Author
others
View
0
Download
0
Embed Size (px)
Breeding for virus resistance
www.jki.bund.de
Breeding for virus resistancein cereals
Frank Ordon
Worldwide acreage of cereals 2009
Institute for Resistance Research and Stress Tolerance
http://faostat.fao.org
Wheat - Triticum Barley yellow dwarf virus, Wheat dwarf virus, Soil-borne wheat mosaic virus,
Wheat spindle streak mosaic virus, Soil-borne cereal mosaic virus, Wheat yellow mosaic virus,
Aubian wheat mosaic virus, Barley yellow striate mosaic virus, Indian peanut clump virus,
Wheat rosette stunt virus, Wheat American striate virus
Barley - Hordeum Barley yellow dwarf virus, Wheat dwarf virus, Barley mild mosaic virus,
Barley yellow mosaic virus, Barley stripe mosaic virus, Northern cereal mosaic virus,
Barley yellow streak mosaic virus, Arabis mosaic virus, Tobacco rattle virus
Rye - Secale Barley yellow dwarf virus, Wheat dwarf virus, Soil-borne cereal mosaic virus,
Wheat spindle streak mosaic
Triticale - Triticosecale Barley yellow dwarf virus, Wheat dwarf virus, Soil-borne cereal mosaic virus,
Important viruses of Poaceae (Gramineae)
Institute for Resistance Research and Stress Tolerance
Wheat spindle streak mosaic virus
Oat - Avena Barley yellow dwarf virus, Oat sterile dwarf virus, Oat golden stripe virus,
Oat chlorotic stunt virus, Oat mosaic virus, Wheat dwarf virus
Corn - Zea Maize dwarf mosaic virus, Johnsongrass mosaic virus, Sugarcane mosaic virus,
Maize rough dwarf virus, Maize chlorotic mottle virus, Maize chlorotic dwarf virus,
Maize bushy stunt virus, Cereal chlorotic mottle virus, Barley yellow dwarf virus,
Sorghum chlorotic spot virus, High Plains virus, Wheat streak mosaic virus
Rice - Oryza Rice tungro viruses, Rice dwarf virus, Rice gall dwarf virus, Rice grassy stunt virus,
Rice hoja blanca virus, Rice necrosis mosaic virus, Rice ragged stunt virus,
Rice stripe necrosis virus, Rice yellow mottle virus, Barley yellow dwarf virus
Sorghum / Millet -
Sorghum/Pennisetum
Maize dwarf mosaic virus, Sorghum yellow banding virus, Sorghum chlorotic spot virus
W. Huth
BaYMV/BaMMV- YieldCultivar Reaction t/ha relative
Asorbia (6-rowed) resistant 5.33 100Corona (6-rowed) susceptible 3.53 65
Romanze (2-rowed)resistant 4.20 100Marinka (2-rowed) susceptible 2.38 57
Barley yellow mosaic virus disease
Institute for Resistance Research and Stress Tolerance
BaMMV, BAMMV-SIL, BaMMV-Teik, BaYMV, BaYMV-2
10 m2 plots, 3 replications; LSD (5%) = 0.25 t/ha and 0.35 t/ha; yield in ATM
Yuka (6-rowed) resistant 7.66 100Grete (6-rowed) susceptible 4.10 54
Duet (2-rowed) resistant 6.30 100Angora (2-rowed) suceptible 4.24 67
Economic loss caused by BaMMV/BaYMV
Acreage (2010): 1303000 ha
Yield: 6.66 t = 8677980 t
Barley price: 150 € per t
Economic value: 1301697000
Institute for Resistance Research and Stress Tolerance
50% of barley acreage potentially infested (Huth 1988): 651500 ha
Moderate yield loss of 25%: 1074975 t
Economic loss: 161246250 €
No. Cultivars Yield
Year resistant susceptible resistant susceptible
1986 6 37 4.3* 5.6
1995 24 41 6.5 6.3
2005 52** 23 6.7 6.1
Genetic base of BaMMV/BaYMV-resistance
Institute for Resistance Research and Stress Tolerance
2005 52** 23 6.7 6.1
2011 55 9 6.9 6.4
*1=minimum, 9=maximum, List of registered cultivars, Federal Seedboard, different years
**48: rym4 derived from Ragusa4: rym5 Tokyo (1996): [(Fallon x 13060) x 87-5381 B] x Swift]
Resistant Ym. No.1 x Igri
(Hemker, pers. Comm.)
