Bob Coecke- Kindergarten Quantum Mechanics

  • Upload
    dcsi3

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    1/69

    Kindergarten Quantum Mechanics

    bOB cOECKE @ QTRF-3

    Oxford University

    se10.comlab.ox.ac.uk:8080/BobCoecke/Home en.html

    (or Google Bob Coecke)

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    2/69

    THE CHALLENGE

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    3/69

    Why did discovering quantum teleportation take 60 year?

    Claim: bad formalism since too low level cf.GOOD QM

    von Neumann QM

    HIGH-LEVEL language

    low-level language

    Wouldnt it be nice to have a such a good formalism,in which discovering teleportation would be trivial?

    Claim: it exists! And Ill present it to you.

    Isnt it absurdly abstract coming from you guys?

    Claim: It could be taught in kindergarten!

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    4/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    5/69

    1. Analyse quantum compoundness. A notion ofquantum information-flow emerges.

    Physical Traces. Abramsky & Coecke (2003) CTCS02; cs/0207057

    The Logic of Entanglement. Coecke (2003) PRG-RR; quant-ph/0402014

    Quantum Information-flow, Concretely, and Axiomatically. quant-ph/0506132

    2. Axiomatize quantum compoundness. ... full quantum mechanics emerges! A Categorical Semantics of Quantum Protocols. Abramsky & Coecke

    (2004) IEEE-LiCS04; quant-ph/0402130

    Abstract Physical Traces. Abramsky & Coecke (2005) TAC05.

    ... & quantum logic ... & open systems/CPMs! De-linearizing Linearity I: Projective Quantum Axiomatics from SCC.

    Coecke (2005) QPL05; quant-ph/0506134.

    -CCCs and Completely Positive Maps. Selinger (2005) QPL05.

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    6/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    7/69

    NO DOGMAS nor TABOOS!

    Do you want ...

    states to be ontological or empirical?

    vectorial, projective, POVM-/CPM-/open system-style?

    hidden variables, quantum potential, contextuality,(non-)locality, Bayesianism, ... ?

    The bulk of the developments ignores these choices, but,

    they can be implemented formally since we both have

    great axiomatic freedom

    great expressiveness

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    8/69

    CATEGORY THEORY!

    Audience: Seriously, you dont expect us to learn that?

    Bob: No! Of course not!

    Bob: We are gonna go far back in time, ...Bob: to the time you were all still at kindergarten, ...

    Bob: Were gonna draw pictures!

    The sheer magic of the kind of category theory we needhere is that it formally justifies its own formal absence.

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    9/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    10/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    11/69

    THE SOLE AXIOM

    =

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    12/69

    Since

    = = =

    the axiom is equivalent to

    =

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    13/69

    When setting

    =: f =:

    fff

    we obtain

    =f

    g

    =f

    g

    f

    g

    =

    f

    g

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    14/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    15/69

    COMPOSITIONALITY bis

    =g

    f h

    h g fo o

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    16/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    17/69

    that is, approximately, as

    Pf : A B

    A

    Bas

    f

    f

    f

    f

    =

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    18/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    19/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    20/69

    14th-TELEPORTATION

    =

    since id id = id

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    21/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    22/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    23/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    24/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    25/69

    HILBERT SPACE QM

    f : H1 H2 is a linear map

    : C H cf. (1) H

    s : C C cf. s(1) C

    H := conjugate Hilbert space of H

    f := linear adjoint of f

    = | = | for :=

    = |

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    26/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    27/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    28/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    29/69

    A key role is played by

    H1

    H2

    H1

    H2

    i.e. bipartite states H1 H2 are representable bylinear functions f : H1 H2 and vice versa. Indeed

    =

    ij

    mij |ij m11 m1n... . . . ...

    mk1 mkn

    f =

    ij mij |ji|

    e.g.

    |00 + |11

    id = |00| + |11|

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    30/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    31/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    32/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    33/69

    The inner-product of , : I A is

    | :=

    = : I I

    where := cf.

    bra := | ket :=| bra-ket := |

    e.g. for f : A B we have

    | f =

    f= f f | =

    f= f

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    34/69

    Adjointness implies

    f | =

    f

    = | f

    Unitarity means U1= U i.e.

