Boiler Calc

Embed Size (px)

DESCRIPTION

dearator

Citation preview

Calc 3 barg[A] BOILER DUTY FOR INITIAL HEATING OIL INSIDE TANK[1] DUTY FOR HEATING HEAVY FUEL OIL [HFO] "INSIDE" STORAGE TANKService=To heat up oil temperature inside tank to specified temperatureHFO Temperature Initial=10oCHFO Temperature Final=40oCHFO Gross Volume=6,500m3Refer to bid document 1.6.1. Tank DimensionHFO Net Working Volume=6,150m3HFO Mass Density=0.991kg/ltRefer to reference=991kg/m3HFO Specific Heat=1,717Joule/kg.oCRefer to referenceHFO Mass Stock=6,094,650kgNumber of HFO Tank=3eaTotal HFO Mass Stock=18,283,950kgPumping frequency=96hr=345,600sec=4daysRefer to bid document 2.2.4. PipeworkHeating duty=2,725,134Joule/sec=2.725MWHot water operating pressure=3bargHot water inlet temperature=100oCCp hot water inlet=4,397Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=60oCCp hot water outlet=4,329Joule/kg.oCRefer to Hysis simulationHot water mass rate=16kg/sec=56,214kg/hrRefer to manual calculation=56,269kg/hrRefer to Hysis simulation[2] BOILER DUTY DURING INITIAL OPERATIONBoiler heating duty=2.725MWBoiler heating capacity=4.500MWNote=Oke becauce boiler is over capacity[3] FASTEST PERIOD FOR HEATING 3 OIL STORAGEService=To heat up oil temperature inside tank to specified temperatureHFO Temperature Initial=10oCHFO Temperature Final=40oCHFO Volume=6,500m3Refer to bid document 1.6.1. Tank DimensionHFO Net Working Volume=6,150m3HFO Mass Density=0.991kg/ltRefer to reference=991kg/m3HFO Specific Heat=1,717Joule/kg.oCRefer to referenceHFO Mass Stock=6,094,650kgNumber of HFO Tank=3eaTotal HFO Mass Stock=18,283,950kgMaximum time for heating up=58hr=209,316sec=2daysPumping frequency period=96hr=4daysRefer to bid document 2.2.4. PipeworkNote=Oke because shorther than pumping frequency periodBoiler duty=4,499,442Joule/sec=4.50MWBoiler design duty=4.50MWRefer to bid document dataHeat balance=1Hot water operating pressure=3bargHot water inlet temperature=100oCCp hot water inlet=4,397Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=60oCCp hot water outlet=4,329Joule/kg.oCRefer to Hysis simulationHot water mass rate=26kg/sec=92,826kg/hrRefer to manual calculation=92,921kg/hrRefer to Hysis simulation.[B] BOILER DUTY DURING NORMAL OPERATION[1] DUTY FOR HEATING UP HEAVY FUEL OIL [HFO] "OUTLET" STORAGE TANKService=To heat up pumped oil temperature to specified valueHFO Temperature Inlet=40oCHFO Temperature Outlet=50oCHFO Mass Flow=600ton/hr=600,000kg/hrHFO Specific Heat=1,717Joule/kg.oCRefer to referenceHeating duty=10,302,000,000Joule/hr=2.862MWHot water operating pressure=3bargHot water inlet temperature=100oCCp hot water inlet=4,397Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=60oCCp hot water outlet=4,329Joule/kg.oCRefer to Hysis simulationHot water mass rate=16kg/sec=59,030kg/hrRefer to manual calculation=59,098kg/hrRefer to Hysis simulation[2] DUTY FOR HEATING HEAVY FUEL OIL [HFO] "INSIDE" STORAGE TANKService=To maintain oil temperature inside tank to specified temperatureHFO Temperature Initial=35oCHFO Temperature Final=40oCHFO Volume=6,500m3HFO Mass Density=0.991kg/ltRefer to reference=991kg/m3HFO Specific Heat=1,717Joule/kg.oCRefer to referenceHFO Mass Stock=6,441,500kgNumber of HFO Tank=3eaTotal HFO Mass Stock=19,324,500kgMaximum time for heating up=120hrRefer to bid document 4.10.8. HFO Storage Tank Heating Coil=432,000sec=5daysHeating duty=384,030Joule/sec=0.3840MWHot water operating pressure=3bargHot water inlet temperature=100oCCp hot water inlet=4,397Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=60oCCp hot water outlet=4,329Joule/kg.oCRefer to Hysis simulationHot water mass rate=2kg/sec=7,922kg/hrRefer to manual calculation=7,929kg/hrRefer to Hysis simulation[3] BOILER DUTY DURING NORMAL OPERATIONBoiler heating duty=3.25MWBoiler heating capacity=4.50MWNote=Oke becauce boiler is over capacity[C] HOT WATER SUMMARYHot water mass rate=56,269kg/hrInitial heating up period for 4 days=92,921kg/hrInitial heating up period with maximum boiler capacity=67,027kg/hrHeating up duty during normal operationSelected hot water mass rate=92,921kg/hrHigher value is selected[D] MAKE UP WATER CALCULATIONBoiler cycle of concentration=10Typical boiler 10 ~ 50 COC% Blow down=10%Initial heating up period with maximum boiler capacityBoiler feed water mass rate=6,894kg/hrRefer to Hysis SimulationBoiler blow down mass rate=689kg/hrBoiler make up water=689kg/hr=0.6894m3/hrCondition :Steam mass rate=6,894kg/hrSteam operating pressure=3bargRefer to Hysis SimulationSteam operating pressure=143.7oCRefer to Hysis Simulation[E] WASTE HEAT RECOVERY IN FORT VICTORIA POWER STATION[1] FORT VICTORIA POWER STATIONFort