23
Brake Squeal Analysis João G. P. da Silva Fras-le Érico R. Fulco Fras-le Paulo E. D. Variante Fras-le Vagner do Nascimento - Master Fabiano N. Diesel - ESSS Daniel Boniatti - ESSS

Brake Squeal Analysis - · PDF fileBrake Squeal Analysis João G. P. da Silva ... APDL script to create a Component with the targets ... Modal Analysis Setup

Embed Size (px)

Citation preview

Brake Squeal Analysis

João G. P. da Silva – Fras-le

Érico R. Fulco – Fras-le

Paulo E. D. Variante – Fras-le

Vagner do Nascimento - Master

Fabiano N. Diesel - ESSS

Daniel Boniatti - ESSS

Introduction

Typical brake assembly

Brake disc develop friction

oscillations which are heard as “brake

squeal”

Introduction

There is three main categories of brake

noise:

Low frequency (100-1kHz) – Groan and

Moan noise

Low frequency (1k – 7kHz) – Coupling of

out of plane modes of rotor with bending

modes of pads

High frequency (8k – 16kHz) – Coupling of

in plane modes of rotor with bending

modes of pads

Disc

Gray Cast Iron

Young Modulus 110 GPa

Poisson’s Ratio 0.3

Mass Density 7800 kg/m³

CAD Model FEA Model

Experimental x Numerical Results – Disc

1273 Hz

1833 Hz

2326 Hz

2584 Hz

3115 Hz

3655 Hz

1260

1780

2320

2570

3260

3640

Friction Pad

Structural Steel

Young Modulus 210 GPa

Poisson’s Ratio 0.3

Mass Density 7700 kg/m³

Friction Material

Young Modulus 6 GPa

Poisson’s Ratio 0.2

Mass Density 1500 kg/m³

Experimental x Numerical - Pad

2424 Hz 7890 Hz

4697 Hz

9439 Hz 5768 Hz

10049 Hz

2560

4680

9640

6030

9270

7870

Workbench Setup

Geometry Pressure and Rotation Frequency

}0{}{][][ ii MK

)}({})]{([ uFuuK

2

ii

Workbench Setup

F

u

KT Where:

[KT] is the tangent stiffness matrix;

[KM] is the material stiffness matrix;

[SN] is the stress stiffness matrix;

[KL] is the loading stiffness matrix;

[KC] is the contact stiffness matrix, and;

[KSP] is the spin softening matrix.

][][][][][][ SPCLNMT KKKSKK

}0{}{][][ ii

T MK

Boundary Condition

X Displacement = 0

Y Displacement = 0

Z Displacement = Free

X Displacement = 0

Y Displacement = 0

Z Displacement = 0

Loading

Force X = 0

Force Y = 0

Force Z = 100N

Contact Pad/Disc

friction contact

bo

nd

ed

co

nta

ct

esel,s,type,,tid

cm,pad_1,elem

allsel

keyo,cid,16,0

rmodif,cid,33,1

APDL script to create a Component with the targets

elements and to define the Squeal Damping setup

Static Analysis Setup

nropt,unsym

cmsel,s,pad_1

cmsel,a,pad_2

cm,e_pad,elem

allsel

cmrota,e_pad,,,1E-5

APDL applied at the first load step to

use Unsymmetric Newton-Raphson

Method and to create Component

with the targets elements of the

Frictional Contact.

APDL applied at the second load step

to define a rotation of the target

elements

Analysis with 2 load steps

Results – Contact Status

Contact status at the first

load step

Contact status at the last

load step

Modal Analysis Setup

Pre-stress from the last time of the Static Analysis

Calculating 200 modes using QRDamped Method

}0{}{][][][ 2 iii

T MCK

iii j

Damped Frequency

Stability

Mode Stability

Evolution of the real and

imaginary part of eigenvalues

versus the damping ratio (η1/ η2)

and the friction coefficient ().

Black surface is stable mode and

white surface is unstable one.

Reference:

Sinou, Jean-Jacques and Jézéquel, Louis - Mode coupling instability in

friction-induced vibrations and its dependency on system parameters including

damping - European Journal of Mechanics - A/Solids, Volume 26, Issue 1,

January-February 2007, Pages 106-122

Results – Modes

Unstable Modes

modo 04

modo 42

modo 53

Unstable Modes

modo 69

modo 106

modo 121

Experimental Analysis

Full scale brake dynamometer used in this study

Brake assembly of a test on the dynamometer

Numerical x Experimental Results

60

75

90

105

120

0 2000 4000 6000 8000 10000 12000 14000 16000

Sou

nd

Pre

ssu

re L

evel

(d

B[A

])

Frequency (Hz)

Sound Pressure Level vs. Frequency for all Stops Above Threshold

(70 dB)

Forward

Reverse

Drag

Decel

Predicted Unstable

Mode

Predicted

Frequency

Squealing

Frequency

(Experimental)

% Error

53 10795 Hz 10350 Hz 4.29%

69 13165 Hz 12875 Hz 2.25%

Noise summary of the dynamometer test

Summary / Conclusions

• In this frequency range, the error is around 4%;

• The lower frequencies occurrences were not predicted by the

numerical analysis, but this error can be attributed to the

simplified assumptions on the modeling;

• Further work to include the fastening conditions, spider and

caliper in the modeling will be addressed in the future