BaMMV BaYMV BaYMV-2 No.Genotypes
Hordeum vulgare ssp. vulgare- - - 201- - + 86+ - - 53- + + 43
Hordeum vulgare ssp. spontaneum- + + 3- - - 2
- = negative ELISA (resistant), + = positive ELISA ( susceptible)
Screening for resistance and genetic analysis
Institute for Resistance Research and Stress Tolerance
- = negative ELISA (resistant), + = positive ELISA ( susceptible)Ordon et al. 1993, Habekuss et al. 2000
Götz & Friedt 1993, Ordon & Friedt 1993
F2 Infect.-
Cross Segregation χχχχ2** rate (%)
r : s 7r:9s
H. vulgare ssp vulgare
Chikurin Ibaraki 1 x Ogra 49 : 69 0.233 98
Russia 57 x Diana 68 : 81 0.214 95
Bulgarian 347 x Diana 61 : 89 0.574 95
Bulgarian 347 x Russia 57 42 : 73 2.442 100
Taihoku A x Chikurin Ibaraki 1 50 : 68 0.091 100
Bulgarian 347 x Chikurin Ibaraki 53 : 63 0.0114 100
H. vulgare
Cultivars
Landraces
H. vulgare ssp.
spontaneum
Identification of geneticvariation
Breeding for virus resistance
Rym15/Rym15(s):2Rym15/rym15(s):rym15/rym15(r)
rym15/rym15 (r) x Rym15/rym15 (s)
rym15/Rym15 (s) Sellfing
P
F1
F2
Backcrossing procedures
F1
F2
F3
F4
F5
P1 x P2
Institute for Resistance Research and Stress Tolerance
H. bulbosum
Hordeum sp.
n=30
Utilization of geneticvariation
x Rym15/Rym15
Rym15/Rym15(s):2Rym15/rym15(s):rym15/rym15(r)
Resistance test
rym15/Rym15 (s)Selbstung
F´1 BC1
F´2
Resistance Test
x Rym15/Rym15
F5
F6
F7
F8
F9
F10
Pedigree SelectionUse of genetic variation
Heritability
h2=Vg/Vp
Success of selection
R=h2xSD
- No reliable selection on a single plant level (A1, F2)
Genotype
Phenotype
Environment
Reliable selection on the single plant level (A1, F2) in the lab independently from the incidence of viruses in the field and symptom development in early developmental stages
Breeding for virus resistance
Institute for Resistance Research and Stress Tolerance
h =Vg/Vp
The better the inference fromthe phenotype to the
genotype the higher thesuccess of selection
Vp=Vg+VE+VgE Viruses do not incide each year-
Symptom development is often influenced by environmental factors
-
level (A1, F2)
Reliable selection for resistance on the phenotypic level can not be carried out
each year
Chikurin Ibaraki 1
rym7
rym4
Rym14HB
rym15 rym3
rym11rym1
rym13rym9 rym8
Mapped resistance genes against BaMMV/BaYMV
E33M56_2500.0
E36M59_42015.8
markername
distancecM
Institute for Resistance Research and Stress Tolerance
3H 1H(5)
100 cM
6H 5H(7)7H(1) 2H 4H
rym4rym5rym6 rym10
mod. Graner et al. 2000
Rym16HB
rym8
s r r s r
E36M59_42015.8
WMS 0616.5
E43M59_28521.4
E53M40_15427.2
OP-C13_900 E51M40_120
GBM 101527.8
E53M36_10528.2rym1329.1
HVM 6733.0
OP-E14_105033.7
E56M39_20036.7
r s r s s
r s s r s
Humbroich, K., H. Jaiser, A. Schiemann, P. Devaux, A. Jacobi, L. Cselenyi, A. Habekuss, W. Friedt, F. Ordon, 2010. Plant Breeding 129, 346-348.