Victoria power plant capacity=90MWRefer to data googlingFort Victoria power plant capacity for design heat recovery=45MWAssumeMachine=diesel engine generatorRefer to data googlingEngine brand=WartsilaNumber of engine=6eaRefer to data googlingCapacity each engine=15MWRefer to data googlingEfficiency=45%Refer to product bulletin (if no data use value 30 ~ 35 %)Total fuel heat combustion=100MWTotal heat loss=55MWHeat loss carried by flue gas=60% total heat lossRefer to reference=33MWHeat loss carried by engine cooling system=40% total heat lossRefer to reference=22MWNet caloric value=40MJ/kgRefer to referenceTotal HFO mass rate to engine=2.5kg/sec=9,000kg/hr[2] PRE-HEATER DUTYHot water operating pressure=3bargMax hot water mass rate=92,921kg/hrRefer to Hysis simulationHot water inlet temperature=60oCCp hot water inlet=4,329Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=80oCCp hot water outlet=4,356Joule/kg.oCRefer to Hysis simulationPreheater duty=8,070,203,531Joule/hr=2.242MWRefer to manual calculation=2.241MWRefer to Hysis simulationHeat available in Fort Victoria Power Plant=22MWNote=Heat recovery is availableHot water operating pressure=6bargHot water inlet temperature=100oCCp hot water inlet=4,396Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=70oCCp hot water outlet=4,341Joule/kg.oCRefer to Hysis simulationHot water mass rate=17kg/sec=61,559kg/hrRefer to manual calculation=61,597kg/hrRefer to Hysis simulation[F] HEAT BALANCE AROUND STEAM DRUM DURING NORMAL OPERATIONSteam condition=saturatedSteam mass rate=4,680kg/hrCalculatedSteam temperature=143.72oCRefer to Hysis simulationSteam pressure=3.00bargRefer to Hysis simulationMake up water condition=subcooledMake up water mass rate=689kg/hrRefer to Hysis simulationMake up water temperature=20.00oCAssumeMake up water pressure=3.00bargRefer to Hysis simulationHot water inlet tank condition=subcooledHot water inlet water mass rate=67,027kg/hrRefer to Hysis simulationHot water inlet water temperature=100.00oCAssumeHot water inlet water pressure=3.00bargRefer to Hysis simulationHot water outlet tank condition=subcooledHot water outlet water mass rate=62,347kg/hrCalculatedHot water outlet water temperature=60.00oCAssumeHot water outlet water pressure=3.00bargRefer to Hysis simulationBlow down water condition=subcooledBlow down water mass rate=689kg/hrRefer to Hysis simulationBlow down water temperature=100.00oCAssumeBlow down water pressure=3.00bargRefer to Hysis simulationSteam mass flow rate during normal condition=4,680kg/hrRefer to Hysis simulationBoiler design capacity=6,894kg/hrRefer to Hysis simulationNote=Oke due to steam demand is lower than steam design capacity[G] DEAERATOR DESIGNhttp://www4.eere.energy.gov/manufacturing/tech_deployment/amo_steam_tool/equipDeaeratorhttp://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.aspDearator pressure=0.0psig=14.5psia=1.0baraDearator saturation temperature@ 0.0 psig=212.0oFRefer to WWW4.eere=100.0oCLiquid saturation enthalphy@ 0.0 psigand @ 212.0 F=180.1Btu/lbmRefer to WWW4.eereSteam saturation enthalphy@ 0.0 psigand @ 212.0 F=1,150.3Btu/lbmRefer to WWW4.eereVent rate=0.10%Typical 0.1 ~ 0.2 %Refer to WWW4.eereTypical 0.05 ~ 0.2 %Refer to http://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.aspDearator operating temperature=194.0oFRefer to WWW4.eere=90.0oCDearator saturation pressure@ 194.0 F=-4.5psigRefer to WWW4.eere=10.0psia=0.69baraLiquid saturation enthalphy-@ 4.5 psigand @ 194.0 F=162.1Btu/lbmRefer to WWW4.eereSteam saturation enthalphy-@ 4.5 psigand @ 194.0 F=1,143.4Btu/lbmRefer to WWW4.eereDeaerator outlet water flow=689.4kg/hr=1,520lb/hrDeaerator inlet water pressure=14.5psigRefer to pump discharge=1.0bargDeaerator inlet water temperature=30oC=86.0oFDeaerator feed water enthalpy=54.1Btu/lbmRefer to WWW4.eereSteam operating pressure=3.0barg=43.5psigNote=Not okeRefer to http://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.aspSteam operating temperature=143.7oC=290.7oFSteam enthalpy=1,177.2Btu/lbmRefer to WWW4.eereVented mass flow=0.689kg/hr=1.520lb/hrTotal deaerator mass flow=690kg/hr=1,521.4lb/hrTotal energy flow=0.248MMBtu/hrOutlet water energy flow=0.082MMBtu/hrAdditional energy flow needed=0.166MMBtu/hrInlet steam mass flow=147.71lb/hrInlet water mass flow=1,374lb/hrO2 content inlet feed water@ 0.0 psigand @ 30.0 C=7.17ppmAir content inlet feed water@ 0.0 psigand @ 30.0 C=17.50ppmN2 (+other gas) content inlet feed water@ 0.0 psigand @ 30.0 C=10.33ppmO2 content outlet feed water@ 0.0 psigand @ 90.0 C=1.41ppmAir content inlet feed water@ 0.0 psigand @ 90.0 C=5.50ppmN2 (+other gas) content inlet feed water@ 0.0 psigand @ 90.0 C=4.09ppm

