 0 .375 × 0 .375Bulb Angle, Army-Navy Series

BULB L(A-N) LL1 × LL2 × TH1 × TH2

BULB L(A-N) 3 × 2 × 0 .188 × 0 .188

Tees T DEPTH × WIDTH × WT T4 × 4 × 3 .43Army-Navy Tees T(A-N) DEPTH × WIDTH × WT T(A-N)4 × 4 × 2 .27Zees Z DEPTH × WIDTH × WT Z4 × 3 .06 × 2 .85Plates PL TH × WIDTH PL¼ × 8Rods RD DIA RD 1Square Bars SQ SDIM SQ 4Rectangle Bars RECT TH × WIDTH RECT¼ × 4Round Tubes ODIA OD × TH WALL 4OD × 0 .125 WALLSquare Tubes ODIM SQ × TH WALL 3SQ × 0 .219 WALLRectangle Tubes DEPTH × WIDTH RECT × TH

WALL4 × 1 .5 RECT × 0 .104 WALL

WT - WEIGHT in LB/FT based on density of 0 .098 TH - THICKNESS, LL - LEG LENGTH, DIA – DIAMETER ODIA - OUTSIDE DIAMETER, ODIM - OUTSIDE DIMENSION SDIM - SIDE DIMENSIONAll lengths are in inches

15.11.7 AbbreviationsAbbreviationsshallbedefinedinthecontractdocuments.

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-100 WSDOT Bridge Design Manual M 23-50.17 June 2017

15.12 Bridge Load Rating15.12.1 General

Loadratingsshallbecompletedforallnew,widened,orrehabilitatedbridgeswheretherehabilitationalterstheloadcarryingcapacityofthestructure.LoadratingsshallbedoneimmediatelyafterthedesigniscompletedandratingcalculationsshallbefiledseparatelyinaccordancewithSection13.4andfilesshallbeforwardedtoWSDOT’sLoadRatingEngineer.Afinalstampedandsignedloadratingshallbeprovidedatleast90-dayspriortoopeninganybridgerequiringloadratingtotraffic.FinalapprovaloftheloadratingofabridgeshallrestwithWSDOT’sLoadRatingEngineer.

NewbridgesshallberatedbasedontheLoadandResistanceFactorRating(LRFR)methodinaccordancewiththeAASHTOManual For Bridge Evaluation(MBE), Chapter13ofthismanualandthischapter.NBIratingsshallbebasedontheHL-93truckandshallbereportedasaratingfactor.

15.12.2 Load Rating SoftwareForprestressedconcretegirderbridgesandX-Beams,useBridgeLinktoloadratestructuralelements.ForallothercaseswhereBridgeLinkcannotbeused,suchasbutnotlimitedto,orsteelstructuresorsegmentalboxes,CSiBridgeshallbeused.ObtainWSDOT’sLoadRatingEngineer’sapprovalfortheuseofanyothersoftwarepriortocommencinganywork.

Formorecomplexstructuressuchassteelcurvedgirdersandarches,differentsoftwaremaybeusedtoanalyzetheloadsafterobtainingapprovalfromWSDOT’sLoadRatingEngineer.AcceptablesoftwarecurrentlyincludesCSiBridge.

LoadsandcapacitiesshallbetabulatedinamannerthatwillmakeitsimpleforWSDOTtomanipulatethedatainthefuture.MethodoftabulationshallbeapprovedbyWSDOT’sLoadRatingEngineerpriortocommencinganywork.MicrosoftExcelshallbeusedfortabulation,andallcellsinthespreadsheetsshallbeunlockedandanyhiddencodeorfunctionsshallbeexplainedthoroughlyinthereport.Handcalculationsshallbeprovidedtoverifyallspreadsheets.

WSDOT Bridge Design Manual M 23-50.17 Page 15-101 June 2017

15.99 ReferencesAASHTOLRFD Bridge Design Specifications,LatestEditionandInterims.AmericanAssociationofStateHighwayandTransportationOfficials(AASHTO),Washington,D.C.

AASHTOGuide Specifications for LRFD Seismic Bridge Design (SEISMIC),LatestEditionandInterims.AmericanAssociationofStateHighwayandTransportationOfficials(AASHTO),Washington,D.C.

AASHTOStandard Specifications for Highway Bridges,17thedition

AASHTOManual for Bridge Evaluation

ACI355.4-11(2014) “Qualification of Post-Installed Adhesive Anchors in Concrete and Commentary,” AmericanConcreteInstitute,FarmingtonHills,MI.

WSDOTBridge Inspection ManualM36-64

WSDOTGeotechnical Design Manual M46-03

WSDOT Design ManualM22-01

WSDOTConstruction Manual M41-01

WSDOTLocal Agency GuidelinesM36-63

WSDOTStandard Specifications for Road, Bridge, and Municipal Construction (Standard Specifications) M41-10

WSDOT Standard Plans M21.01

WSDOTHydraulics ManualM23-03

WashingtonUtilitiesandTransportationCommissionClearance Rules and Regulations Governing Common Carrier Railroads

AmericanRailwayEngineeringandMaintenanceAssociation(AREMA)Manual for Railroad Engineering.Note:Thismanualisusedasthebasicdesignandgeometriccriteriabyallrailroads.UsethesecriteriaunlesssupersededbyFHWAorWSDOTcriteria.

TheUnionPacificRailroad“Guidelines for Design of Highway Separation Structures over Railroad (Overhead Grade Separation)”

Structural Design Requirements for Design-Build Contracts Chapter 15

Page 15-102 WSDOT Bridge Design Manual M 23-50.17 June 2017

This page intentionally left blank.