Ordon, F. 2009: Barley Genetics Newsletter 39, 58-69.
WSSMV/SBCMV
SBCMV
WSSMVAWMV
SBBMV?
WSMV
Wheat – SBCMV-Resistance
D. Hariri
Cla
ire
Mo
uli
n
Azte
k
Tre
mie
Sa
va
nn
ah
Od
es
sk
aja
51
To
nic
Ca
de
nza
154 bp
152 bpXcfd1830
Savannah x Claire
Institute for Resistance Research and Stress Tolerance
0
10
20
30
40
50
60
70
80
r s
Resistance
Fre
qu
en
z
Savanah x Claire
69r : 57s (Chi2 1r:1s = 1,14)
152 bp
3 alleles identified in about 100genotypes tested.154bp diagnosticfor „Cadenza-derived resistance“,152 bp for „Tremie/Claire-derivedresistance“. All suceptiblegenotypes displayed a null allele.
3 alleles identified in about 100genotypes tested.154bp diagnosticfor „Cadenza-derived resistance“,152 bp for „Tremie/Claire-derivedresistance“. All suceptiblegenotypes displayed a null allele.
Perovic, D., J. Förster, P. Devaux, D. Hariri, M. Guilleroux, K. Kanyuka, R. Lyons, J. Weyen, D. Feuerhelm, U. Kastirr, P. Sourdille, M. Röder, F. Ordon, 2009. Molecular Breeding 23, 641-653.
Xcfd1830Xgwm8051Xgwm9314
Xgpw34315
Xcfd1035
AFLP139
SbmClaire48XSSR149Xwmc76551
Xbbrc14459
Xwmc44363
Xgwm27267
Xcfe30168
Xgpw2323
71
Chromosome 5DL
2.0
3.0
4.0
5.0
6.0
7.0
Yield t/ha
2
3
4
5
6
7
8
9Score
Yield
Lodging
Winterkilling
R. secalis
BaYMV/BaYMV-2
rym15 rym15/rym15 (r) x Rym15/rym15 (s)
rym15/Rym15 (s) Selfing
P
F1
rym15/rym15 (r) x Rym15/Rym15 (s)P
rym15/Rym15 (s)F1 x Rym15/Rym15
0
1
2
Conventional backcrossing Marker assisted backcrossing
Marker assisted backcrossing
Institute for Resistance Research and Stress Tolerance
Fra
nka
Asorb
ia
Anson
Bulga
rian 347
Muju co
vere
d 2
Taihok
u A
Zairai Rok
kaku
Chikurin Ibara
ki 1
Ou 1
0
1.0
2.0
1
2
6H 5H(7)6H 5H(7)6H 5H(7)6H 5H(7)
Ordon & Friedt, Genet. Res. Crop Evol. 41: 43-46
Rym15/Rym15(s):2Rym15/rym15(s):rym15/rym15(r)
Resistance test
x Rym15/Rym15
rym15/Rym15 (s) Selbfing
x Rym15/Rym15
F2
F´1 BC1
F´2
Rym15/Rym15 (s) rym15/Rym15 (s)
x Rym15/Rym15
Rym15/Rym15 (s) rym15/Rym15 (s)
x Rym15/Rym15
Rym15/Rym15 (s) rym15/Rym15 (s)
x Rym15/Rym15
2
3
4
5
F´1 BC1
F´´1 BC2
F´´´1 BC3
Rym15/Rym15(s):2Rym15/rym15(s):rym15/rym15(r)
Resistance test
Ordon, F., B. Pellio, K. Werner, A. Schiemann, W. Friedt, A. Graner, 2003. J. Plant Diseases and Protection 110, 287-295.