HFO InletHFO OutletHot Water InletHot Water Outlet6500 m36500 m3HFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water Outlethttp://www4.eere.energy.gov/manufacturing/tech_deployment/amo_steam_tool/equipDeaeratorhttp://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.asp

Calc 5 barg[A] BOILER DUTY FOR INITIAL HEATING OIL INSIDE TANK[1] DUTY FOR HEATING HEAVY FUEL OIL [HFO] "INSIDE" STORAGE TANKService=To heat up oil temperature inside tank to specified temperatureHFO Temperature Initial=10oCHFO Temperature Final=40oCHFO Gross Volume=6,500m3Refer to bid document 1.6.1. Tank DimensionHFO Net Working Volume=6,150m3HFO Mass Density=0.991kg/ltRefer to reference=991kg/m3HFO Specific Heat=1,717Joule/kg.oCRefer to referenceHFO Mass Stock=6,094,650kgNumber of HFO Tank=3eaTotal HFO Mass Stock=18,283,950kgPumping frequency=96hr=345,600sec=4daysRefer to bid document 2.2.4. PipeworkHeating duty=2,725,134Joule/sec=2.725MWHot water operating pressure=5bargHot water inlet temperature=140oCCp hot water inlet=4,526Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=60oCCp hot water outlet=4,329Joule/kg.oCRefer to Hysis simulationHot water mass rate=8kg/sec=27,698kg/hrRefer to manual calculation=27,830kg/hrRefer to Hysis simulation[2] BOILER DUTY DURING INITIAL OPERATIONBoiler heating duty=2.725MWBoiler heating capacity=4.500MWNote=Oke becauce boiler is over capacity[3] FASTEST PERIOD FOR HEATING 3 OIL STORAGEService=To heat up oil temperature inside tank to specified temperatureHFO Temperature Initial=10oCHFO Temperature Final=40oCHFO Volume=6,500m3Refer to bid document 1.6.1. Tank DimensionHFO Net Working Volume=6,150m3HFO Mass Density=0.991kg/ltRefer to reference=991kg/m3HFO Specific Heat=1,717Joule/kg.oCRefer to referenceHFO Mass Stock=6,094,650kgNumber of HFO Tank=3eaTotal HFO Mass Stock=18,283,950kgMaximum time for heating up=58hr=209,316sec=2daysPumping frequency period=96hr=4daysRefer to bid document 2.2.4. PipeworkNote=Oke because shorther than pumping frequency periodBoiler duty=4,499,442Joule/sec=4.50MWBoiler design duty=4.50MWRefer to bid document dataHeat balance=1Hot water operating pressure=5bargHot water inlet temperature=140oCCp hot water inlet=4,526Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=60oCCp hot water outlet=4,329Joule/kg.oCRefer to Hysis simulationHot water mass rate=13kg/sec=45,737kg/hrRefer to manual calculation=45,955kg/hrRefer to Hysis simulation.[B] BOILER DUTY DURING NORMAL OPERATION[1] DUTY FOR HEATING UP HEAVY FUEL OIL [HFO] "OUTLET" STORAGE TANKService=To heat up pumped oil temperature to specified valueHFO Temperature Inlet=40oCHFO Temperature Outlet=50oCHFO Mass Flow=600ton/hr=600,000kg/hrHFO Specific Heat=1,717Joule/kg.oCRefer to referenceHeating duty=10,302,000,000Joule/hr=2.862MWHot water operating pressure=5bargHot water inlet temperature=140oCCp hot water inlet=4,526Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=60oCCp hot water outlet=4,329Joule/kg.oCRefer to Hysis simulationHot water mass rate=8kg/sec=29,085kg/hrRefer to manual calculation=29,231kg/hrRefer to Hysis simulation[2] DUTY FOR HEATING HEAVY FUEL OIL [HFO] "INSIDE" STORAGE TANKService=To maintain oil temperature inside tank to specified