206

Boonma Boo All

Embed Size (px)

Citation preview

Page 1: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 1/206

Page 2: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 2/206

 

THESIS

A STUDY ON CONSTRUCTION COST & TIME OF ROOF PLANT

STRUCTURE

BOONMA BOONYAVIROD

A Thesis Submitted in Partial Fulfilment of

The Requirements for the Degree of

Master of Engineering (Civil Engineering)

Graduate School, Kasetsart University

2006

ISBN 974-16-1042-4

Page 3: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 3/206

Page 4: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 4/206

ACKNOWLEDGMENTS

This research would never been succeeded unless the help and support arereceived from many people. The author would like to express his profound

appreciation and deepest gratitude to Assoc.Prof .Dr Santi Chinanuwatwong as

chairman of thesis committee, Assoc.Prof .Dr .Prasert Suwanvitaya, Dr .Wiwat

Saengthien as member of thesis committee for his invaluable advice, his enthusiasm

in giving enlightening instruction and recommendations, friendly discussions and

continuous encouragement throughout the course of study

The author would like to express his thanks to Mr . Kanoksak K and Mr . Pichet

L. (Thai Nishimatsu Construction Co.,ltd ) for offering valuable suggestions, providing

estimating data of construction cost and construction time to conduct the research. Histhanks also express to Mr . Pinit Karntikoon (Thai Nishimatsu Construction Co.,ltd ) for

the value illustrations. Many thanks are also extended to all of his friend and

classmates here in Kasetsart University for their nice and continuous encouragement

throughout his period of study

Sincere gratitude is due to Kasetsart University for providing and excellent

learning environment. 

Finally, the author would like to express his deep appreciation to his mother

and his father who continuously gave him the best support of all kinds without askinganything in return. Their moral support and love always deserve remembrance. The

author would like to dedicate any contributions of this work to his loving parents.

Boonma Boonyavirod

January 2006

Page 5: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 5/206

  i

TABLE OF CONTENTS

Page

TABLE OF CONTENTS……………………………………………………… i

LIST OF TABLES…………………………………………………………….. iii

LIST OF FIGURES…………………………………………………………… iv

INTRODUCTION……………………………………………………………. 1

General ……………………………………………………………….. 1

Statement of Problem………………………………………………… 1

Objectives ………..………………………………………………….. 2LITERATURE REVIEWS…………………………………………………... 4

General ………………………………………………………………. 4

Type of roof trusses…………………………………………………... 4

Fabrication…………………………………………………………… 9

Cost Estimation………………………………………………………. 14

Detailed Estimation Method………………………………………… 14

Preliminary Method…………………………………………………. 14

Estimation for Structural Steel……………………………………….. 15

Procedure of Estimation……………………………………………… 15

Truss Optimization…………………………………………………… 15

Optimization Document……………………………………………… 16

Literature Review Conclusion……………………………………….. 18

MATERIALS AND METHODS…………………………………………….. 20

Materials……………………………………………………………… 20

Methods……………………………………………………………… 20

RESULTS…………………………………………………………………… 23

DISCUSSSION……………………………………………………………… 26

CONCLUSION……………………………………………………………… 28

RECOMMENDATION FOR FUTURE WORK…………………………… 30

LITERATURE CITED……………………………………………………… 31

APPENDIX…………………………………………………………………. 33

Appendix A Sample of Truss Figures……………………………….. 34

Page 6: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 6/206

  ii

TABLE OF CONTENTS (cont’d)

Page

Appendix B Sample of Calculation Table…………………………... 40

Appendix C Element Valuation……………………………………... 42

Appendix D Figures of Studied Truss………………………………. 52

Appendix E Name of Truss…………….……………………………. 55

Appendix F Designed Truss Breakdown System…………………… 58

Appendix G Effect of Truss Shape…………….….………………… 60

Appendix H Design Results……………………….………………… 62

Appendix I Results Deviation……………………….………………. 67

Appendix J Design Calculation….…………….……………………. 70

Appendix K Relative Graph………………………….……………… 171

Appendix L Full Truss Breakdown Model…………….……………… 192

Appendix M Diagram of Main Procedure……………….……………… 194

Page 7: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 7/206

  iii

LIST OF TABLES

Appendix Table Page

B1 Design Calculation…………………………….……………………. 41

C1 Tube Element Valuation………...…………….……………………. 43

C2 Square Tube Element Valuation...…………….……………………. 45

C3 Angle Element Valuation………..…………….……………………. 47

C4 Channel Element Valuation………..…………….………………….. 48

C5 H-Beam Element Valuation………..…………….………………….. 49

E1 Name of Designed Truss….………..…………….………………….. 56G1 Effect of Truss Shape….….………..…………….………………….. 61

H1 Designed Weight Result.….………..…………….…………………. 63

H2 Designed Painting Result.…………..…………….…………………. 64

H3 Equation Weight Result.………..…..…………….…………………. 65

H4 Equation Painting Result.………..…..…………….………………… 66

I1 Weight Result Deviation.…………..…………….………………….. 68

I1 Painting Result Deviation…………..…………….………………….. 69

J1 Design Calculation…… .…………..…………….…………………… 71

Page 8: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 8/206

  iv

 

LIST OF FIGURES

Figure  Page

1 Truss by Leonard Church & Charless Edward.……………………. 5

2 Truss by Clifford D.Williams & Ernest C. Harris …...……………. 7

3 Types of Truss by SK Dugg……………………………………….. 8

4 Structural Pattern………………………………………………….. 9

5 Plate preparation for butt weld……………………………………. 10

6 Plate Chamfered and set up for butt welding……………………... 11

7 Type of corner joints ……………………………………………... 11

8 Preparation for pieces of work…………………………………… 12

9 Fillet weld details…………………………………………………. 13

10 Type of solid rivet…………………………………………..……… 14

Appendix Figure

A1 Bridgestone Factory Project……………………………………... 35

A2 Bridgestone Factory Project……………………………………... 35

A3 Bridgestone Tire Manufacturing Factory Project……………….. 36

A4 G-Steel Factory Project………………………………………….. 36

A5 HATC (Honda Cars Factory)……………………………………. 37

A6 Kikuwa Factory Project ………………………………………… 37

A7 Kobe Factory Project …………………………………………… 38

A8 Kobe Factory Project …………………………………………… 38

A9 Mitsui Hygiene Materials Factory Project ……………………… 39

C1 Tube Element Valuation…………………………..……………. 42

C2 Square Tube Element Valuation ……………………..………… 44

C3 Angle Tube Element Valuation ……………………..…………. 46

C4 Channel Tube Element Valuation …………… ……………..… 48

C5 Channel Tube Element Valuation……………………………… 49

D1 Double Triangular Truss………..……………………………… 52

D2 Triangular Truss………….……..……………………………… 53

D2 Designd Truss Breakdown System……..……………………… 58

Page 9: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 9/206

  v

LIST OF FIGURES

Figure  Page Appendix Figure

K1 Weight per square meter of roof for 12 m. span length vary on external ratio 172

K2 Weight per square meter of roof for 18 m. span length vary on external ratio 173

K3 Weight per square meter of roof for 24 m. span length vary on external ratio 174

K4 Weight per square meter of roof for 30 m. span length vary on external ratio 175

K5 Weight per square meter of roof for 36 m. span length vary on external ratio 176

K6 Weight per square meter of roof for 12 m. span length vary on internal ratio 176

K7 Weight per square meter of roof for 18 m. span length vary on internal ratio 178

K8 Weight per square meter of roof for 24 m. span length vary on internal ratio 179

K9 Weight per square meter of roof for 30 m. span length vary on internal ratio 180

K10 Weight per square meter of roof for 36 m. span length vary on internal ratio 181

K11 Painting area per square meter of roof for 12 m. span length vary on

external ratio………………………………………………………… 182

K12 Painting area per square meter of roof for 18 m. span length vary on

external ratio………………………………………………………… 183

K13 Painting area per square meter of roof for 24 m. span length vary on

external ratio………………………………………………………… 184

K14 Painting area per square meter of roof for 30 m. span length vary on

external ratio………………………………………………………… 185

K15 Painting area per square meter of roof for 36 m. span length vary on

external ratio………………………………………………………… 186

K16 Painting area per square meter of roof for 12 m. span length vary on

internal ratio…………………………………………………………. 187

K17 Painting area per square meter of roof for 18 m. span length vary on

internal ratio…………………………………………………………. 188

Page 10: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 10/206

  vi

  LIST OF FIGURES

Figure  Page Appendix Figure 

K18 Painting area per square meter of roof for 24 m. span length vary on

internal ratio…………………………………………………………. 189

K19 Painting area per square meter of roof for 30 m. span length vary on

internal ratio…………………………………………………………. 190

K20 Painting area per square meter of roof for 36 m. span length vary on

internal ratio…………………………………………………………. 191

L1 Full Truss Breakdown Model…………………………………………. 193

M1 Diagram of Main Procedure……………...………………………….... 195

Page 11: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 11/206

  1

A STUDY ON CONSTRUCTION COST & TIME

OF ROOF PLANT STRUCTURE

INTRODUCTION

General

The prerequisite industrial plants are in necessitation for rapid industry

expansion owing to the inadequate existed plants. Unavoidability of the industrial

increasing and economic growth are main propelled factors in industrial plantconstruction increasing. Construction cost is the primary expense prior of further

considered investment factors.

Truss is the most popular design for the roof structure particularly on long

span length due to the more economical cost comparing to other type of structure.

The proper truss design would benefits the more investment . Roof truss structures

are always designed in various types and shape forms of truss on various types ofelement selection in order to mitigate the cost and time. Nevertheless economical

truss patterns which subject to construction cost and times should be clarified .

Statement of Problem

Various important factors should be considered for optimum roof truss

design. Main considerations are on depth of truss per span length ratio, Vertical

chord length per horizontal chord length (internal shape), shape of element and

shape of truss. Difference in various factors will result in the difference in term of

amount of materials used, labours cost, fabrication as well as the installation.

Page 12: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 12/206

  2

Study on the various roof trusses on various factories found a lot of different

 patterns employed .  Nevertheless some patterns of truss are frequently employed

merely, Triangular and Double Triangular. The others shape forms can be found in

 particular projects depending on the needs for architectural aspect.

The basic problem of this study is to discover the relation among various

concern factors as well as the sensitivity in order to estimate the direct cost of truss

on various patterns with the most economical element type and to discover the most

economical truss pattern.

Objectives

Main objective of this study is to identify the most economical form of roof

truss structure with low slope, which result in optimisation on the cost and time of

roof truss structure.

The objectives of this research are as following;

1.  To find a rough estimate weight and painting area in order to evaluate

the approximate cost on various patterns of roof structure on the most economical

element type. 

2.  To find a rough estimate weight and painting area in order to evaluate

the approximate time on various forms of roof structure on the most economical

element type. 

3.  To find the Sensitivity of External Ratio and Internal Ratio . 

4.  To find the Most Proper Pattern of roof truss in scope range . 

Page 13: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 13/206

  3

 

Scope of Work

1.  Double Triangular Truss and Single Triangular Truss Form with low

slope (less than 5 percents) roof of industrial plant etc   are the main scope of this

study.

2.  This study concentrates on only roof truss structure . 

3.  Truss with 12m., 18 m., 24 m., 30 m. and 36 m Clear Span Supports  varyon 1:10, 1:12.5, 1:15, 1:17.5 and 1:20 Depth per Span Length Ratio (External Ratio)

with 1:1, 1:1.25, 1:1.5, 1:1.75, 1:2, 1:2.25 and 1:2.5 Vertical Element Length per

Horizontal Element Length (Internal Ratio) are truss aspects.

4.  Material for truss will be steel solely with different five types of Element

Shape Tube, Square Tube, Angle, Channel and I-shape

5.  Frame-to-Frame distance is 6 meters

6.  The condition of fabrication and installation are out of scope . 

Page 14: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 14/206

  4

LITERATURE REVIEW

General

The study of construction cost and time of each type of truss relates to the

 patterns and types of roof truss and that always used . Each type of truss has

different cost and time in construction. For Obtaining the costs it needs to know the

estimating procedure for getting the result closely to result it should be. For

fabrication, there are many methods difference in method may result in different

cost and time of construction.

Type of roof trusses

The main function of a roof truss is to support the roof covering and any

external loads. The framing details are usually arranged in order to transfer the load

to the truss at the points of intersection of the main members.

 Normally, trusses can be divided into many types. However, Church &

Edward (1930) following divided trusses, in their textbook “Design of steel

structures”, as showed in Figure 1

Page 15: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 15/206

  5

 

Figure 1  Types of Truss by Church & Edward (1930) 

(a) English Truss 

(b) King Post  (c) Belgran 

(d) Frink   (e) Cressent 

(f) Flat Warren  (g) Saw Tooth 

Page 16: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 16/206

  6

They suggested the use of truss as following;

a) English and Belgian truss generally are built of wood or combination

 between wood and steel.

 b) The King Post truss will be used for only short span and is usually built

of wood or a combination of wood and steel for tension members.

c) Belgran is used for general purpose

d) The most suitable form of truss for ordinary building in Fink type.

e) The Crescent truss is used for longer span or where a maximum of

headroom is necessary such as in railway terminal, barns, etc.

f) Flat Warren propers for flat roofs and long spans for proper slope for

adequate drainage.

g) Saw-tooth is used in factory buildings for amount of light.

Williams & Harris (1957) classified roof truss into 4 types.

Page 17: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 17/206

  7

  Furthermore in many factories, rigid frames were selected as main structure.

Williams & Harris (1957) described that rigid frames could be used for all types of

structure, such as bridges, building frame, crane supports and other industrial

frames. Duggal (n.d.) classified truss, in his text book “Design of Steel Structures” ,in to 12 types as showed in figure 3.

Figure 4 shows industrial building frame by Duggal (n.d.)

Figure 2  Types of Truss by Clifford D.Williams & Ernest C. Harris (1957) 

a Flat   b Fink  

c Hawe  d Warren 

Page 18: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 18/206

  8

Figure 3  Types of Truss by SK Duggal (n.d.)

Span < 30 m.

(k) Three Hinged

Arch Truss

(l) QuadrangleTruss

(i) Short Span

Steep Slape

Sclssor Truss

(j) Cresgent

Truss

(g) Belgian Truss

(e) Lattice Truss Large Span (f) Saw Tooth or North

Light Truss

(d) Triangular Pratt Truss(c) Warren Truss Small Pitch

Large Span

(b) Flat Pratt Truss Medium Pitch

Large Span

(h) Bow String Truss

(a) Fink Truss

Page 19: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 19/206

  9

 

Figure 4  Industrial Building Structural Frame by SK Duggal (n.d.)

Fabrication

Cost and time of installation in each truss depend on many factors and

fabrication is one of the important factors. There are many methods to fabricate

truss, in “A textbook for technicians and craftsman”

Flood (1977) described about fabrication, welding & metal jointing

 processes that metals could be jointed by various methods such as; electric welding,

gas welding, riveting, bolting, soldering, adhesive bonding and self-secured.

Figure 5 showed plate preparation for but weld by Flood (1977)

Page 20: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 20/206

  10

 

Figure 5  Plate Preparation for butt welds (Flood,1977)

( ) Plate Preparation for butt welds in carbon steel

Over 18 mm. Double U, 1.5 to 3 mm.

Gap Roof face 1 mm.

Symbol

(BS499)

Alternative Shape

Over 18 mm. Single U, 1.5 to 3 mm.

Gap Roof face 1 mm.

Over 18 mm. Double V, 1.5 to 3 mm.