Donor (R)
x
F
Recurrent Parent (S)
Recurrent Parent
Determination of the genomicportion of recurrent parent
Marker assisted backcrossing
9k iS
ele
ct
Chip
Institute for Resistance Research and Stress Tolerance
x
BC2
Recurrent parent
F1
R S
x
BC1
Recurrent Parent
75% 81% 64%63% 94% 72% Genomic portion
AFLP‘s
9k iS
ele
ct
Chip
BaYMV BaYMV-2 BaMMV BaMMV-SIL BaMMV-EIK
rym4 r s r r r
rym5 r r r s s
rym9 s s r r r
rym11 r r r r r
Pyramiding of BaMMV/BaYMV resistance genes
Institute for Resistance Research and Stress Tolerance
rym4 rym5 rym9 rym11
rym4 x rym9 rym4 x rym11 rym5 x rym11rym9 x rym11
rym4 x rym9 x rym11 rym5 x rym9 x rym11
rym5 x rym9
rym4
rym4 rym4
rym4 rym4 rym4
rym4
rym4
RYM4 RYM4rym9 rym9
RYM9
RYM9
RYM9
RYM9
RYM9
RYM9 RYM9RYM9
RYM11
RYM4 rym9
RYM11
RYM4
RYM11
rym4
RYM11
RYM11 RYM11
RYM11
RYM11
RYM11
RYM11
RYM11
RYM11
RYM11
RYM9 rym9
xrym4 rym4RYM11
RYM11 RYM11RYM9
RYM9
RYM9RYM4 RYM4
rym9
P
rym4
rym4
RYM9
RYM9
RYM4
RYM4
rym9
rym9
xrym4
rym4
RYM11
RYM11
RYM4
RYM4 rym11
rym11
rym11
F1
F1´ XXXX
XXXX XXXX
Pyramiding of BaMMV/BaYMV resistance genes
rym5 x rym9 x rym11
27 of 187 DHs, Chi2 = 2.186
rym4 x rym9 x rym11
20 of 107 DHs, Chi2 = 0.072
4r
4r
9r
9r
11r
11r
5r
5r
9r
9r
11r
11r
4r 119r 11r4r 9 4/5 9r 11r 11r5r 9 5r 9r 11
Institute for Resistance Research and Stress Tolerance
DH Line
Production
Marker Selection
rym4, rym9 and
rym11 fixed
rym4 and
rym9 fixed
rym4 and
rym11 fixed
rym4rym4 rym4rym9 rym9 RYM
9
rym1
1
RYM
11
rym4 rym4 rym4
rym4
rym4rym9 rym9rym1
1
rym1
1
rym1
1
RYM
11
RYM
11
RYM
11
RYM
9
RYM
9
RYM
9
A1
rym4 rym4
rym4 rym4
rym4
RYM4
rym4 rym4
rym4
rym4rym4
RYM4
RYM4
RYM4
RYM4 RYM4
RYM4 RYM4 RYM4
RYM4
rym4
RYM4
RYM4
RYM4 RYM4
RYM4
rym9 rym9
rym9 rym9
rym9rym9
RYM9
RYM9
RYM9 RYM9
RYM9
RYM9 RYM9
RYM9
RYM9RYM9
RYM9
RYM9
RYM9 RYM9
RYM9
RYM9
RYM9
RYM9
RYM9
RYM9
RYM9
rym11
rym11 rym11 rym11 rym11
rym11rym11
rym11
rym11rym11
RYM11
RYM11
RYM11
RYM11
RYM11 RYM11
RYM11
RYM11RYM11
RYM11
RYM11
RYM11
RYM11
RYM11
RYM11 RYM11 RYM11RYM4
HVM 67 (rym9)Bmac 29 (rym4) HVM 03 (rym11)
Werner K, W Friedt, F Ordon, 2005. Mol. Breeding 16: 45-55
rym4 x rym9
31 of 107 DHs
Chi2 =7.489
rym4 x rym11
17 of 107 DHs
Chi2 =0.086
rym9 x rym11
42 of 294 DHs
Chi2 =0.033
rym5 x rym11
21 of 187 DHs
Chi2 =1.642
rym5 x rym9
31 of 187 DHs
Chi2 =0.629
9r 114r 4r 11r9 9r 11r 11r4/5 5r 9 5r 9r
11
50Infection days - autumn
50Attack - spring (%)
Relation between BYDV-attack of winter barley in spring and temperature in autumn
LuteovirusBYDV-PAVBYDV-MAV
PolerovirusCYDV-RPV
Rhopalosiphum padi & Macrosiphum avenae
Macrosiphum avenae
Rhopalosiphum padi
+ssRNA-Virus,isometric particles(25-30 nm), phloem limitedyield losses 20-40%Dr. A. Habekuss
Barley yellow dwarf virus (BYDV)
Institute for Resistance Research and Stress Tolerance
Year
0
5
10
15
20
25
30
35
40
45
50
0
5
10
15
20
25
30
35
40
45
50
Infection daysAttack
Infection days = Number of days with a diurnal mean temperature >= 10°C between 1st of
October and 31st of DecemberHabekuß, A., C. Riedel, E. Schliephake, F. Ordon, 2009. J. of Cultivated plants 61, 87-91.