temperatureHFO Temperature Initial=35oCHFO Temperature Final=40oCHFO Volume=6,500m3HFO Mass Density=0.991kg/ltRefer to reference=991kg/m3HFO Specific Heat=1,717Joule/kg.oCRefer to referenceHFO Mass Stock=6,441,500kgNumber of HFO Tank=3eaTotal HFO Mass Stock=19,324,500kgMaximum time for heating up=120hrRefer to bid document 4.10.8. HFO Storage Tank Heating Coil=432,000sec=5daysHeating duty=384,030Joule/sec=0.3840MWHot water operating pressure=5bargHot water inlet temperature=140oCCp hot water inlet=4,526Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=60oCCp hot water outlet=4,329Joule/kg.oCRefer to Hysis simulationHot water mass rate=1.08kg/sec=3,903kg/hrRefer to manual calculation=3,931kg/hrRefer to Hysis simulation[3] BOILER DUTY DURING NORMAL OPERATIONBoiler heating duty=3.25MWBoiler heating capacity=4.50MWNote=Oke becauce boiler is over capacity[C] HOT WATER SUMMARYHot water mass rate=27,830kg/hrInitial heating up period for 4 days=45,955kg/hrInitial heating up period with maximum boiler capacity=33,162kg/hrHeating up duty during normal operationSelected hot water mass rate=45,955kg/hrHigher value is selected[D] MAKE UP WATER CALCULATIONBoiler cycle of concentration=10Typical boiler 10 ~ 50 COC% Blow down=10%Initial heating up period with maximum boiler capacityBoiler feed water mass rate=7,381kg/hrRefer to Hysis SimulationBoiler blow down mass rate=738kg/hrBoiler make up water=738kg/hr=0.7381m3/hrCondition :Steam mass rate=7,381kg/hrSteam operating pressure=5bargRefer to Hysis SimulationSteam operating pressure=159.0oCRefer to Hysis Simulation[E] WASTE HEAT RECOVERY IN FORT VICTORIA POWER STATION[1] FORT VICTORIA POWER STATIONFort Victoria power plant capacity=90MWRefer to data googlingFort Victoria power plant capacity for design heat recovery=45MWAssumeMachine=diesel engine generatorRefer to data googlingEngine brand=WartsilaNumber of engine=6eaRefer to data googlingCapacity each engine=15MWRefer to data googlingEfficiency=45%Refer to product bulletin (if no data use value 30 ~ 35 %)Total fuel heat combustion=100MWTotal heat loss=55MWHeat loss carried by flue gas=60% total heat lossRefer to reference=33MWHeat loss carried by engine cooling system=40% total heat lossRefer to reference=22MWNet caloric value=40MJ/kgRefer to referenceTotal HFO mass rate to engine=2.5kg/sec=9,000kg/hr[2] PRE-HEATER DUTYHot water operating pressure=5bargMax hot water mass rate=45,955kg/hrRefer to Hysis simulationHot water inlet temperature=60oCCp hot water inlet=4,329Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=80oCCp hot water outlet=4,356Joule/kg.oCRefer to Hysis simulationPreheater duty=3,991,155,665Joule/hr=1.109MWRefer to manual calculation=1.108MWRefer to Hysis simulationHeat available in Fort Victoria Power Plant=22MWNote=Heat recovery is availableHot water operating pressure=6bargHot water inlet temperature=100oCCp hot water inlet=4,396Joule/kg.oCRefer to Hysis simulationHot water outlet temperature=70oCCp hot water outlet=4,341Joule/kg.oCRefer to Hysis simulationHot water mass rate=8kg/sec=30,436kg/hrRefer to manual calculation=30,479kg/hrRefer to Hysis simulation[F] HEAT BALANCE AROUND STEAM DRUM DURING NORMAL OPERATIONSteam condition=saturatedSteam