Gap Roof face 1 mm.

6 mm. to 18 mm. Single V, 1.5 to

3 mm. Gap Roof face 1 mm.

3 mm. to 6 mm. No preparation ,

1.5 to 3 mm. gap

Less Than 3 mm. Closs Butt, no gap

a

 b

c

e

Page 21: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 21/206

  11

He suggested that the plate should be chamfered for more efficiency of butt weld

 joint as showed in figure 6

Flood also classified T-joint in several types by following figure

(a)

(b)

(c)

Figure 7  Types of T-joint (Flood,1977)

Figure 6 Plate Chamfers (Flood,1977)

a

 b

c

  Plate Chamfered and set up for butt welding

Roof Gab

Roof face  Parent metalthickness

60-70 degree Prep

Page 22: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 22/206

  12

  For Corner joints he classified into three types as showed in Figure 8

Figure 8  Types of corner joint (Flood,1977)

Flood (1977) stated that difference in method of fabrication and preparation

for pieces of works will result in different time and cost.

(c) Double bevel

Closed Coner

(b) Single bevel

Closed

a) Open Coner

45

60

A feature of this type of

 joint is its use where sharp

corners are a design criteria

Page 23: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 23/206

  13

Figure 9  Details of Fillet Weld (Flood,1977)

Fillet weld details Heel

Horizontal Leg

Toe

Vertical Leg

Toe

 Throat length

Convex reinforcement

Concave reinforcement

Throat length

ToeHeel

Horizontal Leg

Toe

  Vertical Leg

(a) Convex

(b) Concave

Page 24: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 24/206

  14

 

Figure 10  Types of solid rivet (Flood,1977)

Cost Estimation

Estimation is necessary for detail & rough and each type has several sub

item in order to obtain the result that is to close to the exact cost as Dagotino (n.d.)

classified cost estimate into two methods as following

Detailed Estimation Method

This method includes determination of the quantities and costs of everything

required to complete the work including materials, labors, equipment, insurance,

 bonds and overhead, as well as an expected profit. This method normally used for

competitive bidding. Each item will be broken down into its parts and estimated.

Detailed Estimation Method requires identification of costs that come from usage of

various equipment types. Estimated quantities, costs of material, labor cost, type of

equipment, individual process time needs, project duration, overhead as well as

 profit will be all considered as important factors to the accuracy of estimation.

Preliminary Method: Area and Volume Methods (Rough Estimation)

This method computes the number of cubic feet contains in the building and

multiplies by assumed cost per cubic foot.

These methods are preliminary (approximate) methods, used by architects

and engineers.

(a)

Universal

(b)

Snap

(c)

Pan

(d)

Counter-

Sunk

(e)

Flat

(f)

Steeple

(g)

Roundhead

Countersunk

Page 25: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 25/206

  15

Estimating for Structural Steel

Structural steel is purchased by weight (ton) and the cost per ton varies

depending on the type and shape of required steel, and labor operations are different

for each type. The estimate of the field cost of erecting structural steel will vary

depending on weather condition, prompt delivery of all materials, equipment

available, sizing of pieces of work and amount of riveting and welding required.

Dagostino. (n.d.) explained about steel estimating that  type of materials will

 be taken off as well the quantity of each material type that is able to earn from

length multiply by unit weight of each. Any other necessary specific equipment

required must be also taken into account. Labours work hours are to be calculated

including. 

Procedures of Estimation

1. Take off the various types and shapes.

2. Determine the pounds of each type required.

3. The cost per ton times the required weight will be the material cost.

4. Determine the work hours and equipment required and their respective

costs.

Truss Optimisation

Fundamentals of truss optimisation involve many design variables, such as

sizes of member, nodal coordinates and connectivity pattern of member by using

various method such as Linear Programming, Non-linear Programmring or

Dynamic Programming to gain the most economic structure. For topology

optimisation design in many decades, there are two types of topology optimisation

which have been investigated: Deletion of Members: The procedure consists of

initially interconnecting all the nodes of structure completely, followed by a step-

Page 26: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 26/206

  16

wise procedure of optimising the structure for geometry and cross-sectional

dimensions. Members with vary small force are deleted from the current structure

and the result structure is re-optimisation in the next step. The procedure is

terminated when sufficient convergence of the objective function is attained.

Addition of members in this procedure initiated by Spillers, which optimise for

geometry and cross-sectional dimensions. A node is introduced in an external

member and connecting this node to an existing node opposite to the member on

which the new node is introduced forms a new member. The new structure is

optimised for geometry and cross-sectional dimensions. The procedure is repeated

until a minimum weight is attained. However, many studies include the following

review never find the relationship between pattern of optimum form of structure

and construction time.

Optimization Document

Michell (1904) demonstrated that there was a unique geometry for the

structure of minimum weight, under each of the loading arrangements he proposed.

He showed that such structure was built up of orthogonal net of pin-jointedmembers shapes like the slip-line field in plastic theory.

Dorn and his colleagues (1964) used the linear programmring technique to

optimise both the topology and geometry of some simple structures and obtained

interesting and unconventional results. Reliability of the solutions produced through

linear programing was in question because all the non -linear constrain equations

and the objective function had to be approximately liberalized for the apply of

linear programming. 

Goff (1966)  presented methods of optimisation of determinate roof truss

where geometry was also a design variable; joint locations were considered as the

state variables. The basis of their decomposition was that the force in various

members for a given truss arrangement are depend only upon the location of the

adjacent joints. GOFF (1966) considered the location of the nodes on the vertical

axes as the state variable for the cantilevered truss with single point load acting on

Page 27: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 27/206

Page 28: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 28/206

  18

Literature Review Conclusion

There are various types of truss classified by individual author Charch &

Edward (1930) classified into 7 types by functional purpose. William & Haris

(1957) classified into 4 types (no purpose statement). Duggul (n.d.) classified into

13 types. Nevertheless there is no suggestion about the shape form of truss or

important factors which impact to the cost of truss. Joint connection also influence

on time and cost of truss fabrication, Flood (1977) classified welding into 7 types 1).

Electric welding. 2). Gas welding. 3). Riveting. 4). Bolting. 5). Soldering. 6).

Adhesive bonding.7). Self-secured. Plate preparation also impacts on cost and

time. However the joint detailing is out of study scope. For cost estimation,

Dagosito (n.d.) explained on Detailed Estimation Method that material quantities ,

labor cost, equipment cost and overhead have to be taken into account and also

 profits for obtaining the most total accurate construction cost. On the contrary,

Rough Estimation obtain from estimated area contains in building multiplies by

assumed cost per area.

Estimation for structural steel, the cost is derived from 2 items 1). Steel2). Erection which influence by various factors such as weather, delivery of

materials, equipment, sizing of pieces of work and amount of joint. The simple

method was proposed by classifying of each type of joint times by total element

length time by weight per length equals to material cost then plus work hours and

equipment which equal to labor cost.

For truss optimisation, various studys of optimisation concentrate by

deletion of member or optimize for geometry and cross-sectional dimension.

 Nonetheless the author concentrates on study on the typical structure and monitor

the sensitive factors among element shape, internal ratio and external ratio by

applying on single major truss form, 5  types of element, 7 internal ratio and 5

external ratio. The element sizing will be divided into 2 parts 1) Upper &Lower

Chords 2) Vertical & Diagonal chords

Page 29: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 29/206

  19

MATERIALS AND METHODS

Materials

1.Microfeap Program Education Edition, Version II Module P 1 (Release

3.2)

2.Computer with Pentium  R 4 CPU 2.00GHz, 2.02 GHz 128 MB of RAM 

Methods

Guild Line for Studying

The studying on the effect of truss shape between Double triangular shape

and Single triangular shape shall be performed in order to identify the most

interesting shape for primary selection. Subsequently, valuation for the most

economical element type will be processed in order to identify the most proper

element type being employed for further study. Radious of gyration per cross

section, painting area per weight of various sections will be considered as importantfactors of element type valuation.

Presumed criteria on condition of studying for calculation

Unit Cost: use average cost from subcontractors 40 Bahts per kilogram for

fabrication and installation work and 250 Bahts per square meter for painting work.

Unit Time: use average time from subcontractors 150 Tons per month with

20 welders and full facilities for fabrication and installation work (250

kg/8hr/person and 120 sqm/8hr/person for painting work or 30 kg/hr and 15

sqm./hr).

Condition of work would be presumed as outdoor installation without rain

and there is adequate space area for most of the time works proceeding.

Page 30: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 30/206

  20

Design Criteria

Design Method: Allowable Stress Design

Maximum deflection at mid of span: L/360

Slope for roof: 3 %

Steel: A36

 Number of Support: 2 supports

Condition of support: One side is hinge support another side is roller

support.

Type of joint connection welding

Detailed Procedure

1.  To generate the 12, 18, 24, 30 and 36 meters span length truss with

different external and internal ratio of Double triangular and Single triangular shape

to assess the affect of truss shape

2.  To evaluate the most worthwhile element section type

3.  All aspect of truss in scope shall be analysed the internal forces.

4.  Elements subjected to maximum force will be designed and applied by

the most proper one which acquired from second step

5.  To discover the relation among various concerned factors as well as

sensitivity

6.  To derive the target relative equation of weight and painting area per

square meter of roof

7.  To test the sample model to insist the target relative equation

Page 31: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 31/206

  21

The methodology is divided in to seven main steps.

Figure M 1 show diagram of procedure

Collecting data

The unit cost & time for fabrication, installation and painting work are

evaluated from experience sub-contractors.

Design various truss.

Roof truss structure designed will be applied on double triangular shape

form with 12, 18, 24, 30, 36 meter span length, various on internal ratio 1:1, 1:1.25,

1:1.5, 1:1.75, 1:2, 1:2.25, 1:2.5 and various on depth of truss to span length ratio

1:10, 1:12.5, 1:15, 1:17.5, 1:20 including 5 different types of element form

considered. The minimum element cross-section area and maximum radius of

gyration will be applied on the element subjected to the maximum load as well as

slenderness ratio consideration.Figure F 1 show diagram of studied truss and L 1 show full diagram of

truss

Calculate the construction cost and construction time.

After all of truss forms (175 forms) have been designed the construction

cost and time per square meter of roof will be calculated.

Relation between cost and various changeable factors

Possible relative equation acquisition for cost and time estimation

Model Verification

The derived relative equation shall be verified and proper rectification

would be employed . 

Page 32: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 32/206

  22

Result Conclusion

Summarization of the practical universal equation and the possible

 particular optimum equation including the sensitivity of internal ratio and external

ratio(depth of truss/span length ratio, vertical element length ratio per horizontal

element length) as well as the most economical pattern.

Page 33: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 33/206

  23

RESULTS

Effect of Truss Shape Valuaion

Afterward of trial design on both Double Triangular and Triangular Shape

Truss on every span length with different external and internal ratio, the results

illustrate the slightly different in term of cost and time by the resemble element

sizing as demonstrate in Appendix Table G1. The resemble element sizing result in

indifferent of cost and time which would come from solely 3% slope. The Double

Triangular shape shall be selected for further studied owning to the more practical

fabrication reason.

Proper Element Type Selection

Various element types were studied on worthwhile economical selection

through ratio of radious of gyration per cross-section and ratio of painting area per

steel weight simultaneously as illustrate in Appendix Table C1-C5. The maximum

average ratio of radious of gyration per cross-section has yielded to Tube Element,the minimum average ratio of painting area per steel weight has yielded to Square

Tube Element. Nevertheless the more of Tube sizing diversity allow the more

flexible design to the nearest critical section and the average ratio of painting area

 per steel weight of Tube Element as well as Square Tube Element are resemble.

The result shows slightly difference in term of total cost. Consequently the further

deep study shall be proceeded mainly on Tube element.

Cost Result and Relative Equation

Cost = (Material Unit Cost x Material Amount Function) + (Painting Unit

Cost x Painting Amount Function)

Time = (Material Unit Time x Material Amount Function) + (Painting Unit

Time x Painting Amount Function)

Page 34: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 34/206

  24

Material amount function (Kilogram per Square Meter of Roof)

= 0.338 X1 + 0.214 X2 – 0.0718 X3 – 0.687…………………………………(1)

Painting amount function (Painting area per Square Meter of Roof)

= 0.00836 X1 + 0.003911 X2 – 0.0631 X3 + 0.2………………………………(2)

For 40 Baht per kilogram and 250 Baht per Paintinging Square meter

Cost per Square Meter of Roof

= 15.611 X1 + 9.537 X2 – 18.647 X3 + 22.52…………………………………(3)

For 30 Kilogram per hour and 15 Paintinging Square meter per hour

Or 2 Minute per kilogram and 4 Minute per Square meter

Time per Square Meter of Roof

= 0.709 X1 + 0.444 X2 – 0.574 X3 – 0.396…………………………………….(4)

Equation Verification

Average percent variation of weight is 4.856

Average percent variation of painting area is 1.475 

Factors’s Sensitivity for External and Internal Ratio

Derived equation of Material amount function illustrate that External Ratio

is more sensitive than Internal Ratio. However, for Painting amount function,

derived equation demonstrate that Internal Ratio is more sensitive than External

Ratio. Cost and Time function illustrate sensitivity in the same manner with

Material amount function.

Page 35: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 35/206

  25

The most economical pattern in scope range

From relative equation, the minimum External Ratio and maximum Internal Ratio

will result in minimum construction Cost and Time. Minimum External Ratio or

Depth of truss per span length ratio yield to1/10 and Maximum Internal Ratio or

Vertical Chord Length per Horizontal Chord Length yield to 1 / 2.25.

Where :

X1 = Span length in meter (12, 18, 24, 30 or 36)

X2 = External Ratio or Depth per Span Ratio (10, 12.5, 15, 17.5 or 20)

X3 = Internal Ratio or Vertical Chord Length per Horizontal Chord Length

(1, 1.25, 1.5, 1.75, 2, 2.25 or 2.5)

Page 36: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 36/206

  26

DISCUSSION

Shape of truss effect to the weight and painting area, in this study two

 patterns of truss were selected to be studied, Triangular and Double Triangular

shape. Design comparing (see appendix G) illustrate the resemble element sizing,

nevertheless Double Triangular is more practical in term of fabrication owing to the

more identical length of element since the Double Triangular was further studied.

Type of element also significantly effect to the weight and painting area,

element cross section which provide the maximum radius of gyration per cross

section ratio simultaneously the minimum painting area per cross section area.

Refer to the market sizing, above ratio had been calculated (see appendix C). Tube

element and Square Tube element provide the maximum radius of gyration per

cross section ratio and Square Tube elements have slightly advantage on Tube

element in term of painting area per cross section area. Nonetheless Tube Element

have advantage on Square Tube Element in term of more flexible selection

according to the more market size. Hence the most attractive element yielded to the

Tube Element.

Deviation of calculation result (see appendix H) and actual design is caused

 by the limitation of element cross-section selection owning to the sizing produced

which effect to each truss design in obtaining consequently comely weight per

square meter of roof and also painting are per square meter of roof. Approximate

Estimation Equations are formed with above limitation which cause of deviation

 between actual design result and calculated result from obtained equation.