Chromosome 3H
AJ04H75013,5
AJ14H69011,1
E40M48_1769,0
HVLTPPB25,1
E35M49_725,1
X20H1750*1,3HvM009*6,8AG12H1200*10,2Bmac067*2,6YlpPCRM*10,9E45M50_7*8,6cMWG680*11,3I10H630*15,5HvM60*
ScM
Ryd2 (Vixen)
σσσσ²part P 31.8%
Identification von QTL for BYDV-tolerance
Yield/plant [%]
0
5
10
15
20
25
30
35
Num
ber
of
lines
Yield/plant [%]
0
5
10
15
20
Num
ber
of
lines
Yield/plant '97 [%]
Yield/plant '98 [%]
Yield/plant '99 [%]
Field trial, Braunschweig Pot experiment, Rauischholzhausen
Yield/plant '97 [%]
Yield/plant '98 [%]
Yield/plant '99 [%]
Scheurer, K., W. Huth, R. Waugh, W. Friedt, F. Ordon, 2001. Theor. Appl. Genet. 103:1074-1083
Institute for Resistance Research and Stress Tolerance
Chromosome 2H
E34M49_2908,5AI1H4507,1E36M47_116,1E35M50_37,6E41M48_1688,6E39M49_310,2E32M47_3207,1HvM0239,8HVBKASI9,7W11H62020,9E39M49_610,2E39M51_95,6V12E35M50_522,7E43M50_427,7AJ06H350*34,6HvM0546E43M50_14,1W20H48015,3HVCSG8,3E36M47_11
L
cM
HvM60*
L
QTL 2HL (Post)
σσσσ²part P 19.6%
58.9
58.2
56.656.0
54.654.1
60.5
61.5
63.7
64.7
65.5
52.9
Marker Recombinant inbred linesMap distances (cM)
RIL
K4-5
RIL
K4-2
0
RIL
K4-1
4
RIL
K4-2
8
RIL
K4-7
3
RIL
K4-1
01
RIL
K4-7
5
RIL
K4-8
5
RIL
K4-6
7
RIL
K4-5
6
RIL
K4-9
7
RIL
K4-1
1
RIL
K4-3
1
ABG458 ?*
E35M55-216
E40M32-209
E33M58-124
E33M61-441
E37M33-574
HVM22#
E45M55-262
E41M32-522
E42M48-303
E33M61-681
E40M38-112
E38M54-271
BYD score
24 June 2.7 2.3 2.7 2.0 2.3 2.0 1.3 2.3 2.3 1.0 0.0 1.0 0.0
17 July 3.0 3.0 2.3 2.3 2.3 1.3 1.7 1.0 2.3 0.0 0.0 0.0 0.0
susceptible resistant
58.9
58.2
56.656.0
54.654.1
60.5
61.5
63.7
64.7
65.5
52.9
Marker Recombinant inbred linesMap distances (cM)
RIL
K4-5
RIL
K4-2
0
RIL
K4-1
4
RIL
K4-2
8
RIL
K4-7
3
RIL
K4-1
01
RIL
K4-7
5
RIL
K4-8
5
RIL
K4-6
7
RIL
K4-5
6
RIL
K4-9
7
RIL
K4-1
1
RIL
K4-3
1
ABG458 ?*
E35M55-216
E40M32-209
E33M58-124
E33M61-441
E37M33-574
HVM22#
E45M55-262
E41M32-522
E42M48-303
E33M61-681
E40M38-112
E38M54-271
BYD score
24 June 2.7 2.3 2.7 2.0 2.3 2.0 1.3 2.3 2.3 1.0 0.0 1.0 0.0
17 July 3.0 3.0 2.3 2.3 2.3 1.3 1.7 1.0 2.3 0.0 0.0 0.0 0.0
susceptible resistant
58.9
58.2
56.656.0
54.654.1
60.5
61.5
63.7
64.7
65.5
52.9