    U

    = =

    U

    U

    U

    hence

    U | U =

    =

    =

    U

    U

    = |

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    35/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    36/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    37/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    38/69

    Hence the star operations

    =:ff* and

    =:ff

    *

    provide a decomposition of the adjoint:

    f = (f) = (f)

    In particular, for the Hilbert space model we have

    () := transposition

    () := complex conjugation

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    39/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    40/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    41/69

    From

    =:ff

    *

    follows

    ff =

    f f

    *

    *

    =

    and hence

    =g

    f

    f

    g

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    42/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    43/69

    ALGEBRA BEHIND THE SCENE

    Symmetric monoidal bifunctor : CC C and

    -involution dual A A;

    contravariant -involution adjoint fAB fBA ;

    Units A : I A

    A with A = A,A A;

    A

    I A A 1A (A A) A

    A

    1A

    6

    - A I

    1A A- A (A A)

    6

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    44/69

    ALGEBRA BEHIND THE SCENE

    Symmetric monoidal bifunctor : CC C and

    -involution dual A A;

    contravariant -involution adjoint fAB fBA ;

    Units A : I A

    A with A = A,A A;

    =

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    45/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    46/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    47/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    48/69

    NATURAL SCALAR MULTIPLES

    Scalars satisfy

    s t = I

    - I Is t

    - I I

    - Is t =

    and we define scalar multiplication as

    s f := A

    - A If s

    - B I

    - Bs t =

    for which we can then prove

    (s f) (t g) = (s t) (f g)

    (s f) (t g) = (s t) (f g)

    i.e. diamonds can move around freely in time and space

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    49/69

    NATURAL SCALAR MULTIPLES

    f fs

    s

    f

    s

    = =

    and similarly

    B

    A

    B

    A

    =

    i.e.

    = A

    - I A

    - B I

    - Bs t =

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    50/69

    NO-CLONING NO-DELETING

    Cf. Dieks-Wooters-Zurek 1982 & Pati-Braunstein 2000

    Obviously we do not want to be a categorical(co-)product since that would imply existence of

    A

    A A A Bp

    A

    i.e. there are no logical rules

    A A A A B A

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    51/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    52/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    53/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    54/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    55/69

    Proof

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    56/69

    Proof.

    1 s := (f) f and t := (g) f

    f

    f

    s=: g

    f

    t=:

    2 f f = g g

    gf= f g

    Proof

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    57/69

    Proof.

    3 s f = t g with s/t := (f /g) f

    g

    f

    =

    f

    gff

    Proof

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    58/69

    Proof.

    4 s s = t t with s/t := (f /g) f

    g

    f

    =

    f

    f

    f

    f

    g

    f

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    59/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    60/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    61/69

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    62/69

    OPEN SYSTEMS AND CPMs

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    63/69

    OPEN SYSTEMS AND CPMs

    f

    B

    A

    f

    B

    A

    C

    C

    C*

    projective process with hidden ancila

    = open process on open system

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    64/69

    ABSTRACT QM

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    65/69

    ABSTRACT QM

    System of type A := Object AComposite of A and B := Tensor A B

    Process of type A B := Morphism f : A B

    State of A := Element : I A

    Evolution of A := Unitary U : A A

    Measurement on A := Projectors {Pi : A A}i

    Data := {i}i Dynamics := P

    Probability := P = Tr(P ) : I I

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    66/69

    DIGEST

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    67/69

    DIGEST

    ... first full formal descrition of protocols

    ... types reflect kinds

    ... classical data-flow is included

    ... quantum info-flow is explicit

    ... kindergarten description/correctness proofs

    ... space for formal/conceptual choices

    ... the thing people call QM-relationalism?

    APPLICATIONS

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    68/69

    APPLICATIONS

    why computer scientists care about this stuff

    Quantum programing language design

    Quantum program logics for verification

    Quantum protocol specification

    Quantum protocol verfication

    Appropriate semantics for new quantum computational

    paradigms e.g. one-way (Briegel), teleportation based(Gottesman-Chuang), measurement based in general,topological quantum computing (Kitaev et al.) etc.

  • 8/3/2019 Bob Coecke- Kindergarten Quantum Mechanics

    69/69