Sensitivity Analysis

Major Aim of this study is to obtain the approximate cost and time

estimation equation through weight and painting area per square meter of roof

where the main effective factors are shape of truss, type of element, span length,

depth of truss per span length ratio and vertical chord length per horizontal chord

length ratio. All of these factors result in the different effect in term of weight and

 painting area, this study aim to focus on the most practical in term of fabrication

Page 37: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 37/206

  27

work, optimum weight and optimum painting area which directly effect to

construction cost and time. Shape of truss was the primary factor to be considered

and valuated, two type which is selected to be studied is Triangular and Double

Triangular Shape as both are popular used and as the most simple format which

need no rather high technique to fabricate. Double Triangular Truss has advantage

on Triangular in term of most of the vertical and diagonal chord length is equal

since benefit the suitable cutting work and fabrication further there is solely slightly

different in term of weight and painting area. Hence the Double Triangular Truss

was focused on further study.

Type of Element Chord effect to the weight and painting area of total

structure apparently. Difference in shape of element cause difference in radius of

gyration and weight, also difference in cross section area. The most worthwhile

type of cross section was studied. H-beam, Angle and Channel have less flexibility

in term of shape selection due to limitation of sizing in market. The aforesaid cause

in over designing unavoidable. Furthermore the average radius of gyration per cross

section is less than Tube element and Square Tube Element. Painting area was also

considered in term of painting area per weight of steel, the more ratio’s figureindicate the more painting cost for equal weight. Tube Element was considered for

further study owing to the more flexible selection for designing. The most average

radius of gyration per cross section and proper painting area per weight of steel are

also worthwhile.

Span length, depth of truss per span length ratio and vertical chord length

 per horizontal chord length ratio were taken into account for relative study on

weight and painting area effect. Even though Tube Element is the most flexible in

term of more various sections to be selected in designing, the undesirable excess is

still in many case which will effect to the formation of relative equation and cause

detectable deviation in some case since the comparative table between actual design

and figure from relative equations are present here in appendix H to be guideline

and notification of usage.

Page 38: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 38/206

  28

CONCLUSION

Afterward of study, the proper equation for estimation of construction cost

mainly composing of fabrication portion and painting work portion multiply by

Cost of fabrication per kilogram and Cost of painting per square meter of painting

area on each portion result in approximate total cost per square meter of roof.

Rough construction time obtain by the same manner which need multiplying by

Time of fabrication per kilogram and Time of painting work per square meter of

 painting. Equations are as follow;

Proper Equation of Cost

Ct = UCw x (0.338 X1 + 0.214 X2 – 0.0718 X3 – 0.687)  +  UCp x (0.00836

X1 + 0.003911 X2 – 0.0631 X3 + 0.2)

Proper Equation of Time

Dt =UTw x (0.338 X1 + 0.214 X2 – 0.0718 X3 – 0.687) + UTp x (0.00836X1 + 0.003911 X2 – 0.0631 X3 + 0.2)

Sensitivity

External Ratio is more sensitive than Internal Ratio for Material amount

function, Cost Function and Time function. Nevertheless Internal Ratio is more

sensitive than External Ratio for Painting Area amount function.

The most economical pattern

The most economic pattern yields to 1/ 10 External Ratio and 1 / 2.25

Internal Ratio

Where :

X1 = Span length

X2 = External Ratio

Page 39: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 39/206

  29

X3 = Internal Ratio

Ct = Total Cost per area of roof

UCw = Unit Cost of Fabrication

UCp = Unit Cost of Painting Work

Dt = Total Time per area of roof

UTw = Unit Time of Fabrication

UTp = Unit Time of Painting Work

Page 40: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 40/206

  30

RECOMENDATION FOR FUTURE WORK

This study focus on effect of span length, depth per span length, vertical

chord length per horizontal chord length including shape of element and shape of

truss on average total construction cost and time. Varying on each factor in

different rate of construction cost and time change.

Trend and rate of cost and time change on each various effected factor

could be monitored and used as guideline of making decision on proper truss

selection for designer. Slope of roof truss was not included in scope of this study.

Concerning on slope change would us more flexibility in making decision of truss

 pattern selection. In order to obtain the most proper pattern of truss for economical

reason.

Gable is also another interesting type of structure to be studied on as

comparative structure for alternative design for designer. Author strongly

recommend including gable structure in scope of study for future study. 

Page 41: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 41/206

  31

 

LITERATURE CITED

Azevedo, A. F. M. 1995 Second-order structural optimization. Ph. D. thesis,

University of Porto

Clifford, D. Williams and Ernest, C. Harris. 1957 Structural design in

metals.,Fenn College

Charles, G. Salmon and John, E. Johnson. 1995 Steel structures design and

behavior. The University of Wisconsin

C R Flood. 1977 Fabrication, Welding & Metal joining processes. Canterbury

College of Technology

Deniel, C. Schinler. 2001. Densign of partially restrained steel frames using

advanced analysis and an object-oriented evolutionary algorithm. MSthesis, Marquette University

Dorn, W.S. , Gomory, R.E. and Greenberg, H.F 1968. Automation design of optimal

structure. De Mecanique Journal. Vol 3, March 1968.  pp 25-52

Frank R . Dagostino. n.d . Estimating in building construction. Dean Industrial and

Engineering Technology

Goff, R .F.D. Decision theory and shape of structure. 1966. Journal of the Rloyal

Aeronautical Society, Vol 70 , March1966 .  pp 448-452

J.S. Gero and K . Kaneshalingam. 1980. Truss design by Topology optimisation.

MS thesis, University of Sydney

Page 42: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 42/206

  32

Leonard Church Urquhart and Charles Edward O’Rourke: 1930. Design of steel

structure. Cornell University

Michell, A.G.M. 1904. The limit of economy of material in frame structures.

Philosophical Magazine Series 6 Vol. 8, 1904. pp. 589-597

Mole, R.H. 1973. The minimum weight structural optimisation of pin-jointed truss

cantilever of given external shape Int. J. Mech. Sci., Vol.15, 1973, pp .49-

63

Palmer, A.C. and Sheppard, D.J. 1970. Optimisation the shape of pin-jointedStructure. Institution of Civil Engineering Proceedings. Vol. 47, 1970, pp. 363-

376

Radford, A.D. 1979. A design model for the physical environment in building.,

Ph. D. thesis, University of Sydney

R . Sudachan. 2000. Gemetic algorithms and application to the optimization of

Space truss. MS thesis, Indian Institute of technology

Sharma, L.K . 1974. The optimum design of roof trusses. M.Bdg.Sc. Thesis,

University of Sydney

S K Duggal. n.d . Design of steel structure. M N R Engineering College

SPillers,W.R . 1977. Iterative Structural densign. SM Archives. Vol. 2,1977, pp. 369-

401

Page 43: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 43/206

  33

 

APPENDICES

Page 44: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 44/206

  34

 

APPENDIX A

Page 45: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 45/206

  35

 

Appendix Figure A1  Project Name: Bridgestone Factory Chonburi

Source: Nishimatsu Construction Company (2005)

Appendix Figure A2  Project Name: Bridgestone Factory Chonburi

Source: Nishimatsu Construction Company (2005)

Page 46: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 46/206

  36

 

Appendix Figure A3  Project Name: Bridgestone Tire Manufacturing

Source: Nishimatsu Construction Company (2005)

Appendix Figure A4  Project Name: G-Steel Factory Rayong

Source: Nishimatsu Construction Company (2005)

Page 47: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 47/206

  37

 

Appendix Figure A5  Project Name: HATC (Honda Cars Factory) Ayuthaya

Source: Nishimatsu Construction Company (2005)

Appendix Figure A6  Project Name: Kikuwa Factory Nonthaburi

Source: Nishimatsu Construction Company (2005)

Page 48: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 48/206

  38

 

Appendix Figure A7  Project Name: Kobe Factory Nonthaburi

Source: Nishimatsu Construction Company (2005)

Appendix Figure A8  Project Name: Kobe Factory Nonthaburi

Source: Nishimatsu Construction Company (2005)

Page 49: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 49/206

  39

 

Appendix Figure A9  Project Name: Mitsui Hygiene Materials Factory Nonthaburi

Source: Nishimatsu Construction Company (2005)

Page 50: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 50/206

  40

 

APPENDIX B

Page 51: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 51/206

  41

Appendix Table B1  Design Calculation

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.) 

Element Cross

Section

Area(sqcm.) 

Radius of

Gyration (cm.)

Horizontal Compression 15780 120

Cord Tension 15780 12012.26 3.45

Diagonal Compression 7020 120

Cord Tension 8100 1205.76 2.03

Appendix Table B1  Calculation (Cont’d) 

KL/R F.S.

Fa(1)

(KL/R<

128)

Fa(2)(128<K 

L/R<200)for

compression

or tension

Allowable

Load(1)

(Kg.)

Allowable

Load(2) or

Tension

(Kg.)

34.78 1.77 1364.42 - 16727.73 0

- - - 1500 - 18390.00

59.11 1.83 1224.46 - 7052.86 0.00

- - - 1500 - 8640.00

Page 52: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 52/206

  42

 

APPENDIX C

Page 53: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 53/206

  43

Appendix Table C1  Tube Element Valuation 

Tube

Element

(Diameter

x Thk.)

(mm. x mm.)

Cross

Section

(sqcm.)

Perimeter

(cm.)

Radius of

Gyration

(cm.)

Radius of

Gyration/

Cross

Section

Weight

(kg/m)

Painting

Area(sqm)/

Weight1kg

21.7x2 1.24 6.82 0.70 0.57 0.97 0.07

27.2x2 1.58 8.55 0.89 0.56 1.24 0.07

27.2x2.3 1.80 8.55 0.88 0.49 1.41 0.06

34x2.3 2.29 10.69 1.12 0.49 1.80 0.0642.7x2.3 2.92 13.42 1.43 0.49 2.29 0.06

42.7x2.8 3.51 13.42 1.41 0.40 2.76 0.05

48.6x2.3 3.35 15.27 1.64 0.49 2.63 0.06

48.6x2.8 4.03 15.27 1.62 0.40 3.16 0.05

48.6x3.2 4.56 15.27 1.61 0.35 3.58 0.04

60.5x2.3 4.21 19.01 2.06 0.49 3.30 0.06

60.5x3.2 5.76 19.01 2.03 0.35 4.52 0.04

60.5x4 7.10 19.01 2.00 0.28 5.57 0.03

76.3x2.8 6.47 23.98 2.60 0.40 5.08 0.05

76.3x3.2 7.35 23.98 2.59 0.35 5.77 0.04

76.3x4 9.09 23.98 2.56 0.28 7.13 0.03

89.1x2.8 7.59 28.00 3.05 0.40 5.96 0.05

89.1x3.2 8.64 28.00 3.04 0.35 6.78 0.04

89.1x4 10.69 28.00 3.01 0.28 8.39 0.03

101.6x3.2 9.89 31.93 3.48 0.35 7.76 0.04

101.6x4 12.26 31.93 3.45 0.28 9.63 0.03

101.6x5 15.17 31.93 3.42 0.23 11.90 0.03

114.3x3.2 11.17 35.92 3.93 0.35 8.77 0.04

114.3x3.6 12.52 35.92 3.92 0.31 9.83 0.04114.3x4.5 15.52 35.92 3.89 0.25 12.20 0.03

114.3x5.6 19.12 35.92 3.85 0.20 15.00 0.02

139.8x3.6 15.40 43.94 4.82 0.31 12.10 0.04

139.8x4 17.07 43.94 4.80 0.28 13.40 0.03

139.8x4.5 19.13 43.94 4.79 0.25 15.00 0.03

139.8x6 25.22 43.94 4.74 0.19 19.80 0.02

165.2x4.5 22.72 51.92 5.68 0.25 17.80 0.03

Page 54: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 54/206

  44

Appendix Table C1  Tube Element Valuation (Cont’d) 

Tube

Element

(Diameter

x Thk.)

(mm. x mm.)

Cross

Section

(sqcm.)

Perimeter

(cm.)

Radius of

Gyration

(cm.)

Radius of

Gyration/

Cross

Section

Weight

(kg/m)

Painting

Area(sqm)/

Weight1kg

165.2x5 25.16 51.92 5.67 0.23 19.80 0.03

165.2x6 30.01 51.92 5.63 0.19 23.60 0.02

165.2x7 34.79 51.92 5.60 0.16 27.30 0.02

190.7x4.5 26.32 59.93 6.59 0.25 20.70 0.03

190.7x5 29.17 59.93 6.57 0.23 22.90 0.03190.7x6 34.82 59.93 6.53 0.19 27.30 0.02

190.7x7 40.40 59.93 6.50 0.16 31.70 0.02

216.3x4.5 29.94 67.98 7.49 0.25 23.50 0.03

216.3x6 39.61 67.98 7.44 0.19 31.10 0.02

216.3x7 46.03 67.98 7.40 0.16 36.10 0.02

216.3x8 52.35 67.98 7.37 0.14 41.10 0.02

267.4x6 49.27 84.04 9.24 0.19 38.70 0.02

267.4x7 57.27 84.04 9.21 0.16 45.00 0.02

267.4x8 65.19 84.04 9.18 0.14 51.20 0.02267.4x9 73.06 84.04 9.14 0.13 57.40 0.01

Average 0.30 0.035

Approximate Material and Painting Cost per one kilogram of steel can be calculated

as following.

Unit Quantity Unit Cost Total Cost

Steel Kg. 1 40 40

Painting Area Sqm./Kg. 0.035 250 8.75

Total 48.75

Page 55: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 55/206

  45

Appendix Table C2  Square Tube Element Valuation

Square Tube

Element

(mm. x mm. x

mm.)

Cross

Section

(sqcm.)

Perimeter

(cm.)

Radius of

Gyration

(cm.)

Radius of

Gyration/

Cross

Section

Weight

(kg/m)

Painting

Area(sqm)/

Weight1kg

69.63 120.00 12.00 0.17 54.70 0.02300x300x6

300x300x4.5 52.67 120.00 12.00 0.23 41.30 0.03

250x250x8 75.79 100.00 9.82 0.13 59.50 0.02

250x250x6 57.63 100.00 9.92 0.17 45.20 0.02

250x250x5 48.36 100.00 9.97 0.21 38.00 0.03200x200x8 59.79 80.00 7.78 0.13 46.90 0.02

200x200x6 45.63 80.00 7.88 0.17 35.80 0.02

175x175x6 39.63 70.00 6.86 0.17 31.10 0.02

175x175x5 33.36 70.00 6.91 0.21 26.20 0.03

150x150x6 33.63 60.00 5.84 0.17 26.40 0.02

150x150x5 28.36 60.00 5.89 0.21 22.30 0.03

150x150x4.5 25.67 60.00 5.91 0.23 20.10 0.03

125x125x6 27.63 50.00 4.82 0.17 21.70 0.02

125x125x5 23.36 50.00 4.86 0.21 18.30 0.03125x125x4.5 21.17 50.00 4.89 0.23 16.60 0.03

125x125x3.2 15.33 50.00 4.95 0.32 12.00 0.04

100x100x4.5 16.67 40.00 3.87 0.23 13.10 0.03

100x100x4 14.95 40.00 3.89 0.26 11.70 0.03

100x100x3.2 12.13 40.00 3.93 0.32 9.52 0.04

100x100x2.3 8.85 40.00 3.97 0.45 6.95 0.06

125x75x4 10.85 36.00 3.52 0.32 11.70 0.03

90x90x2.3 7.93 36.00 3.56 0.45 11.70 0.03

80x80x3.2 9.57 32.00 3.11 0.33 9.52 0.03

80x80x2.3 7.01 32.00 3.16 0.45 9.52 0.03

75x75x3.2 8.93 30.00 2.91 0.33 6.95 0.04

75x75x2.3 6.55 30.00 2.95 0.45 6.95 0.04

60x60x3.2 7.01 24.00 2.30 0.33 5.69 0.04

60x60x2.3 5.17 24.00 2.34 0.45 5.69 0.04

60x60x1.6 3.67 24.00 2.37 0.65 4.01 0.06

50x50x3.2 5.73 20.00 1.89 0.33 4.01 0.05

Page 56: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 56/206

  46

Appendix Table C2  Square Tube Element Valuation (Cont’d) 

Square Tube

Element

(mm. x mm.

x mm.)