Marker Recombinant inbred linesMap distances (cM)
RIL
K4-5
RIL
K4-2
0
RIL
K4-1
4
RIL
K4-2
8
RIL
K4-7
3
RIL
K4-1
01
RIL
K4-7
5
RIL
K4-8
5
RIL
K4-6
7
RIL
K4-5
6
RIL
K4-9
7
RIL
K4-1
1
RIL
K4-3
1
ABG458 ?*
E35M55-216
E40M32-209
E33M58-124
E33M61-441
E37M33-574
HVM22#
E45M55-262
E41M32-522
E42M48-303
E33M61-681
E40M38-112
E38M54-271
BYD score
24 June 2.7 2.3 2.7 2.0 2.3 2.0 1.3 2.3 2.3 1.0 0.0 1.0 0.0
17 July 3.0 3.0 2.3 2.3 2.3 1.3 1.7 1.0 2.3 0.0 0.0 0.0 0.0
susceptible resistant
RIL
K4-5
RIL
K4-2
0
RIL
K4-1
4
RIL
K4-2
8
RIL
K4-7
3
RIL
K4-1
01
RIL
K4-7
5
RIL
K4-8
5
RIL
K4-6
7
RIL
K4-5
6
RIL
K4-9
7
RIL
K4-1
1
RIL
K4-3
1
ABG458 ?*
E35M55-216
E40M32-209
E33M58-124
E33M61-441
E37M33-574
HVM22#
E45M55-262
E41M32-522
E42M48-303
E33M61-681
E40M38-112
E38M54-271
BYD score
24 June 2.7 2.3 2.7 2.0 2.3 2.0 1.3 2.3 2.3 1.0 0.0 1.0 0.0
17 July 3.0 3.0 2.3 2.3 2.3 1.3 1.7 1.0 2.3 0.0 0.0 0.0 0.0
susceptible resistant
6H
Ryd3, σσσσ²part P 75% (Vada x L94)
Niks, R.E., A. Habekuß, B. Bekele, F. Ordon, 2004. Theor. Appl. Genet. Theor. Appl. Genet. 109, 1536-1543
Scheurer, K., W. Huth, R. Waugh, W. Friedt, F. Ordon, 2001. Theor. Appl. Genet. 103:1074-1083
Ryd3 (180 bp)Ryd3 (180 bp)
ryd2
(253 b
p)
Ryd2
(311 b
p)
ryd2
(253 b
p)
Ryd2
(311 b
p)
Ryd3
(HVM74)
Ryd2
(YLP + HSP92 II)
Pyramiding of BYDV-QTL
´RIL K4-56´ (Ryd3) x ´DH21-136´ (Ryd2 + QTL Post)
0,0
0,2
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
Ryd2 Ryd3 QTL+
Ryd2 Ryd3 QTL-
Ryd2 ryd3
QTL+
Ryd2 ryd3 QTL-
ryd2 Ryd3 QTL+
ryd2 Ryd3 QTL-
ryd2 ryd3
QTL+
ryd2 ryd3 QTL-
DH21-136
(Ryd2 ryd3
QTL+)
RIL K4-56
(ryd2 Ryd3 QTL-)
Rub-ina
(ryd2 ryd3
QTL-)
ELIS
A e
xtinction
Allele combination
G F D C E CD A B
Institute for Resistance Research and Stress Tolerance
(ryd2, ryd3, QTL-) (Ryd2, Ryd3, QTL+)
winter barley, Quedlinburg, April 2008
QTL + (211 bp)
QTL - (218 bp)
QTL + (211 bp)
QTL - (218 bp)
ryd3 (188 bp)ryd3 (188 bp)
QTL Post 2H
(HVCSG)
(HVM74)
rrr rrs rsr srr ssr srs rss sss
No. DH-lines 89 49 45 99 49 77 38 29
Segregation Ryd2/ Ryd3/ Post-QTL
Riedel, C., A. Habekuss, E. Schliephake, R. Niks, I. Broer, F. Ordon, 2011 Theor. Appl. Genet. 123, 69-76.