mass rate=4,640kg/hrCalculatedSteam temperature=158.96oCRefer to Hysis simulationSteam pressure=5.00bargRefer to Hysis simulationMake up water condition=subcooledMake up water mass rate=738kg/hrRefer to Hysis simulationMake up water temperature=20.00oCAssumeMake up water pressure=5.00bargRefer to Hysis simulationHot water inlet tank condition=subcooledHot water inlet water mass rate=33,162kg/hrRefer to Hysis simulationHot water inlet water temperature=140.00oCAssumeHot water inlet water pressure=5.00bargRefer to Hysis simulationHot water outlet tank condition=subcooledHot water outlet water mass rate=28,522kg/hrCalculatedHot water outlet water temperature=60.00oCAssumeHot water outlet water pressure=5.00bargRefer to Hysis simulationBlow down water condition=subcooledBlow down water mass rate=738kg/hrRefer to Hysis simulationBlow down water temperature=140.00oCAssumeBlow down water pressure=5.00bargRefer to Hysis simulationSteam mass flow rate during normal condition=4,640kg/hrRefer to Hysis simulationBoiler design capacity=7,381kg/hrRefer to Hysis simulationNote=Oke due to steam demand is lower than steam design capacity[G] DEAERATOR DESIGNhttp://www4.eere.energy.gov/manufacturing/tech_deployment/amo_steam_tool/equipDeaeratorhttp://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.aspDearator pressure=0.0psig=14.5psia=1.0baraDearator saturation temperature@ 0.0 psig=212.0oFRefer to WWW4.eere=100.0oCLiquid saturation enthalphy@ 0.0 psigand @ 212.0 F=180.1Btu/lbmRefer to WWW4.eereSteam saturation enthalphy@ 0.0 psigand @ 212.0 F=1,150.3Btu/lbmRefer to WWW4.eereVent rate=0.10%Typical 0.1 ~ 0.2 %Refer to WWW4.eereTypical 0.05 ~ 0.2 %Refer to http://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.aspDearator operating temperature=194.0oFRefer to WWW4.eere=90.0oCDearator saturation pressure@ 194.0 F=-4.5psigRefer to WWW4.eere=10.0psia=0.69baraLiquid saturation enthalphy-@ 4.5 psigand @ 194.0 F=162.1Btu/lbmRefer to WWW4.eereSteam saturation enthalphy-@ 4.5 psigand @ 194.0 F=1,143.4Btu/lbmRefer to WWW4.eereDeaerator outlet water flow=738.1kg/hr=1,627lb/hrDeaerator inlet water pressure=43.5psigRefer to pump discharge=3.0bargDeaerator inlet water temperature=30oCAssume there in no heating of make up water=86.0oFDeaerator feed water enthalpy=54.2Btu/lbmRefer to WWW4.eereSteam operating pressure=5.0barg=72.5psigNote=Oke due to typical steam supply pressure for deaeratorRefer to http://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.aspSteam operating temperature=159.0oC=318.1oFSteam enthalpy=1,185.0Btu/lbmRefer to WWW4.eereVented mass flow=0.738kg/hr=1.627lb/hrTotal deaerator mass flow=739kg/hr=1,628.9lb/hrTotal energy flow=0.266MMBtu/hrOutlet water energy flow=0.088MMBtu/hrAdditional energy flow needed=0.177MMBtu/hrInlet steam mass flow=156.92lb/hrInlet water mass flow=1,472lb/hrO2 content inlet feed water@ 0.0 psigand @ 30.0 C=7.17ppmAir content inlet feed water@ 0.0 psigand @ 30.0 C=17.50ppmN2 (+other gas) content inlet feed water@ 0.0 psigand @ 30.0 C=10.33ppmO2 content outlet feed water@ 0.0 psigand @ 90.0 C=1.41ppmAir content inlet feed water@ 0.0 psigand @ 90.0 C=5.50ppmN2 (+other gas) content inlet feed water@ 0.0 psigand @ 90.0 C=4.09ppm