Cross

Section

(sqcm.)

Perimeter

(cm.)

Radius of

Gyration

(cm.)

Radius of

Gyration/

Cross

Section

Weight

(kg/m)

Painting

Area(sqm)/

Weight1kg

4.25 20.00 1.93 0.45 7.01 0.0350x50x2.3

50x50x1.6 3.03 20.00 1.96 0.65 7.01 0.03

Average 0.30 0.032

Approximate Material and Painting Cost per one kilogram of steel can be calculated

as following.

Unit Quantity Unit Cost Total Cost

Steel Kg. 1 40 40

Painting Area Sqm./Kg. 0.032 250 8

Total 48

Page 57: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 57/206

Page 58: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 58/206

  48

 

Appendix Table C3  Angle Element Valuation (Cont’d) 

Angle

Element

(mm. x mm.

X mm.)

Cross

Section

(sqcm.)

Perimeter

(cm.)

Radius of

Gyration

(cm.)

Radius of

Gyration/

Cross

Section

Weight

(kg/m)

Painting

Area(sqm)/

Weight1kg

150x150x12 34.77 60.00 4.61 0.13 27.30 0.02

150x150x15 42.74 60.00 4.56 0.11 33.60 0.02

150x150x19 53.38 60.00 4.52 0.08 41.90 0.01

175x175x12 40.52 70.00 5.38 0.13 31.80 0.02

175x175x15 50.21 70.00 5.35 0.11 39.40 0.02

200x200x15 57.75 80.00 6.14 0.11 45.30 0.02

200x200x20 76.00 80.00 6.09 0.08 59.70 0.01

200x200x25 93.75 80.00 6.04 0.06 73.60 0.01

250x250x25 119.40 100.00 7.63 0.06 93.70 0.01

250x250x35 162.60 100.00 7.49 0.05 128.00 0.01

Average 0.22 0.04

Approximate Material and Painting Cost per one kilogram of steel can be calculated

as following.

Unit Quantity Unit Cost Total Cost

Steel Kg. 1 40 40

Painting Area Sqm./Kg. 0.04 250 10

Total 50

Page 59: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 59/206

  49

Appendix Table C4  Channel Element Valuation

Channel

Element

(mm. x mm. x

mm.)

Cross

Section

(sqcm.)

Perimeter

(cm.)

Radius of

Gyration

(cm.)

Radius of

Gyration/

Cross

Section

Weight

(kg/m)

Painting

Area(sqm)/

Weight1kg

8.82 31.00 2.92 0.33 6.92 0.0475x40x5

100x50x5 11.92 40.00 3.97 0.33 9.36 0.04

125x65x6 17.11 51.00 4.98 0.29 13.40 0.04

150x75x6 23.71 60.00 6.03 0.25 18.60 0.03

150x75x9 30.59 60.00 5.86 0.19 24.00 0.03180x75x7 27.20 66.00 7.12 0.26 21.40 0.03

200x80x7 31.33 72.00 7.88 0.25 24.60 0.03

200x90x8 38.65 76.00 8.02 0.21 30.30 0.03

250x90x9 44.07 86.00 9.74 0.22 34.60 0.02

250x90x11 51.17 86.00 9.56 0.19 40.20 0.02

300x90x9 48.57 96.00 11.50 0.24 38.10 0.03

300x90x10 55.74 96.00 11.50 0.21 43.80 0.02

380x100x10.5 69.39 116.00 14.50 0.21 54.50 0.02

380x100x13 78.96 116.00 14.10 0.18 62.00 0.02380x100x13 85.71 116.00 14.30 0.17 67.30 0.02

Average 0.23 0.03

Approximate Material and Painting Cost per one kilogram of steel can be calculated

as following.

Unit Quantity Unit Cost Total Cost

Steel Kg. 1 40 40

Painting Area Sqm./Kg. 0.03 250 7.50

Total 47.50

Page 60: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 60/206

  50

Appendix Table C5  H-Beam Element Valuation 

H-Beam

Element

(mm. x mm. x

mm.)

Cross

Section

(sqcm.) 

Perimeter

(cm.) 

Radius of

Gyration

(cm.) 

Radius of

Gyration/ 

Cross

Section

Weight

(kg/m) 

Painting

Area(sqm)/

Weight1kg

100x50x5 11.85 40.00 3.98 0.34 13.20 0.04

100x100x6 21.90 60.00 4.18 0.19 17.20 0.03

125x60x6 16.84 49.00 4.95 0.29 13.20 0.04

125x125x6.5 30.31 75.00 5.29 0.17 23.80 0.03

150x75x5 17.85 60.00 6.11 0.34 14.00 0.04150x100x6 26.84 70.00 6.17 0.23 21.10 0.03

150x150x7 40.14 90.00 6.39 0.16 31.50 0.03

175x90x5 23.04 71.00 7.26 0.32 18.10 0.04

175x175x7.5 51.21 105.00 7.50 0.15 40.20 0.03

200x100x4.5 23.18 80.00 8.26 0.36 18.20 0.04

200x100x5.5 27.16 80.00 8.24 0.30 21.30 0.04

200x150x6 39.01 100.00 8.30 0.21 30.60 0.03

200x200x8 63.53 120.00 8.62 0.14 49.90 0.02

200x200x12 71.53 120.00 8.35 0.12 56.20 0.02250x125x5 32.68 100.00 10.40 0.32 25.70 0.04

250x125x6 37.66 100.00 10.40 0.28 29.60 0.03

250x175x7 56.24 120.00 10.40 0.18 44.10 0.03

250x250x9 92.18 150.00 10.80 0.12 72.40 0.02

250x250x14 104.7 150.00 10.50 0.10 82.20 0.02

300x150x5.5 40.8 120.00 12.40 0.30 32.00 0.04

300x150x6.5 46.78 120.00 12.40 0.27 36.70 0.03

300x200x8 72.38 140.00 12.50 0.17 56.80 0.02

300x300x12 107.7 180.00 12.50 0.12 84.50 0.02

300x300x10 119.8 180.00 13.10 0.11 94.00 0.02

350x175x6 52.68 140.00 14.50 0.28 41.40 0.03

350x175x7 63.14 140.00 14.70 0.23 49.60 0.03

350x250x9 101.5 170.00 14.60 0.14 79.70 0.02

Average 0.22 0.03

Page 61: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 61/206

  51

Approximate Material and Painting Cost per one kilogram of steel can be calculated

as following.

Unit Quantity Unit Cost Total Cost

Steel Kg. 1 40 40

Painting Area Sqm./Kg. 0.04 250 10

Total 50

Page 62: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 62/206

  52

 

APPENDIX D

Page 63: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 63/206

  53

 

   D   E   P   T   H    O

   F   T   R   U   S   S

HORIZONTAL OFTRUSS

   V   E   R   T   I   C   A   L   O   F

   T   R   U   S   S

SPAN LENGTH

Appendix Figure D1  Double Triangular Truss

Horizontal is Horizontal Chord Length

Slo e less than 5 % 

Page 64: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 64/206

  54

 

   D   E   P   T   H    O

   F   T   R   U   S   S

HORIZONTAL OFTRUSS

SPAN LENGTH

   V   E   R   T   I   C   A   L   O   F

   T   R   U   S   S

Appendix Figure D2  Triangular Truss

Horizontal is Horizontal Chord Length

Slo e less than 5 % 

Page 65: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 65/206

  55

 

APPENDIX E

Page 66: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 66/206

  56

 NAME OF TRUSS

XX – XXX-XXX

: Span Length-External Ratio-Internal Ratio

Span Length : Distance between supports in meters (12, 18, 24, 30 and 36)

External Ratio : The Ratio of Truss Depth and Span Length

(1:10, 1:12.5, 1:15, 1:17.5 and 1:20), multiply by 100 for

Span Length and employ last 3 digits. 

Internal Ratio : The Ratio of Vertical Element Length and Horizontal

Element Length of Truss (1:1, 1:1.25, 1:1.5, 1:1.75, 1:2,

1:2.25 and 1:2.5), multiply by 100 for Horizontal Element

Length and employ last 3 digits

Table 1 illustrates the name of truss which were designed according to the

criteria in scope of study composing with 5 span lengths (12, 18, 24, 30 and 36 m.),

5 external ratios (1:10, 1:12.5, 1:15, 1:17.5 and 1:20), 7 internal ratios (1:1, 1:1.25,

1:1.5, 1:1.75, 1:2, 1:2.25 and 1:2.5)

Example.

12100100 stands for Truss with 12m. span length, 1:10 External Ratio and

1:1 Internal Ratio

24150125 stands for Truss with 24 m. span length, 1:15 External Ratio and

1:1.25 Internal Ratio

36200250 stands for Truss with 36 m. span length, 1:20 External Ratio and

1:2.5 Internal Ratio

Page 67: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 67/206

  57

Appendix Table E1  Name of Designed Truss

Span Length (m.)External

Ratio

Internal

Ratio 12 18 24 30 36

1.:1 12100100 18100100 24100100 30100100 36100100

1.:1.25 12100125 18100125 24100125 30100125 36100125

1.:1.5 12100150 18100150 24100150 30100150 36100150

1.:1.75 12100175 18100175 24100175 30100175 36100175

1.:10

1.:2.5 12100250 18100250 24100250 30100250 36100250

1.:1 12125100 18125100 24125100 30125100 36125100

1.:1.25 12125125 18125125 24125125 30125125 361251251.:1.5 12125150 18125150 24125150 30125150 36125150

1.:1.75 12125175 18125175 24125175 30125175 36125175

1.:12.5

1.:2.5 12125250 18125250 24125250 30125250 36125250

1.:1 12150100 18150100 24150100 30150100 36150100

1.:1.25 12150125 18150125 24150125 30150125 36150125

1.:1.5 12150150 18150150 24150150 30150150 36150150

1.:1.75 12150175 18150175 24150175 30150175 36150175

1.:15

1.:2.5 12150250 18150250 24150250 30150250 36150250

1.:1 12175100 18175100 24175100 30175100 361751001.:1.25 12175125 18175125 24175125 30175125 36175125

1.:1.5 12175150 18175150 24175150 30175150 36175150

1.:1.75 12175175 18175175 24175175 30175175 36175175

1.:17.5

1.:2.5 12175250 18175250 24175250 30175250 36175250

1.:1 12200100 18200100 24200100 30200100 36200100

1.:1.25 12200125 18200125 24200125 30200125 36200125

1.:1.5 12200150 18200150 24200150 30200150 36200150

1.:1.75 12200175 18200175 24200175 30200175 36200175

1.:20

1.:2.5 12200250 18200250 24200250 30200250 36200250

 

Page 68: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 68/206

  58

 

APPENDIX F

Page 69: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 69/206

  59

Scope of Study

175-DesignTrussXX-XXX-XXX

35-12m.Span

Length12-XX-XXX

35-18m.Span

Length18-XX-XXX

35-24m.Span

Length24-XX-XXX

35-30m.Span

Length30-XX-XXX

35-36m.Span

Length36-XX-XXX

7-1:10External Ratio

12-10-XXX

7-1:12.5External Ratio

12-15-XXX

7-1:15External Ratio

12-15-XXX

1-1:1InternalRatio

12-10-100

1-1:1.25 InternalRatio

12-10-125

1-1:2.5InternalRatio

12-10-250

7-1:17.5External Ratio

12-15-XXX

7-1:20External Ratio

12-15-XXX

1-1:1.5InternalRatio

12-10-150

1-1:1.75 InternalRatio

12-10-175

1-1:2 InternalRatio

12-10-200

1-1:2.52 InternalRatio

12-10-225

Identical Model as 12 m. spa n length truss

Identical Model as 1: 10 External Ratio truss

Appendix Figure F1  Designed Truss Breakdown Model

Page 70: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 70/206

Page 71: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 71/206

  61

Appendix Table G1 Effect of Truss Shape 

Weight

(Kg.)

Painting Area

(Sqm.)

Percent

Weight

Difference

Percent

Area

DifferenceTruss

PatternDouble

TriangularTriangular 

Double

Triangular Triangular

12100100 5.37 5.55 0.21 0.22 3.35 4.76

18125200 8.81 9.13 0.28 0.29 3.63 3.57

24150225 9.54 9.87 0.30 0.31 3.46 3.33

30175125 12.67 13.42 0.39 0.42 5.92 7.69

36200100 17.79 19.22 0.67 0.73 8.04 8.96

Page 72: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 72/206

Page 73: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 73/206

  63

Appendix Table H1 Designed Weight Result 

Weight per area of roof (Kg./ Sqm.)

External RatioSpan(m.)

Internal

Ratio 1V:10H 1V:12.5H 1V:15H 1V:17.5H 1V:20H

1V:1H 5.37 6.52 7.22 10.99 7.13

1V:1.25H 5.13 5.80 6.55 7.64 6.66

1V:1.5H 5.41 6.96 6.04 7.38 7.34

1V:1.75H 5.67 5.78 6.51 7.37 7.42

1V:2H 6.02 5.37 6.55 7.41 7.07

1V:2.25H 6.07 5.77 6.70 6.74 7.42

12

1V:2.5H 5.08 6.37 6.71 6.95 7.28

1V:1H 6.98 9.84 9.78 10.53 9.97

1V:1.25H 7.29 8.41 9.22 9.47 9.35

1V:1.5H 8.04 8.10 8.97 9.22 9.22

1V:1.75H 7.48 13.15 9.10 9.59 9.66

1V:2H 7.29 8.78 8.78 10.03 13.33

1V:2.25H 8.85 8.41 9.10 0.88 9.66

18

1V:2.5H 8.47 8.47 9.47 9.84 9.91

1V:1H 7.75 10.08 10.37 10.76 10.18

1V:1.25H 8.09 8.87 11.44 10.42 10.22

1V:1.5H 8.19 9.11 9.11 9.93 10.08

1V:1.75H 8.58 8.77 9.40 9.74 9.79

1V:2H 8.58 9.55 9.16 10.13 9.69

1V:2.25H 9.01 9.06 9.55 9.11 9.79

24

1V:2.5H 9.06 9.16 9.55 10.90 9.98

1V:1H 10.78 12.13 13.04 14.03 13.48

1V:1.25H 10.66 10.59 13.88 12.69 12.65

1V:1.5H 10.74 11.97 12.41 13.60 12.33

1V:1.75H 11.02 11.06 12.49 13.52 13.60

1V:2H 11.81 12.21 12.41 13.60 12.89

1V:2.25H 12.13 11.10 12.49 12.05 13.44

30

1V:2.5H 11.06 12.25 12.96 12.45 12.73

1V:1H 13.72 16.07 17.51 18.48 17.78

1V:1.25H 13.12 13.72 15.90 17.11 16.97

1V:1.5H 13.45 14.56 14.56 16.10 16.10

1V:1.75H 13.42 14.66 14.56 15.67 15.77

1V:2H 14.73 15.40 15.67 15.73 15.47

1V:2.25H 15.33 14.43 16.84 15.00 16.54

36

1V:2.5H 16.04 16.00 15.90 12.58 16.34

Page 74: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 74/206

  64

Appendix Table H2 Designed Painting Result 

Painting Area per area of roof (Sqm./ Sqm.)

