29
Black hole solutions in N>4 Gauss-Bonnet Gravity S.Alexeyev* 1 , N.Popov 2 , T.Strunina 3 1 Sternberg Astronomical Institute, Moscow, Russia 2 Computer Center of Russian Academy of Sciences, Moscow 3 Ural State University, Ekaterinburg, Russia 4th International Seminar on High Energy Physics QUARKS'2006 Repino, St.Petersburg, Russia, May 19-25, 2006

Black hole solutions in N>4 Gauss-Bonnet Gravity

  • Upload
    eyal

  • View
    27

  • Download
    0

Embed Size (px)

DESCRIPTION

4th International Seminar on High Energy Physics QUARKS'2006 Repino, St.Petersburg, Russia, May 19-25, 2006. Black hole solutions in N>4 Gauss-Bonnet Gravity. S.Alexeyev* 1 , N.Popov 2 , T.Strunina 3 1 S ternberg Astronomical Institute, Moscow, Russia - PowerPoint PPT Presentation

Citation preview

Page 1: Black hole solutions in N>4 Gauss-Bonnet Gravity

Black hole solutions in N>4 Gauss-Bonnet Gravity

S.Alexeyev*1, N.Popov2, T.Strunina3 1Sternberg Astronomical Institute, Moscow, Russia

2Computer Center of Russian Academy of Sciences, Moscow3Ural State University, Ekaterinburg, Russia

4th International Seminar on High Energy Physics QUARKS'2006Repino, St.Petersburg, Russia, May 19-25, 2006

Page 2: Black hole solutions in N>4 Gauss-Bonnet Gravity

Main publications

S.Alexeyev and M.Pomazanov, Phys.Rev. D55, 2110 (1997)

S.Alexeyev, A.Barrau, G.Boudoul, M.Sazhin, O.Khovanskaya, Astronomy Letters 28, 489 (2002)

S.Alexeyev, A.Barrau, G.Boudoul, O.Khovanskaya, M.Sazhin, Class.Quant.Grav. 19, 4431 (2002)

A.Barrau, J.Grain, S.Alexeyev, Phys.Lett. B584, 114 (2004)

S.Alexeyev, N.Popov, A.Barrau, J.Grain, Journal of Physics: Conference Series 33, 343 (2006)

S.Alexeyev, N.Popov, T.Strunina, A.Barrau, J.Grain, in preparation

Page 3: Black hole solutions in N>4 Gauss-Bonnet Gravity

Fundamental Planck scale shift

Large extra dimensions scenario (MD – D dimensional fundamental Planck mass, MPl – 4D Planck mass)

MD = [MPl2 / VD-4]

1/(D-2)

Page 4: Black hole solutions in N>4 Gauss-Bonnet Gravity

Planck Energy shift

Planck energy in 4D representation

1019 GeV

Fundamental Planck energy

≈ 1 TeV

Page 5: Black hole solutions in N>4 Gauss-Bonnet Gravity

Extended Schwarzschild solution in (4+n)D

Tangherlini, ‘1963, Myers & Perry, ‘1986

Metric:

ds2=-R(r)dt2+R(r)-1dr2+r2dΩn+22

Metric function: R(r) = 1 – [rs / r]n+1

Page 6: Black hole solutions in N>4 Gauss-Bonnet Gravity

(4+n)D Low Energy Effective String Gravity

with higher order (second order in our consideration) curvature corrections

S=(16πG)-1∫dDx(-g)½[R + Λ + λ SGB + …]

Gauss-Bonnet term

SGB = Rμναβ Rμναβ – 4Rαβ Rαβ + R2

Page 7: Black hole solutions in N>4 Gauss-Bonnet Gravity

Einstein-GB equations

R.Cai, ‘2003

Rµν - ½ gµνR - Λgµν

– α (½ gµνSGB – 2 RRµν + 4 RµγRγν

+ 4 RγδRγµ

δν – 2 RµγδλRν

γδν) = 0

SGB = Rμναβ Rμναβ – 4Rαβ Rαβ + R2

Page 8: Black hole solutions in N>4 Gauss-Bonnet Gravity

(4+n)D Schwarzschild-Gauss-Bonnet black hole

solution(Boulware, Dieser, ‘1986, R.Cai, ‘2003)