HFO InletHFO OutletHot Water InletHot Water Outlet6500 m36500 m3HFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water OutletHFO InletHFO OutletHot Water InletHot Water Outlethttp://www4.eere.energy.gov/manufacturing/tech_deployment/amo_steam_tool/equipDeaeratorhttp://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.asp

Dearator SizingDearator Dimension CalculatorInternal Diameter :1.000mSelect UnitsTan-Tan Length :2.000mmft1Volume of two heads :0.26mSelect Head Type2:1Shell Volume :1.57mHemisphericalTotal Volume :1.83mFlatHeads SA :2.17mNumber of heads included in level calculation1Shell SA :6.28m1Surface Area :8.5m22ShellHeadLevel SettingLevelsVapourVolumeVolumeWetted AreaWetted AreaTotal Vol.Retention TimeRetention TimeLevelVolumeVolumeFrom LALLBetween LevelBetween LevelFractionThetaFractionFractionmmm%m%mhoursMinutesLow low0.1000.900.0894.91.4016.6-0.1217.240.10001.28700.05200.0280Low0.2000.800.25113.72.1625.60.20.21913.150.20001.85460.14240.1040Normal0.5000.500.91650.04.2350.00.80.90254.090.50003.14160.50000.5000High0.8500.151.66991.16.6678.81.61.02061.180.85004.69240.90590.9393High High0.9000.101.74495.17.0583.41.70.1016.060.90004.99620.94800.9720Overflow1.0000.001.833100.08.45100.01.70.1217.241.00006.28321.00001.0000Total Residence Time :2.483148.97Volume of one head0.1309Working Volume :1.42m BETWEEN LLL AND HLL (LV ON/OFF ACTION)Utilisation :77.4%Flowrate :0.74m3/hrResidence Time :128.43minutesOke For accomodating surge and hold upResidence Time Specified by Client :10.00minutesRefer to Spiraxsarco (Typical 10 ~ 20 minutes)VentingVendor to AdviceDearator Inlet Water FlowVendor to AdviceDearator Inlet Steam FlowOverflow =1000 mmHigh high level =900 mmID = 1000 mmHigh level =850 mm(L/ID) = 2Normal level =500 mmLow level =200 mmLow low level =100 mmL = 2000 mm