External RatioSpan(m.)

Internal

Ratio 1V:10H 1V:12.5H 1V:15H 1V:17.5H 1V:20H

1V:1H 0.213 0.251 0.290 0.409 0.281

1V:1.25H 0.218 0.239 0.284 0.330 0.284

1V:1.5H 0.189 0.217 0.204 0.243 0.281

1V:1.75H 0.207 0.250 0.249 0.277 0.279

1V:2H 0.215 0.217 0.231 0.278 0.265

1V:2.25H 0.217 0.200 0.202 0.215 0.274

12

1V:2.5H 0.210 0.240 0.197 0.251 0.231

1V:1H 0.289 0.428 0.382 0.408 0.391

1V:1.25H 0.281 0.361 0.352 0.362 0.359

1V:1.5H 0.248 0.264 0.331 0.349 0.348

1V:1.75H 0.277 0.492 0.282 0.300 0.302

1V:2H 0.235 0.282 0.316 0.309 0.413

1V:2.25H 0.328 0.265 0.280 0.285 0.320

18

1V:2.5H 0.284 0.285 0.262 0.311 0.263

1V:1H 0.305 0.438 0.413 0.417 0.399

1V:1.25H 0.306 0.339 0.449 0.395 0.386

1V:1.5H 0.265 0.295 0.337 0.369 0.377

1V:1.75H 0.321 0.280 0.294 0.305 0.306

1V:2H 0.321 0.298 0.340 0.314 0.299

1V:2.25H 0.334 0.278 0.303 0.295 0.323

24

1V:2.5H 0.279 0.300 0.265 0.258 0.266

1V:1H 0.408 0.468 0.497 0.528 0.426

1V:1.25H 0.393 0.341 0.432 0.391 0.463

1V:1.5H 0.397 0.375 0.376 0.415 0.373

1V:1.75H 0.304 0.370 0.378 0.343 0.345

1V:2H 0.314 0.413 0.393 0.345 0.326

1V:2.25H 0.334 0.372 0.396 0.320 0.392

30

1V:2.5H 0.305 0.386 0.376 0.353 0.368

1V:1H 0.469 0.573 0.590 0.614 0.719

1V:1.25H 0.472 0.480 0.533 0.463 0.459

1V:1.5H 0.497 0.403 0.402 0.434 0.434

1V:1.75H 0.463 0.405 0.402 0.489 0.492

1V:2H 0.515 0.494 0.489 0.491 0.374

1V:2.25H 0.490 0.363 0.407 0.376 0.375

36

1V:2.5H 0.388 0.386 0.436 0.488 0.468

Page 75: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 75/206

Page 76: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 76/206

  66

Appendix Table H4 Equation Painting Result 

Equation Painting Area per area of roof (Sqm./ Sqm.)

External RatioSpan(m.)

Internal

Ratio 1V:10H 1V:12.5H 1V:15H 1V:17.5H 1V:20H

1V:1H 0.276 0.286 0.296 0.306 0.315

1V:1.25H 0.261 0.270 0.280 0.290 0.300

1V:1.5H 0.245 0.255 0.264 0.274 0.284

1V:1.75H 0.229 0.239 0.249 0.258 0.268

1V:2H 0.213 0.223 0.233 0.243 0.252

1V:2.25H 0.197 0.207 0.217 0.227 0.237

12

1V:2.5H 0.182 0.191 0.201 0.211 0.221

1V:1H 0.327 0.336 0.346 0.356 0.366

1V:1.25H 0.311 0.321 0.330 0.340 0.350

1V:1.5H 0.295 0.305 0.315 0.324 0.334

1V:1.75H 0.279 0.289 0.299 0.309 0.318

1V:2H 0.263 0.273 0.283 0.293 0.303

1V:2.25H 0.248 0.257 0.267 0.277 0.287

18

1V:2.5H 0.232 0.242 0.251 0.261 0.271

1V:1H 0.377 0.386 0.396 0.406 0.416

1V:1.25H 0.361 0.371 0.381 0.390 0.400

1V:1.5H 0.345 0.355 0.365 0.375 0.384

1V:1.75H 0.329 0.339 0.349 0.359 0.369

1V:2H 0.314 0.323 0.333 0.343 0.353

1V:2.25H 0.298 0.308 0.317 0.327 0.337

24

1V:2.5H 0.282 0.292 0.302 0.311 0.321

1V:1H 0.427 0.437 0.446 0.456 0.466

1V:1.25H 0.411 0.421 0.431 0.440 0.450

1V:1.5H 0.395 0.405 0.415 0.425 0.434

1V:1.75H 0.380 0.389 0.399 0.409 0.419

1V:2H 0.364 0.374 0.383 0.393 0.403

1V:2.25H 0.348 0.358 0.368 0.377 0.387

30

1V:2.5H 0.332 0.342 0.352 0.362 0.371

1V:1H 0.477 0.487 0.497 0.506 0.516

1V:1.25H 0.461 0.471 0.481 0.491 0.500

1V:1.5H 0.446 0.455 0.465 0.475 0.485

1V:1.75H 0.430 0.440 0.449 0.459 0.469

1V:2H 0.414 0.424 0.434 0.443 0.453

1V:2.25H 0.398 0.408 0.418 0.428 0.437

36

1V:2.5H 0.382 0.392 0.402 0.412 0.422

Page 77: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 77/206

  67

 

APPENDIX I

Page 78: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 78/206

  68

Appendix Table I1 Weight Result Deviation

Percent Variation Weight per area of roof (Kg./ Sqm.)

External RatioSpan(m.)

Internal

Ratio 1V:10H 1V:12.5H 1V:15H 1V:17.5H 1V:20H

1V:1H -1.197 8.461 9.898 35.922 -6.201

1V:1.25H -5.666 -2.655 0.933 8.068 -13.438

1V:1.5H 0.120 14.712 -7.061 5.051 -2.807

1V:1.75H 5.046 -2.343 0.821 5.182 -1.357

1V:2H 10.849 -9.818 1.755 5.871 -6.103

1V:2.25H 11.913 -2.030 4.198 -3.117 -0.874

12

1V:2.5H -4.987 7.895 4.590 0.246 -2.560

1V:1H -6.985 18.727 12.740 13.855 3.642

1V:1.25H -2.167 5.094 7.628 4.410 -2.590

1V:1.5H 7.560 1.666 5.263 2.021 -3.781

1V:1.75H 0.867 39.551 6.758 6.025 1.091

1V:2H -1.428 9.746 3.656 10.290 28.495

1V:2.25H 16.632 5.948 7.152 -915.104 1.463

18

1V:2.5H 13.166 6.851 11.007 8.951 4.123

1V:1H -22.444 0.504 -1.865 -3.168 -14.321

1V:1.25H -17.090 -12.886 7.787 -6.355 -13.603

1V:1.5H -15.485 -9.686 -15.559 -11.362 -15.064

1V:1.75H -10.056 -13.724 -11.794 -13.394 -18.298

1V:2H -9.847 -4.299 -14.556 -8.876 -19.296

1V:2.25H -4.333 -9.679 -9.716 -20.841 -17.931

24

1V:2.5H -3.576 -8.322 -9.528 -0.805 -15.462

1V:1H -6.838 0.623 3.469 6.474 -1.346

1V:1.25H -7.861 -13.723 9.390 -3.321 -7.875

1V:1.5H -6.898 -0.393 -1.176 3.739 -10.505

1V:1.75H -4.043 -8.507 -0.390 3.307 -0.063

1V:2H 3.091 1.857 -0.887 4.003 -5.466

1V:2.25H 5.773 -7.796 -0.103 -8.164 -0.977

30

1V:2.5H -3.183 2.467 3.709 -4.575 -6.498

1V:1H 1.250 12.352 16.517 18.016 11.759

1V:1.25H -3.159 -2.518 8.176 11.530 7.679

1V:1.5H -0.453 3.510 -0.164 6.112 2.790

1V:1.75H -0.570 4.295 -0.041 3.613 0.836

1V:2H 8.486 8.999 7.143 4.139 -0.984

1V:2.25H 12.208 2.986 13.724 -0.460 5.679

36

1V:2.5H 16.176 12.657 8.740 -19.605 4.627

 Note that minus means actual design result is less than result from equation. 

Page 79: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 79/206

  69

Appendix Table I1 Painting Result Deviation

Percent Variation Painting Area per area of roof (Sqm./ Sqm.)

External RatioSpan(m.)

Internal

Ratio 1V:10H 1V:12.5H 1V:15H 1V:17.5H 1V:20H

1V:1H -30.021 -13.800 -2.120 25.277 -12.358

1V:1.25H -19.355 -13.020 1.511 12.144 -5.529

1V:1.5H -29.532 -17.144 -29.806 -12.922 -1.081

1V:1.75H -10.767 4.642 0.340 6.724 3.889

1V:2H 0.960 -2.575 -0.691 12.874 4.644

1V:2.25H 9.176 -3.462 -7.389 -5.445 13.754

12

1V:2.5H 13.285 20.248 -1.995 15.991 4.450

1V:1H -12.910 21.365 9.488 12.711 6.490

1V:1.25H -10.488 11.253 6.238 6.025 2.489

1V:1.5H -19.056 -15.492 5.093 6.956 4.063

1V:1.75H -0.634 41.306 -5.835 -2.905 -5.412

1V:2H -11.953 3.135 10.430 5.289 26.787

1V:2.25H 24.440 2.879 4.400 2.888 10.270

18

1V:2.5H 18.452 15.297 3.934 16.099 -3.162

1V:1H -23.615 11.788 3.940 2.547 -4.103

1V:1.25H -17.819 -9.314 15.188 1.288 -3.546

1V:1.5H -30.132 -20.272 -8.216 -1.539 -1.988

1V:1.75H -2.758 -20.920 -18.661 -17.712 -20.408

1V:2H 2.295 -8.469 2.096 -9.195 -17.844

1V:2.25H 10.696 -10.745 -4.830 -10.816 -4.313

24

1V:2.5H -1.276 2.757 -14.034 -20.803 -20.947

1V:1H -4.638 6.618 10.228 13.564 -9.363

1V:1.25H -4.523 -23.355 0.205 -12.675 2.795

1V:1.5H 0.319 -8.019 -10.359 -2.445 -16.531

1V:1.75H -24.699 -5.101 -5.709 -19.204 -21.305

1V:2H -15.901 9.585 2.487 -13.901 -23.588

1V:2.25H -4.297 3.900 7.144 -17.813 1.208

30

1V:2.5H -9.007 11.487 6.500 -2.437 -0.822

1V:1H -1.817 15.097 15.818 17.495 28.220

1V:1.25H 2.178 1.924 9.776 -5.903 -8.928

1V:1.5H 10.280 -13.106 -15.628 -9.408 -11.661

1V:1.75H 7.108 -8.489 -11.848 6.078 4.773

1V:2H 19.573 14.208 11.348 9.767 -21.213

1V:2.25H 18.795 -12.388 -2.681 -13.841 -16.646

36

1V:2.5H 1.485 -1.518 7.747 15.672 9.974

 Note that minus means actual design result is less than result from equation.

Page 80: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 80/206

  70

 

APPENDIX J

Page 81: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 81/206

 Appendix Table J1  Calculation Sheet

Horizon stands for Horizontal Chord.

12-100-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 15780 120 34.78 1.77 1364.42

Chord Tension 15780 120

12.26 3.45

- - - 1500

Diagonal Compression 7020 120 59.11 1.83 1224.46

Chord Tension 8100 1675.76 2.03

- - - 1500

12-100-125

Horizon Compression 15780 150 43.48 1.79 1318.22

Chord Tension 15780 15012.26 3.45

- - - 1500

Diagonal Compression 7020 120 46.15 1.80 1303.13

Chord Tension 9000 1896.465 2.6

- - - 1500

Page 82: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 82/206

 Appendix Table J1  Calculation Sheet (Cont’d)

12-100-150

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 15780 180 45.92 1.79 1304.47

Chord Tension 15780 18012.52 3.92

- - - 1500

Diagonal Compression 7020 120 60.00 1.83 1218.74

Chord Tension 9780 2137.1 2

- - - 1500

12-100-175

Horizon Compression 15780 210 61.40 1.83 1209.62

Chord Tension 15780 21015.17 3.42

- - - 1500

Diagonal Compression 7020 120 46.33 1.80 1302.11

Chord Tension 10680 239

7.349 2.59

- - - 1500

Horizon stands for Horizontal Chord.

Page 83: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 83/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-100-200

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 15780 240 70.18 1.85 1150.30

Chord Tension 15780 240

15.17 3.42

- - - 1500

Diagonal Compression 7020 120 39.47 1.78 1340.04

Chord Tension 11460 2658.636 3.04

- - - 1500

12-100-225

Horizon Compression 15780 270 78.95 1.87 1087.08

Chord Tension 15780 27015.17 3.42

- - - 1500

Diagonal Compression 7020 120 39.47 1.78 1340.04

Chord Tension 12240 292

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 84: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 84/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-100-250

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 15780 300 77.12 1.86 1100.56

Chord Tension 15780 300

15.52 3.89

- - - 1500

Diagonal Compression 7020 120 46.15 1.80 1303.13

Chord Tension 9600 3206.46 2.6

- - - 1500

Horizon stands for Horizontal Chord.

Page 85: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 85/206

 Appendix Table J1  Calculation Sheet (Cont’d)

12-125-100

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R F.S.Fa(1)(KL/R

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 19800 96 28.07 1.75 1396.96

Chord Tension 19800 9615.17 3.42

- - - 1500

Diagonal Compression 7020 96 47.29 1.80 1296.59

Chord Tension 8340 1345.76 2.03

- - - 1500

12-125-125

Horizon Compression 19800 120 35.09 1.77 1362.87

Chord Tension 19800 12015.17 3.42

- - - 1500

Diagonal Compression 7020 96 36.92 1.77 1353.46

Chord Tension 9180 151

6.465 2.6

- - - 1500

Horizon stands for Horizontal Chord.

Page 86: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 86/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-125-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius

of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 19800 144 42.11 1.78 1325.81

Chord Tension 19800 14415.17 3.42

- - - 1500

Diagonal Compression 7020 96 48.00 1.80 1292.48

Chord Tension 10200 1717.1 2

- - - 1500

12-125-175

Horizon Compression 19800 168 34.85 1.77 1364.05

Chord Tension 19800 16815.4 4.82

- - - 1500

Diagonal Compression 7020 96 31.48 1.76 1380.80

Chord Tension 11100 191

7.591 3.05

- - - 1500

Horizon stands for Horizontal Chord.

Page 87: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 87/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-125-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius

of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 19800 192 39.83 1.78 1338.12

Chord Tension 19800 192

15.4 4.82

- - - 1500

Diagonal Compression 7020 96 47.29 1.80 1296.59

Chord Tension 7200 2125.76 2.03

- - - 1500

12-125-225

Horizon Compression 19800 216 44.81 1.79 1310.74

Chord Tension 19800 21615.4 4.82

- - - 1500

Diagonal Compression 7020 96 37.50 1.77 1350.46

Chord Tension 13020 234

9.085 2.56

- - - 1500

Horizon stands for Horizontal Chord.

Page 88: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 88/206

Page 89: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 89/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-150-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 23640 80 16.67 1.71 1445.59

Chord Tension 23640 8017.07 4.8

- - - 1500

Diagonal Compression 7020 80 39.41 1.78 1340.39

Chord Tension 5928 1125.76 2.03

- - - 1500

12-150-125

Horizon Compression 23640 96 20.00 1.72 1432.28

Chord Tension 23640 9617.07 4.8

- - - 1500

Diagonal Compression 7020 80 30.77 1.75 1384.21

Chord Tension 9240 123

6.465 2.6

- - - 1500

Horizon stands for Horizontal Chord.