Rym4/Rym5
MWG838
rym4
P11M36
P21M68
P20M46
0.10
0.97
0.82
A
MWG838+
E37*M36
E37*M63
E35*M81
E39*M39
STSE31*M41+
OP-AF18H971+
rym5
E62*M67
0.88
0.05
0.10
0.05
0.10
B
Y57C10+
0.66
0.034
High resolution mapping
Isolation of resistance genes - allele mining
Institute for Resistance Research and Stress Tolerance
OP-AF18H971
E45*M69
MWG010
BMac029
P20M46
B368N12
OP-Z040.34
0.05
MWG010+
BMac029*
OP-AF18H971+
E45*M690.34
100 kb
Co-segregation proximal
BAC-contig
figure taken from:Buchanan, Gruissem, Jones (2000)Biochemistry & Molecular Biology of plants
rym5rym4
Stein, N., D. Perovic, J. Kumlehn, B. Pellio, S. Stracke, S. Streng, F. Ordon, A. Graner, 2005. The Plant Journal 42, 912-922
Pellio, B., S. Streng, E. Bauer, N. Stein, D. Perovic, A. Schiemann, W. Friedt, F. Ordon, A. Graner 2005. Appl. Genet. 110, 283-293.
Wicker et al. 2005. The Plant Journal, 41, 184-194
Hofinger et al. 2011. Molecular Ecology 20, 3653-3668
Summary and future prospects
Molecular markers facilitate already today efficient selection procedures to improve virus resistance in cereals
The availability of dense marker maps, highthroughput genotyping platforms, physical maps and
HVMX!
OP-XX1
rymX
HVMX”
OP-XX
3.8
2.5
8.2
8.3
rymX C_XXXXX1_A C_3PO
GBSXXXX-1
kXXXX-2
MarkercM
0,751
0,072
0,107
0,072
0,572
U32_XXXX
kXXXX-4
0,036
0,143
C_XXXXX2_B
C_XXXXX3_B
0,036
454_XXXX-1
Institute for Resistance Research and Stress Tolerance
throughput genotyping platforms, physical maps andgenome sequences of cereals itself and relatedspecies will facilitate an enhanced isolation of virusresistance genes in the future thereby leading to adeeper understanding of virus resistance and thetransfer of marker based selection to the allele level.
4HL
GBSXXXX-2
Fernie, A.R., N. Schauer, 2008: Trends in Genetics 25, 39-48
This together with new selection strategies, e.g.genomic selection procedures, will lead to anenhanced breeding of virus resistant cultivars.
Thanks
BaMMV/BaYMVProf. Dr. Wolfgang FriedtDr. Andrea SchiemannDr. Bettina PellioDr. Kay WernerDr. Katrin HumbroichDr. Antje HabekußDr. Ilona KrämerProf. Dr. Andreas Graner
SBCMVDr. Dragan Perovic
Dr. Pierre DevauxDr. Djabar HaririDr. Jens WeyenDr. Kostya Kanyuka
Institute for Resistance Research and Stress Tolerance
Prof. Dr. Andreas GranerDr. Nils SteinDr. Dragan Perovic
FundingDFGGFPEUBMELVBMBF
BYDVDr. Winfried HuthDr. Konstanze ScheurerDr. Antje HabekußDr. Rients NiksChristine Riedel