O2 + Air Solubility Pressure760mmHg = 1 atmTemperatureO2 solubilityoCppmppm014.414.4251011.311.219208.858.839307.27.172406.26.036505.65.213604.954.4827043.661803.052.639901.81.41410000.125A =3.00E-09B =-6.00E-07C =1.00E-05D =0.0042E =-0.363F =14.425Pressure760mmHg = 1 atmTemperatureAir solubilityoFoCgr/litergr/literppm = mg/liter4040.02580.02322.61150100.02230.02221.50060160.01970.02020.38970210.01770.01919.27880270.01610.01818.16790320.01470.01717.056100380.01360.01615.944110430.01260.01514.833120490.01170.01413.722130540.01070.01312.611140600.00980.01211.500150660.00890.01010.389160710.00790.0099.278170770.00680.0088.167180820.00550.0077.056190880.00410.0065.944200930.00240.0054.833210990.00040.0043.722A =-2.00E-04B =2.35E-02

O2 + Air Solubility

O2 solubility ppmtemperature, oCo2 solubility, ppmO2 solubility vs temperature

Reff

gr/litertemp, Cair solubility, gr/literair solubility vs temperature

Wartsila-O-E-RT-WHRsteam9_blowdownsteam9_blowdownpresentation4-casestudyboilerpresentation4-casestudyboilerpresentation4-casestudyboilerpresentation4-casestudyboilerpresentation4-casestudyboilerpresentation4-casestudyboilerpresentation4-casestudyboilerpresentation4-casestudyboilerPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionPower-Plants-Product-Catalogue-2012-2nd-editionGTMEIC5510-0136-00pp_low5510-0136-00pp_low21962,Water-pp414-41621962,Water-pp414-41621962,Water-pp414-41621962,Water-pp414-41621962,Water-pp414-41621962,Water-pp414-41621962,Water-pp414-416Basic_Water_ocre481017Nalco Water HandbookNalco Water HandbookNalco Water HandbookNalco Water HandbookNalco Water HandbookNalco Water HandbookNalco Water HandbookNalco Water HandbookNalco Water HandbookThe Nalco Guide to Boiler Failure AnalysisGPSA Sect 18GPSA Sect 18AWT-2http://www.gc3.com/Default.aspx?tabid=92http://www.cewater.com/A55_BoilerSystem.htmlhttp://www.cewater.com/A55_BoilerSystem.htmlhttp://www.cewater.com/A55_BoilerSystem.htmlhttp://gc3.com/Default.aspx?tabid=91http://gc3.com/Default.aspx?tabid=91http://gc3.com/Default.aspx?tabid=91http://gc3.com/Default.aspx?tabid=91http://gc3.com/Default.aspx?tabid=91http://gc3.com/Default.aspx?tabid=91EBMUD_WaterSmart_Guide_Thermodynamic_ProcessesEBMUD_WaterSmart_Guide_Thermodynamic_Processes24_WaterTreatment_BoilerWater24_WaterTreatment_BoilerWaterEssentials for a Sound Boiler Water Treatment ProgramEssentials for a Sound Boiler Water Treatment ProgramEssentials for a Sound Boiler Water Treatment ProgramEssentials for a Sound Boiler Water Treatment ProgramEssentials for a Sound Boiler Water Treatment ProgramEssentials for a Sound Boiler Water Treatment ProgramEssentials for a Sound Boiler Water Treatment ProgramEssentials for a Sound Boiler Water Treatment Programhttp://www.cleaverbrooks.com/Reference-Center/Boiler-Basics/Steam-or-Hot-Water.aspxhttp://books.google.co.id/books?id=gK03hTP7NNcC&pg=PA84&lpg=PA84&dq=heat+losses+in+diesel+engine&source=bl&ots=_r4JXBz2Ls&sig=Y3urFd1KU7TfJZmVI_Enhu8W_Bo&hl=en&sa=X&ei=2MrxU6nHB4K3uAShk4CgDA&ved=0CDIQ6AEwAw#v=onepage&q=heat%20losses%20in%20diesel%20engine&f=false214091248-Diesel-Engine-Power-Plantshttp://www.engineeringtoolbox.com/air-solubility-water-d_639.htmlhttp://www.engineeringtoolbox.com/air-solubility-water-d_639.htmlNalco Water HandbookDeaerator in steam industrial systemhttp://www.spiraxsarco.com/resources/steam-engineering-tutorials/the-boiler-house/pressurised-deaerators.asp