Page 90: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 90/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-150-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 23640 120 25.00 1.74 1410.90

Chord Tension 23640 120

17.07 4.8

- - - 1500

Diagonal Compression 7020 80 40.00 1.78 1337.23

Chord Tension 10380 1427.1 2

- - - 1500

12-150-175

Horizon Compression 23640 140 29.17 1.75 1391.84

Chord Tension 23640 14017.07 4.8

- - - 1500

Diagonal Compression 7020 80 26.32 1.74 1405.00

Chord Tension 11400 163

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 91: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 91/206

Page 92: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 92/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-150-250

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 23640 200 51.95 1.81 1269.08

Chord Tension 23640 200

19.12 3.85

- - - 1500

Diagonal Compression 7020 80 26.58 1.74 1403.81

Chord Tension 14520 21510.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 93: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 93/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-175-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 27840 69 12.15 1.70 1462.39

Chord Tension 27840 6922.72 5.68

- - - 1500

Diagonal Compression 7020 68.5 33.74 1.76 1369.63

Chord Tension 8580 875.76 2.03

- - - 1500

12-175-125

Horizon Compression 27840 86 15.14 1.71 1451.42

Chord Tension 27840 8622.72 5.68

- - - 1500

Diagonal Compression 7020 68.5 26.35 1.74 1404.86

Chord Tension 9480 108

6.465 2.6

- - - 1500

Horizon stands for Horizontal Chord.

Page 94: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 94/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-175-150

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 27840 102 17.96 1.72 1440.52

Chord Tension 27840 102

22.72 5.68

- - - 1500

Diagonal Compression 7020 68.5 34.25 1.76 1367.10

Chord Tension 10560 1227.1 2

- - - 1500

12-175-175

Horizon Compression 27840 120 21.13 1.73 1427.61

Chord Tension 27840 12022.72 5.68

- - - 1500

Diagonal Compression 7020 68.5 22.53 1.73 1421.66

Chord Tension 11640 136

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 95: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 95/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-175-200

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R

<128)

Fa(2)(128<K

<200)for

compression

tension

Horizon Compression 27840 137 24.12 1.74 1414.78

Chord Tension 27840 137

22.72 5.68

- - - 1500

Diagonal Compression 7020 68.5 22.53 1.73 1421.66

Cord Tension 12720 1518.636 3.04

- - - 1500

12-175-225

Horizon Compression 27840 154 27.11 1.74 1401.37

Chord Tension 27840 15422.72 5.68

- - - 1500

Diagonal Compression 7020 68.5 26.76 1.74 1402.99 15115.44

Chord Tension 13620 172

9.085 2.56

- - - 1500

Horizon stands for Horizontal Chord.

Page 96: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 96/206

 Appendix Table J1  Calculation Sheet (Cont’d)

12-175-250

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 27840 171 30.11 1.75 1387.39

Chord Tension 27840 171

22.72 5.68

- - - 1500

Diagonal Compression 7020 68.5 19.68 1.72 1433.57

Chord Tension 14820 1879.892 3.48

- - - 1500

Horizon stands for Horizontal Chord.

Page 97: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 97/206

 Appendix Table J1  Calculation Sheet (Cont’d)

12-200-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(KL/R

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 27624 60 12.53 1.70 1461.04

Chord Tension 27624 6019.13 4.79

- - - 1500

Diagonal Compression 7020 60 29.56 1.75 1390.00

Chord Tension 8040 845.76 2.03

- - - 1500

12-200-125

Horizon Compression 27624 75 15.66 1.71 1449.47

Chord Tension 27624 7519.13 4.79

- - - 1500

Diagonal Compression 7020 60 23.08 1.73 1419.32

Chord Tension 9600 95

6.465 2.6

- - - 1500

Horizon stands for Horizontal Chord.

Page 98: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 98/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-200-150

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 27624 90 15.85 1.71 1448.75

Chord Tension 27624 90

22.72 5.68

- - - 1500

Diagonal Compression 7020 60 23.17 1.73 1418.93

Chord Tension 10680 1077.349 2.59

- - - 1500

12-200-175

Horizon Compression 27624 105 18.49 1.72 1438.42

Chord Tension 27624 10522.72 5.68

- - - 1500

Diagonal Compression 7020 60 19.74 1.72 1433.36

Chord Tension 11760 119

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 99: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 99/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-200-200

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 27624 120 21.13 1.73 1427.61

Chord Tension 27624 120

22.72 5.68

- - - 1500

Diagonal Compression 7020 60 19.74 1.72 1433.36

Chord Tension 12900 1338.636 3.04

- - - 1500

12-200-225

Horizon Compression 27624 135 23.77 1.74 1416.32

Chord Tension 27624 13522.72 5.68

- - - 1500

Diagonal Compression 7020 60 17.24 1.72 1443.35

Chord Tension 14040 146

9.892 3.48

- - - 1500

Horizon stands for Horizontal Chord.

Page 100: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 100/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

12-200-250

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 27624 150 26.41 1.74 1404.58

Chord Tension 27624 150

22.72 5.68

- - - 1500

Diagonal Compression 7020 60 19.93 1.72 1432.55

Chord Tension 15120 16010.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 101: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 101/206

 Appendix Table J1  Calculation Sheet (Cont’d)

18-100-100

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 21300 180 52.63 1.81 1264.94

Chord Tension 21300 18015.17 3.42

- - - 1500

Diagonal Compression 9180 180 59.02 1.83 1225.08

Chord Tension 10860 2517.591 3.05

- - - 1500

18-100-125

Horizon Compression 21300 225 46.88 1.80 1298.99

Chord Tension 21300 22517.07 4.8

- - - 1500

Diagonal Compression 9180 180 59.21 1.83 1223.83

Chord Tension 12000 284

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 102: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 102/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-100-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 21300 270 70.13 1.85 1150.62

Chord Tension 21300 27019.12 3.85

- - - 1500

Diagonal Compression 9180 180 70.31 1.85 1149.34

Chord Tension 13080 3209.085 2.56

- - - 1500

18-100-175

Horizon Compression 21300 315 65.76 1.84 1180.64

Chord Tension 21300 31519.13 4.79

- - - 1500

Diagonal Compression 9180 180 51.72 1.81 1270.43

Chord Tension 14220 358

9.892 3.48

- - - 1500

Horizon stands for Horizontal Chord.

Page 103: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 103/206

 Appendix Table J1  Calculation Sheet (Cont’d)

18-100-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Level Compression 21300 360 75.16 1.86 1114.87

Cord Tension 21300 36019.13 4.79

- - - 1500

Diagonal Compression 9180 180 70.31 1.85 1149.34

Cord Tension 13500 3989.085 2.56

- - - 1500

18-100-225

Level Compression 21300 405 71.30 1.85 1142.39

Cord Tension 21300 40522.72 5.68

- - - 1500

Diagonal Compression 9180 180 45.80 1.79 1305.14

Cord Tension 16320 438

11.17 3.93

- - - 1500

Horizon stands for Horizontal Chord.

Page 104: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 104/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-100-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 21300 450 79.23 1.87 1085.01

Chord Tension 21300 45022.72 5.68

- - - 1500

Diagonal Compression 9180 180 45.92 1.79 1304.47

Chord Tension 17280 48012.52 3.92

- - - 1500

Horizon stands for Horizontal Chord.

Page 105: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 105/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-125-100

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 26640 144 25.35 1.74 1409.33

Chord Tension 26640 14422.72 5.68

- - - 1500

Diagonal Compression 9180 144 47.21 1.80 1297.04

Chord Tension 11100 2017.591 3.05

- - - 1500

18-125-125

Horizon Compression 26640 180 31.69 1.76 1379.76

Chord Tension 26640 18022.72 5.68

- - - 1500

Diagonal Compression 9180 144 47.21 1.80 1297.04

Chord Tension 6180 227

7.591 3.05

- - - 1500

Horizon stands for Horizontal Chord.

Page 106: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 106/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-125-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 26640 216 38.03 1.77 1347.69

Chord Tension 26640 21622.72 5.68

- - - 1500

Diagonal Compression 9180 144 56.25 1.82 1242.61

Chord Tension 13560 2569.085 2.56

- - - 1500

18-125-175

Horizon Compression 26640 252 44.37 1.79 1313.26

Chord Tension 26640 25222.72 5.68

- - - 1500

Diagonal Compression 9180 144 41.38 1.78 1329.77

Chord Tension 14820 287

9.892 3.48

- - - 1500

Horizon stands for Horizontal Chord.

Page 107: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 107/206

Page 108: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 108/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-125-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 26640 360 63.38 1.84 1196.60

Chord Tension 26640 36022.72 5.68

- - - 1500

Diagonal Compression 9180 144 36.73 1.77 1354.43

Chord Tension 18420 38412.52 3.92

- - - 1500

Horizon stands for Horizontal Chord.

Page 109: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 109/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-150-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 31800 121 21.30 1.73 1426.87

Chord Tension 31800 12122.72 5.68

- - - 1500

Diagonal Compression 9180 121 46.72 1.80 1299.89

Chord Tension 8100 1687.349 2.59

- - - 1500

18-150-125

Horizon Compression 31800 144 25.35 1.74 1409.33

Chord Tension 31800 14422.72 5.68

- - - 1500

Diagonal Compression 9180 121 39.80 1.78 1338.29

Chord Tension 12240 185

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 110: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 110/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-150-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area(scqm.

)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 31800 180 31.75 1.76 1379.48

Chord Tension 31800 18025.16 5.67

- - - 1500

Diagonal Compression 9180 121 34.77 1.77 1364.48

Chord Tension 13800 2149.892 3.48

- - - 1500

18-150-175

Horizon Compression 31800 210 37.04 1.77 1352.87

Chord Tension 31800 21025.16 5.67

- - - 1500

Diagonal Compression 9180 121 40.20 1.78 1336.16

Chord Tension 15180 239

10.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 111: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 111/206

Page 112: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 112/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-150-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 31800 300 45.52 1.79 1306.72

Chord Tension 31800 30026.32 6.59

- - - 1500

Diagonal Compression 9180 121 35.38 1.77 1361.38

Chord Tension 19200 32015.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 113: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 113/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-175-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 37320 103 15.63 1.71 1449.57

Chord Tension 37320 10326.32 6.59

- - - 1500

Diagonal Compression 9180 103 33.88 1.76 1368.95

Chord Tension 11400 1448.636 3.04

- - - 1500

18-175-125

Horizon Compression 37320 128 19.42 1.72 1434.63

Chord Tension 37320 12826.32 6.59

- - - 1500

Diagonal Compression 9180 103 33.88 1.76 1368.95

Chord Tension 12600 162

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 114: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 114/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-175-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 37320 154 23.37 1.73 1418.06

Chord Tension 37320 15426.32 6.59

- - - 1500

Diagonal Compression 9180 103 29.60 1.75 1389.80

Chord Tension 13800 1839.892 3.48

- - - 1500

18-175-175

Horizon Compression 37320 180 27.40 1.75 1400.07

Chord Tension 37320 18029.17 6.57

- - - 1500

Diagonal Compression 9180 103 34.22 1.76 1367.25

Chord Tension 15540 205

10.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 115: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 115/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-175-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 37320 206 31.35 1.76 1381.39

Chord Tension 37320 20629.17 6.57

- - - 1500

Diagonal Compression 9180 103 29.86 1.75 1388.58

Chord Tension 16980 22812.26 3.45

- - - 1500

18-175-225

Horizon Compression 37320 231 35.16 1.77 1362.50

Chord Tension 37320 23129.17 6.57

- - - 1500

Diagonal Compression 9180 103 26.28 1.74 1405.18

Chord Tension 18420 250

12.52 3.92

- - - 1500

Horizon stands for Horizontal Chord.

Page 116: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 116/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-175-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 37320 257 39.12 1.78 1341.94

Chord Tension 37320 25729.17 6.57

- - - 1500

Diagonal Compression 9180 103 21.37 1.73 1426.59

Chord Tension 19800 27415.4 4.82

- - - 1500

Horizon stands for Horizontal Chord.

Page 117: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 117/206

Page 118: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 118/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-200-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 37560 135 20.49 1.73 1430.27

Chord Tension 37560 13526.32 6.59

- - - 1500

Diagonal Compression 9180 90 25.86 1.74 1407.05

Chord Tension 14220 1609.892 3.48

- - - 1500

18-200-175

Horizon Compression 37560 158 24.05 1.74 1415.10

Chord Tension 37560 15829.17 6.57

- - - 1500

Diagonal Compression 9180 90 29.90 1.75 1388.37

Chord Tension 15720 179

10.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 119: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 119/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

18-200-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 37560 180 27.40 1.75 1400.07

Chord Tension 37560 18029.17 6.57

- - - 1500

Diagonal Compression 9180 90 26.09 1.74 1406.04

Chord Tension 17220 19912.26 3.45

- - - 1500

18-200-225

Horizon Compression 37560 203 30.90 1.75 1383.59

Chord Tension 37560 20329.17 6.57

- - - 1500

Diagonal Compression 9180 90 22.96 1.73 1419.83

Chord Tension 18720 219

12.52 3.92

- - - 1500

Horizon stands for Horizontal Chord.

Page 120: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 120/206

Page 121: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 121/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-100-100

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 21300 240 50.00 1.80 1280.73

Chord Tension 21300 24017.07 4.8

- - - 1500

Diagonal Compression 9180 240 92.66 1.89 980.47

Cord Tension 10860 3347.349 2.59

- - - 1500

24-100-125

Horizon Compression 21300 300 62.63 1.83 1201.56

Chord Tension 21300 30019.13 4.79

- - - 1500

Diagonal Compression 9180 240 78.95 1.87 1087.08

Chord Tension 12000 379

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 122: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 122/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-100-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 21300 360 75.16 1.86 1114.87

Chord Tension 21300 36019.13 4.79

- - - 1500

Diagonal Compression 9180 240 93.75 1.89 971.63

Chord Tension 13080 4279.085 2.56

- - - 1500

24-100-175

Horizon Compression 21300 420 73.94 1.86 1123.62

Chord Tension 21300 42022.72 5.68

- - - 1500

Diagonal Compression 9180 240 68.97 1.85 1158.72

Chord Tension 14220 478

9.892 3.48

- - - 1500

Horizon stands for Horizontal Chord.

Page 123: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 123/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-100-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 21300 480 84.51 1.88 1045.01

Chord Tension 21300 48022.72 5.68

- - - 1500

Diagonal Compression 9180 240 68.97 1.85 1158.72

Chord Tension 13500 5309.892 3.48

- - - 1500

24-100-225

Horizon Compression 21300 540 95.07 1.89 960.79

Chord Tension 21300 54022.72 5.68

- - - 1500

Diagonal Compression 9180 240 61.07 1.83 1211.81

Chord Tension 16320 585

11.17 3.93

- - - 1500

Horizon stands for Horizontal Chord.

Page 124: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 124/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-100-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 21300 600 105.82 1.91 869.22

Chord Tension 21300 60025.16 5.67

- - - 1500

Diagonal Compression 9180 240 69.57 1.85 1154.55

Chord Tension 17280 64012.26 3.45

- - - 1500

Horizon stands for Horizontal Chord.

Page 125: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 125/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-125-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 26640 192 33.80 1.76 1369.34

Chord Tension 26640 19222.72 5.68

- - - 1500

Diagonal Compression 9180 192 62.95 1.84 1199.45

Chord Tension 11100 2687.591 3.05

- - - 1500

24-125-125

Horizon Compression 26640 240 42.25 1.79 1324.99

Chord Tension 26640 24022.72 5.68

- - - 1500

Diagonal Compression 9180 192 63.16 1.84 1198.07

Chord Tension 6180 151

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 126: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 126/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-125-150

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(128<KL/R

<200)for

compression

or tension

Horizon Compression 26640 288 50.70 1.81 1276.54

Chord Tension 26640 28822.72 5.68

- - - 1500

Diagonal Compression 9180 192 75.00 1.86 1116.01

Chord Tension 13560 3419.085 2.56

- - - 1500

24-125-175

Horizon Compression 26640 336 59.15 1.83 1224.19

Chord Tension 26640 33622.72 5.68

- - - 1500

Diagonal Compression 9180 192 63.79 1.84 1193.89

Chord Tension 14820 382

10.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 127: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 127/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-125-200

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(128<KL/R

<200)for

compression

or tension

Horizon Compression 26640 384 67.72 1.85 1167.27

Chord Tension 26640 38425.16 5.67

- - - 1500

Diagonal Compression 9180 192 63.79 1.84 1193.89

Chord Tension 16020 42410.69 3.01

- - - 1500

24-125-225

Horizon Compression 26640 432 76.19 1.86 1107.36

Chord Tension 26640 43225.16 5.67

- - - 1500

Diagonal Compression 9180 192 55.65 1.82 1246.35

Chord Tension 17280 468

12.26 3.45

- - - 1500

Horizon stands for Horizontal Chord.

Page 128: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 128/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-125-250

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(128<KL/R

<200)for

compression

or tension

Horizon Compression 26640 480 84.66 1.88 1043.86

Chord Tension 26640 48025.16 5.67

- - - 1500

Diagonal Compression 9180 192 48.98 1.80 1286.75

Chord Tension 18420 51212.52 3.92

- - - 1500

Horizon stands for Horizontal Chord.

Page 129: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 129/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-150-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 31800 161 28.40 1.75 1395.45

Chord Tension 31800 16125.16 5.67

- - - 1500

Diagonal Compression 9180 161 79.31 1.87 1084.38

Chord Tension 8100 2245.76 2.03

- - - 1500

24-150-125

Horizon Compression 31800 192 33.86 1.76 1369.04

Chord Tension 31800 19225.16 5.67

- - - 1500

Diagonal Compression 9180 161 52.96 1.81 1262.94

Chord Tension 12240 247

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 130: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 130/206

Page 131: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 131/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-150-200

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 31800 320 48.56 1.80 1289.22

Chord Tension 31800 32026.32 6.59

- - - 1500

Diagonal Compression 9180 161 40.97 1.78 1332.01

Chord Tension 16500 35411.17 3.93

- - - 1500

24-150-225

Horizon Compression 31800 360 54.63 1.82 1252.71

Chord Tension 31800 36026.32 6.59

- - - 1500

Diagonal Compression 9180 161 46.67 1.80 1300.19

Chord Tension 17820 390

12.26 3.45

- - - 1500

Horizon stands for Horizontal Chord.

Page 132: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 132/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-150-250

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 31800 400 60.70 1.83 1214.22

Chord Tension 31800 40026.32 6.59

- - - 1500

Diagonal Compression 9180 161 47.08 1.80 1297.83

Chord Tension 19200 42715.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 133: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 133/206

Page 134: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 134/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-175-150

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 37320 206 31.35 1.76 1381.39

Chord Tension 37320 20629.17 6.57

- - - 1500

Diagonal Compression 9180 137 39.37 1.78 1340.61

Chord Tension 13800 2449.892 3.48

- - - 1500

24-175-175

Horizon Compression 37320 240 36.53 1.77 1355.49

Chord Tension 37320 24029.17 6.57

- - - 1500

Diagonal Compression 9180 137 45.51 1.79 1306.77

Chord Tension 15540 273

10.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 135: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 135/206

Page 136: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 136/206

Page 137: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 137/206

 Appendix Table J1  Calculation Sheet (Cont’d)

24-200-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 37560 120 18.21 1.72 1439.52

Chord Tension 37560 12026.32 6.59

- - - 1500

Diagonal Compression 9180 120 46.33 1.80 1302.11

Chord Tension 10740 1677.349 2.59

- - - 1500

24-200-125

Horizon Compression 37560 150 22.83 1.73 1420.38

Chord Tension 37560 15029.17 6.57

- - - 1500

Diagonal Compression 9180 120 39.47 1.78 1340.04

Chord Tension 12600 173

8.636 3.04

- - - 1500

Horizon stands for Horizontal Chord.

Page 138: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 138/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-200-150

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 37560 180 27.40 1.75 1400.07

Chord Tension 37560 18029.17 6.57

- - - 1500

Diagonal Compression 9180 120 34.48 1.76 1365.93

Chord Tension 14220 2139.892 3.48

- - - 1500

24-200-175

Horizon Compression 37560 210 31.96 1.76 1378.42

Chord Tension 37560 21029.17 6.57

- - - 1500

Diagonal Compression 9180 120 39.87 1.78 1337.94

Chord Tension 15720 239

10.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 139: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 139/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-200-200

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 37560 240 36.53 1.77 1355.49

Chord Tension 37560 24029.17 6.57

- - - 1500

Diagonal Compression 9180 120 34.78 1.77 1364.42

Chord Tension 17220 26512.26 3.45

- - - 1500

24-200-225

Horizon Compression 37560 270 41.10 1.78 1331.31

Chord Tension 37560 27029.17 6.57

- - - 1500

Diagonal Compression 9180 120 30.61 1.75 1384.97

Chord Tension 18720 292

12.52 3.92

- - - 1500

Horizon stands for Horizontal Chord.

Page 140: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 140/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

24-200-250

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 37560 300 45.66 1.79 1305.93

Chord Tension 37560 30029.17 6.57

- - - 1500

Diagonal Compression 9180 120 35.09 1.77 1362.87

Chord Tension 20160 32015.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 141: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 141/206

Page 142: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 142/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-100-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 26820 450 79.37 1.87 1083.97

Chord Tension 26820 45025.16 5.67

- - - 1500

Diagonal Compression 11340 300 76.34 1.86 1106.30

Chord Tension 16320 53311.17 3.93

- - - 1500

30-100-175

Horizon Compression 26820 525 79.67 1.87 1081.73

Chord Tension 26820 52526.32 6.59

- - - 1500

Diagonal Compression 11340 300 87.72 1.88 1019.99

Chord Tension 19080 663

15.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 143: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 143/206

Page 144: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 144/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-100-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 26820 750 100.13 1.90 918.41

Chord Tension 26820 75029.94 7.49

- - - 1500

Diagonal Compression 11340 300 87.72 1.88 1019.99

Chord Tension 21600 80015.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 145: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 145/206

Page 146: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 146/206

Page 147: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 147/206

Page 148: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 148/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-125-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 33480 600 91.88 1.89 986.79

Chord Tension 33480 60034.82 6.53

- - - 1500

Diagonal Compression 11340 240 49.79 1.80 1281.96

Chord Tension 23040 64015.4 4.82

- - - 1500

Horizon stands for Horizontal Chord.

Page 149: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 149/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-150-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 39960 201 30.59 1.75 1385.05

Chord Tension 39960 20129.17 6.57

- - - 1500

Diagonal Compression 11340 201 57.76 1.82 1233.10

Chord Tension 10080 2809.892 3.48

- - - 1500

30-150-125

Horizon Compression 39960 240 36.75 1.77 1354.34

Chord Tension 39960 24034.82 6.53

- - - 1500

Diagonal Compression 11340 201 66.78 1.84 1173.75

Chord Tension 15240 308

10.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 150: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 150/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-150-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 39960 300 45.94 1.79 1304.34

Chord Tension 39960 30034.82 6.53

- - - 1500

Diagonal Compression 11340 201 58.26 1.82 1229.91

Chord Tension 17220 35612.26 3.45

- - - 1500

30-150-175

Horizon Compression 39960 350 53.60 1.81 1259.04

Chord Tension 39960 35034.82 6.53

- - - 1500

Diagonal Compression 11340 201 58.26 1.82 1229.91

Chord Tension 17220 360

12.26 3.45

- - - 1500

Horizon stands for Horizontal Chord.

Page 151: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 151/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-150-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 39960 400 61.26 1.83 1210.59

Chord Tension 39960 40034.82 6.53

- - - 1500

Diagonal Compression 11340 201 41.70 1.78 1328.02

Chord Tension 20580 44215.4 4.82

- - - 1500

30-150-225

Horizon Compression 39960 450 68.91 1.85 1159.08

Chord Tension 39960 45034.82 6.53

- - - 1500

Diagonal Compression 11340 201 41.70 1.78 1328.02

Chord Tension 22260 488

15.4 4.82

- - - 1500

Horizon stands for Horizontal Chord.

Page 152: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 152/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-150-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 39960 500 67.20 1.84 1170.83

Chord Tension 39960 50039.61 7.44

- - - 1500

Diagonal Compression 11340 201 41.88 1.78 1327.07

Horizon Tension 24000 53317.07 4.8

- - - 1500

Horizon stands for Horizontal Chord.

Page 153: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 153/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-175-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 46860 171 26.19 1.74 1405.58

Chord Tension 46860 17134.82 6.53

- - - 1500

Diagonal Compression 11340 171 49.14 1.80 1285.82

Chord Tension 14184 2399.892 3.48

- - - 1500

30-175-125

Horizon Compression 46860 214 32.77 1.76 1374.46

Chord Tension 46860 21434.82 6.53

- - - 1500

Diagonal Compression 11340 171 56.81 1.82 1239.09

Chord Tension 15900 270

10.69 3.01

- - - 1500

Horizon stands for Horizontal Chord.

Page 154: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 154/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-175-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 46860 257 34.54 1.76 1365.62

Chord Tension 46860 25739.61 7.44

- - - 1500

Diagonal Compression 11340 171 49.57 1.80 1283.30

Chord Tension 17580 30512.26 3.45

- - - 1500

30-175-175

Horizon Compression 46860 300 40.32 1.78 1335.50

Chord Tension 46860 30039.61 7.44

- - - 1500

Diagonal Compression 11340 171 50.00 1.80 1280.73

Chord Tension 19380 341

15.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 155: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 155/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-175-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 46860 343 46.10 1.80 1303.42

Chord Tension 46860 34339.61 7.44

- - - 1500

Diagonal Compression 11340 171 50.00 1.80 1280.73

Chord Tension 21180 38015.17 3.42

- - - 1500

30-175-225

Horizon Compression 46860 385 51.75 1.81 1270.29

Chord Tension 46860 38539.61 7.44

- - - 1500

Diagonal Compression 11340 171 43.96 1.79 1315.54

Chord Tension 22920 417

15.52 3.89

- - - 1500

Horizon stands for Horizontal Chord.

Page 156: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 156/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-175-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 46860 429 57.66 1.82 1233.72

Chord Tension 46860 42939.61 7.44

- - - 1500

Diagonal Compression 11340 171 35.63 1.77 1360.14

Chord Tension 24720 45717.07 4.8

- - - 1500

Horizon stands for Horizontal Chord.

Page 157: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 157/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-200-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 47340 150 22.97 1.73 1419.78

Chord Tension 47340 15034.82 6.53

- - - 1500

Diagonal Compression 11340 150 43.10 1.79 1320.30

Chord Tension 13440 2099.085 3.48

- - - 1500

30-200-125

Horizon Compression 47340 188 28.79 1.75 1393.61

Chord Tension 47340 18834.82 6.53

- - - 1500

Diagonal Compression 11340 150 38.17 1.77 1346.96

Chord Tension 16020 237

11.17 3.93

- - - 1500

Horizon stands for Horizontal Chord.

Page 158: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 158/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-200-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 47340 225 34.46 1.76 1366.06

Cord Tension 47340 22534.82 6.53

- - - 1500

Diagonal Compression 11340 150 43.48 1.79 1318.22

Cord Tension 17820 26712.26 3.45

- - - 1500

30-200-175

Horizon Compression 47340 263 35.35 1.77 1361.54

Cord Tension 47340 26339.61 7.44

- - - 1500

Diagonal Compression 11340 150 43.86 1.79 1316.09

Cord Tension 19620 299

15.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 159: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 159/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-200-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 47340 300 40.32 1.78 1335.50

Chord Tension 47340 30039.61 7.44

- - - 1500

Diagonal Compression 11340 150 43.86 1.79 1316.09

Chord Tension 21480 33115.17 3.42

- - - 1500

30-200-225

Horizon Compression 47340 338 45.43 1.79 1307.25

Chord Tension 47340 33839.61 7.44

- - - 1500

Diagonal Compression 11340 150 31.25 1.76 1381.89

Chord Tension 23340 365

17.07 4.8

- - - 1500

Horizon stands for Horizontal Chord.

Page 160: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 160/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

30-200-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 47340 375 50.40 1.81 1278.34

Chord Tension 47340 37539.61 7.44

- - - 1500

Diagonal Compression 11340 150 31.25 1.76 1381.89

Chord Tension 25200 40017.07 4.8

- - - 1500

Horizon stands for Horizontal Chord.

Page 161: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 161/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-100-100

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 32280 360 54.63 1.82 1252.71

Chord Tension 32280 36026.32 6.59

- - - 1500

Diagonal Compression 13500 360 75.00 1.86 1116.01

Chord Tension 16260 50217.07 4.8

- - - 1500

36-100-125

Horizon Compression 32280 450 68.49 1.85 1161.98

Chord Tension 32280 45029.17 6.57

- - - 1500

Diagonal Compression 13500 360 74.69 1.86 1118.25

Chord Tension 18000 568

15.4 4.82

- - - 1500

Horizon stands for Horizontal Chord.

Page 162: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 162/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-100-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 32280 540 72.10 1.85 1136.79

Chord Tension 32280 54029.94 7.49

- - - 1500

Diagonal Compression 13500 360 74.69 1.86 1118.25

Chord Tension 19620 64015.4 4.82

- - - 1500

36-100-175

Horizon Compression 32280 630 96.48 1.90 949.14

Chord Tension 32280 63034.82 6.53

- - - 1500

Diagonal Compression 13500 360 74.69 1.86 1118.25

Chord Tension 21300 716

15.4 4.82

- - - 1500

Horizon stands for Horizontal Chord.

Page 163: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 163/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-100-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 32280 720 96.77 1.90 946.68

Chord Tension 32280 72039.61 7.44

- - - 1500

Diagonal Compression 13500 360 74.69 1.86 1118.25

Chord Tension 22920 79615.4 4.82

- - - 1500

36-100-225

Horizon Compression 32280 810 108.87 1.91 842.12

Chord Tension 32280 81039.61 7.44

- - - 1500

Diagonal Compression 13500 360 75.00 1.86 1116.01

Chord Tension 24480 877

17.07 4.8

- - - 1500

Horizon stands for Horizontal Chord.

Page 164: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 164/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-100-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 32280 900 121.62 1.92 723.27

Chord Tension 32280 90046.03 7.4

- - - 1500

Diagonal Compression 13500 360 93.51 1.89 973.62

Chord Tension 25920 96019.12 3.85

- - - 1500

Horizon stands for Horizontal Chord.

Page 165: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 165/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-125-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 40260 288 51.43 1.81 1272.20

Chord Tension 40260 28834.79 5.6

- - - 1500

Diagonal Compression 13500 288 73.47 1.86 1127.01

Chord Tension 16620 40112.52 3.92

- - - 1500

36-125-125

Horizon Compression 40260 360 64.29 1.84 1190.57

Chord Tension 40260 36034.79 5.6

- - - 1500

Diagonal Compression 13500 288 73.47 1.86 1127.01

Chord Tension 18420 454

12.52 3.92

- - - 1500

Horizon stands for Horizontal Chord.

Page 166: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 166/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-125-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 40260 432 66.16 1.84 1177.97

Chord Tension 40260 43234.82 6.53

- - - 1500

Diagonal Compression 13500 288 84.21 1.88 1047.29

Chord Tension 20400 51215.17 3.42

- - - 1500

36-125-175

Horizon Compression 40260 504 67.74 1.85 1167.15

Chord Tension 40260 50439.61 7.44

- - - 1500

Diagonal Compression 13500 288 84.21 1.88 1047.29

Chord Tension 22200 573

15.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 167: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 167/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-125-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 40260 576 77.42 1.86 1098.37

Chord Tension 40260 57639.61 7.44

- - - 1500

Diagonal Compression 13500 288 60.00 1.83 1218.74

Chord Tension 24060 63617.07 4.8

- - - 1500

36-125-225

Horizon Compression 40260 648 87.10 1.88 1024.88

Chord Tension 40260 64839.61 7.44

- - - 1500

Diagonal Compression 13500 288 74.81 1.86 1117.41

Chord Tension 25920 701

19.12 3.85

- - - 1500

Horizon stands for Horizontal Chord.

Page 168: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 168/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-125-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 40260 720 97.30 1.90 942.31

Chord Tension 40260 72046.03 7.4

- - - 1500

Diagonal Compression 13500 288 74.81 1.86 1117.41

Chord Tension 27660 76819.12 3.85

- - - 1500

Horizon stands for Horizontal Chord.

Page 169: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 169/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-150-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 48060 241 32.39 1.76 1376.32

Chord Tension 48060 24139.61 7.44

- - - 1500

Diagonal Compression 13500 241 69.86 1.85 1152.54

Chord Tension 12060 33612.26 3.45

- - - 1500

36-150-125

Horizon Compression 48060 288 38.71 1.78 1344.10

Chord Tension 48060 28839.61 7.44

- - - 1500

Diagonal Compression 13500 241 69.86 1.85 1152.54

Chord Tension 18360 370

12.26 3.45

- - - 1500

Horizon stands for Horizontal Chord.

Page 170: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 170/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-150-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area(sqcm.

)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 48060 360 48.39 1.80 1290.22

Chord Tension 48060 36039.61 7.44

- - - 1500

Diagonal Compression 13500 241 70.47 1.85 1148.26

Chord Tension 20700 42715.17 3.42

- - - 1500

36-150-175

Horizon Compression 48060 420 56.45 1.82 1241.35

Chord Tension 48060 42039.61 7.44

- - - 1500

Diagonal Compression 13500 241 70.47 1.85 1148.26

Chord Tension 22740 478

15.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 171: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 171/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-150-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 48060 480 64.86 1.84 1186.69

Cord Tension 48060 48046.03 7.4

- - - 1500

Diagonal Compression 13500 241 50.21 1.81 1279.49

Cord Tension 24780 53117.07 4.8

- - - 1500

36-150-225

Horizon Compression 48060 540 72.97 1.86 1130.56

Cord Tension 48060 54046.03 7.4

- - - 1500

Diagonal Compression 13500 241 62.60 1.83 1201.78

Cord Tension 27300 585

19.12 3.85

- - - 1500

Horizon stands for Horizontal Chord.

Page 172: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 172/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-150-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 48060 600 81.08 1.87 1071.11

Chord Tension 48060 60046.03 7.4

- - - 1500

Diagonal Compression 13500 241 42.43 1.79 1324.02

Chord Tension 28800 64022.72 5.68

- - - 1500

Horizon stands for Horizontal Chord.

Page 173: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 173/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-175-100

Element

SetForce

Maximum

Force (kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL

<200)for

compression

tension

Horizon Compression 56160 206 27.84 1.75 1398.04

Chord Tension 56160 20646.03 7.4

- - - 1500

Diagonal Compression 13500 206 59.71 1.83 1220.62

Chord Tension 17040 28612.26 3.45

- - - 1500

36-175-125

Horizon Compression 56160 257 34.73 1.77 1364.68

Chord Tension 56160 25746.03 7.4

- - - 1500

Diagonal Compression 13500 206 60.23 1.83 1217.23

Chord Tension 19020 324

15.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 174: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 174/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-175-150

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 56160 308 41.62 1.78 1328.45

Chord Tension 56160 30846.03 7.4

- - - 1500

Diagonal Compression 13500 206 60.23 1.83 1217.23

Chord Tension 21000 36515.17 3.42

- - - 1500

36-175-175

Horizon Compression 56160 360 48.65 1.80 1288.69

Chord Tension 56160 36046.03 7.4

- - - 1500

Diagonal Compression 13500 206 42.92 1.79 1321.34

Chord Tension 23280 409

17.07 4.8

- - - 1500

Horizon stands for Horizontal Chord.

Page 175: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 175/206

Page 176: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 176/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-175-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 56160 515 55.74 1.82 1245.83

Chord Tension 56160 51549.27 9.24

- - - 1500

Diagonal Compression 13500 206 52.42 1.81 1266.24

Chord Tension 16140 54811.17 3.93

- - - 1500

Horizon stands for Horizontal Chord.

Page 177: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 177/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-200-100

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 57120 180 24.32 1.74 1413.89

Chord Tension 57120 18046.03 7.4

- - - 1500

Diagonal Compression 13500 180 45.80 1.79 1305.14

Chord Tension 16140 25111.17 3.93

- - - 1500

36-200-125

Horizon Compression 57120 225 30.41 1.75 1385.96

Chord Tension 57120 22546.03 7.4

- - - 1500

Diagonal Compression 13500 180 52.63 1.81 1264.94

Chord Tension 19260 284

15.17 3.42

- - - 1500

Horizon stands for Horizontal Chord.

Page 178: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 178/206

Page 179: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 179/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-200-200

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 57120 360 48.65 1.80 1288.69

Chord Tension 57120 36046.03 7.4

- - - 1500

Diagonal Compression 13500 180 46.75 1.80 1299.69

Chord Tension 25800 39819.12 3.85

- - - 1500

36-200-225

Horizon Compression 57120 405 54.73 1.82 1252.08

Chord Tension 57120 40546.03 7.4

- - - 1500

Diagonal Compression 13500 180 46.75 1.80 1299.69

Chord Tension 28080 438

19.12 3.85

- - - 1500

Horizon stands for Horizontal Chord.

Page 180: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 180/206

 Appendix Table J1  Calculation Sheet (Cont’d) 

36-200-250

Element

SetForce

Maximum

Force

(kg)

Element

Length

(cm.)

Element

Cross

Section

Area

(sqcm.)

Radius of

Gyration

(cm.)

KL/R  F.S.Fa(1)(KL/R 

<128)

Fa(2)(128<KL/R

<200)for

compression or

tension

Horizon Compression 57120 450 48.70 1.80 1288.38

Chord Tension 57120 45049.27 9.24

- - - 1500

Diagonal Compression 13500 180 31.69 1.76 1379.76

Chord Tension 30240 48022.72 5.68

- - - 1500

Horizon stands for Horizontal Chord. 

Page 181: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 181/206

  171

 

APPENDIX K

Page 182: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 182/206

Page 183: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 183/206

 

Weight per square meter of roof for

18 m. Span Length

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

0 0.5 1 1.5 2 2.5

External Ratio

   W  e   i  g   h   t  p  e  r  s  q  u  a  r  e  m  e   t  e  r  o   f   R  o  o   f

Intern

Intern

Intern

Intern

Intern

Intern

Intern

Appendix Figure K2  Weight per square meter of roof for 18 m. span length vary on external ratio 

Page 184: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 184/206

 

Weight per square meter of roof for

24 m. Span Length

8.00

8.50

9.00

9.50

10.00

10.50

11.00

11.50

12.00

0 0.5 1 1.5 2 2.5

External Ratio

   W  e   i  g   h   t  p  e  r  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f

Inter

Inter

Inter

Inter

Inter

Inter

Inter

Appendix Figure K3  Weight per square meter of roof for 24 m. span length vary on external ratio 

Page 185: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 185/206

 

Weight per square meter of roof for

30 m. Span Length

11.00

11.50

12.00

12.50

13.00

13.50

14.00

0 0.5 1 1.5 2 2.5

External Ratio

   W  e   i  g   h   t  p  e  r  s  q

  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f

Internal Ratio 1

Internal Ratio 1.

Internal Ratio 1.

Internal Ratio 1.

Internal Ratio 2

Internal Ratio 2.

Internal Ratio 2.

Appendix Figure K4  Weight per square meter of roof for 30 m. span length vary on external ratio 

Page 186: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 186/206

 

Weight per square meter of roof for

36 m. Span Length

10.00

11.00

12.00

13.00

14.00

15.00

16.00

0 0.5 1 1.5 2 2.5

External Ratio

   W  e   i  g   h   t  p  e  r

  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f Internal Ratio 1

Internal Ratio 1.25

Internal Ratio 1.5

Internal Ratio 1.75

Internal Ratio 2

Internal Ratio 2.25

Internal Ratio 2.5

Appendix Figure K5  Weight per square meter of roof for 36 m. span length vary on external ratio 

Page 187: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 187/206

 

Weight per square meter of roof for

12 m. Span Length

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

0 0.5 1 1.5 2 2.5 3

Internal Ratio

   W  e   i  g   h   t  p  e  r  s  q  u

  a  r  e  m  e   t  e  r  o   f  r  o  o   f

External Ratio 1

External Ratio 1.25

External Ratio 1.5

External Ratio 1.75

External Ratio 2

Appendix Figure K6  Weight per square meter of roof for 12 m. span length vary on internal ratio 

Page 188: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 188/206

Page 189: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 189/206

 

Weight per square meter of roof for

24 m. Span Length

8.50

9.00

9.50

10.00

10.50

11.00

11.50

12.00

0 0.5 1 1.5 2 2.5 3

Internal Ratio

   W  e   i  g   h   t  p  e  r  s

  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f Extern

Extern

Extern

Extern

Extern

Appendix Figure K8  Weight per square meter of roof for 24 m. span length vary on internal ratio 

Page 190: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 190/206

Page 191: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 191/206

 

Weight per square meter of roof for

36 m. Span Length

13.00

13.50

14.00

14.50

15.00

15.50

16.00

0 0.5 1 1.5 2 2.5 3Internal Ratio

   W  e   i  g   h   t  p  e  r  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f

Extern

Extern

Extern

Extern

Extern

Appendix Figure K10  Weight per square meter of roof for 36 m. span length vary on internal ratio 

Page 192: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 192/206

 

Painting area per square meter for

12 m. Span Length

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0 0.5 1 1.5 2 2.5

External Ratio

   P  a   i  n   t   i  n  g  a  r  e  a  p  e  r  s

  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f

Intern

Intern

Intern

Intern

Intern

Intern

Intern

Appendix Figure K11  Painting area per square meter of roof for 12 m. span length vary on external ratio 

Page 193: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 193/206

 

Painting area per square meter for

18 m. Span Length

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0 0.5 1 1.5 2 2.5

External Ratio

   P  a   i  n   t   i  n  g  a  r  e  a  p  e  r  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f Inte

Inte

Inte

Inte

Inte

Inte

Inte

Appendix Figure K12  Painting area per square meter of roof for 18 m. span length vary on external ratio 

Page 194: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 194/206

Page 195: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 195/206

 

Painting area per square meter for

30 m. Span Length

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0 0.5 1 1.5 2 2.5

External Ratio

   P  a   i  n   t   i  n  g  a  r  e  a  p  e  r  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f

Internal R

Internal R

Internal R

Internal R

Internal R

Internal R

Internal R

Appendix Figure K14  Painting area per square meter of roof for 30 m. span length vary on external ratio 

Page 196: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 196/206

Page 197: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 197/206

 

Painting area per square meter for

12 m. Span Length

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0 0.5 1 1.5 2 2.5 3

Internal Ratio

   P  a   i  n   t   i  n  g  a  r  e  a  p

  e  r  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f Externa

Externa

Externa

Externa

Externa

Appendix Figure K16  Painting area per square meter of roof for 12 m. span length vary on internal ratio 

Page 198: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 198/206

 

Painting area per square meter for

18 m. Span Length

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0 0.5 1 1.5 2 2.5 3

Internal Ratio

   P  a   i  n   t   i  n  g  a  r  e  a

  p  e  r  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f

Extern

Extern

Extern

Extern

Extern

Appendix Figure K17  Painting area per square meter of roof for 18 m. span length vary on internal ratio 

Page 199: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 199/206

Page 200: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 200/206

 

Painting area per square meter for

30 m. Span Length

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0 0.5 1 1.5 2 2.5 3

Internal Ratio

   P  a   i  n   t   i  n  g  a  r  e  a  p  e

  r  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f

Externa

Externa

Externa

Externa

Externa

Appendix Figure K19  Painting area per square meter of roof for 30 m. span length vary on internal ratio

Page 201: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 201/206

 

Painting area per square meter for

36 m. Span Length

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0 0.5 1 1.5 2 2.5 3

Internal Ratio

   P  a   i  n   t   i  n  g  a  r  e  a  p  e

  r  s  q  u  a  r  e  m  e   t  e  r  o   f  r  o  o   f

Externa

Externa

Externa

Externa

Externa

Appendix Figure K20  Painting area per square meter of roof for 36 m. span length vary on internal ratio

Page 202: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 202/206

  192

 

APPENDIX L

Page 203: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 203/206

  193

ScopeofStudy

1750-Truss

35-12m.SpanLength

12-XX-XXX

35-18m.SpanLength

18-XX-XXX

35-24m.SpanLength

24-XX-XXX

35-30m.SpanLength

30-XX-XXX

35-36m.SpanLength

36-XX-XXX

7-1:10External

Ratio12-10-XXX

7-1:15External

Ratio12-15-XXX

7-1:10External

Ratio12-15-XXX

1-1:1Internal

Ratio

12-10-100

1-1:1.25Internal

Ratio

12-10-125

1-1:2.5Internal

Ratio

12-10-250

7-1:10External

Ratio12-15-XXX

7-1:10External

Ratio12-15-XXX

1-1:1.5Internal

Ratio

12-10-125

1-1:1.75Internal

Ratio

12-10-125

1-1:1.75Internal

Ratio

12-10-125

1-1:1.75Internal

Ratio

12-10-125

875-

TriangularTruss

875-Double

TriangularTruss

175-

Tube Element

175-SquareTube

Element

175-

Angle Element

175-

Channel Element

175-H-Beam

Element

Identical Model as Triangular Truss

Identical Model as 12 m. span length Truss

Identical Model as Tube Element

Identical Model as 1 : 10 External Ratio Truss

 

Appendix Figure L1  Full Truss Breakdown Model

Page 204: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 204/206

  194

 

APPENDIX M

Page 205: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 205/206

  195

DataCollecting

VariousTruss

Designing

Cost & TimeCalculation

RelativeEquation

Acquisition

VariousTruss

Designing

ModelVerification

ModelVerification

 

Appendix Figure M1  Diagram of Main Procedures

Page 206: Boonma Boo All

8/13/2019 Boonma Boo All

http://slidepdf.com/reader/full/boonma-boo-all 206/206

  196