Metric representation:

ds2 = - e2ν dt2 + e2α dr2 + r2 hij dxi dxj

Metric functions:

Page 9: Black hole solutions in N>4 Gauss-Bonnet Gravity

Mass and Temperature

Mass

Temperature

Page 10: Black hole solutions in N>4 Gauss-Bonnet Gravity

Hawking Temperature

M/MPl

M/MPl

Twith GB/Twithout GB

Twith GB/Twithout GB

Page 11: Black hole solutions in N>4 Gauss-Bonnet Gravity

“Toy model”

(4+n)D Kerr-Gauss-Bonnet solution with one momentum (“degenerated solution”).

Necessity: to compare with the usual Kerr one in the complete range of dimensions: N=5,…,11

Page 12: Black hole solutions in N>4 Gauss-Bonnet Gravity

“Degenerated” solution

here β(r,θ) is the function to be found, ρ2 = r2 + a2 cos2θ

N.Deruelle, Y.Morisawa, Class.Quant.Grav.22:933-938,2005, S.Alexeyev, N.Popov, A.Barrau, J.Grain, Journal of Physics: Conference Series 33, 343 (2006)

ds2 = - (du + dr)2 + dr2 + ρ2dθ2 + (r2 + a2) sin2θdφ2

+ 2 a sin2θ dr dφ + β(r,θ) (du – a sin2θ dφ)2

+ r2cos2θ (dx52 + sin2x5 (dx6

2 + sin2x6 (…dxN2)…)

Page 13: Black hole solutions in N>4 Gauss-Bonnet Gravity

(UR) equation for β(r,θ)

For 6D case, for example

h1 = 24 α r3

h0 = r ρ2 (r2 + ρ2)g2 = 4 α (3r4 + 6 r2 a2 cos2θ – a4 cos4θ) / ρ2

g1 = (r2 + ρ2) (2r2 + ρ2)g0 = Λ r2 ρ4

[h1(r) β + h0(r,θ)] (dβ/dr)

+ [g2(r,θ) β2 + g1(r,θ) β + g0 (r,θ)] = 0

Page 14: Black hole solutions in N>4 Gauss-Bonnet Gravity

Λ = 0

β(r,θ) μ /[rN-5 (r2 + a2 cos2θ)] + …

Λ ≠ 0

β(r,θ) C(N) Λ r4 / [r2 + a2 cos2θ] + …

Behavior at the infinity

Page 15: Black hole solutions in N>4 Gauss-Bonnet Gravity

Behavior at the horizon

β(r,θ) = 1 + b1(θ) (r - rh) + b2(θ) (r – rh)2 + …

For 6D case

b1 = [4 α (3 rh4 + 6 rh

2 a2 cos2θ – a4 cos4θ) (rh2 + a2 cos2θ)-1

+ (2 rh2 + a2 cos2θ) (3 rh

2 + a2 cos2θ)

+ Λ rh2 (rh

2 + a2 cos2θ)2] / [24 α rh3 + rh (2 rh

2 + a2 cos2θ)]

Page 16: Black hole solutions in N>4 Gauss-Bonnet Gravity

Usual form of metricds2 = - dt2 (1 – β2)

+ dr2 [(r4(1 – β2) + a2 (r2 + β2a2cos4θ) / Δ2]

+ ρ2dθ2 – 2aβ2sin2θ dtdφ + dφ2 sin2θ [r2 + a2 + a2β2 sin2θ]

+ r2 cos2θ (dx5 + …)

Δ = r2 + a2 - ρ2 β2

ρ2 = r2 + a2 cos2θ

Page 17: Black hole solutions in N>4 Gauss-Bonnet Gravity

Mass & angular momentum

Mass M = µ (N-2) AN-2/16πG

where AN-1 = 2 πN/2/Γ(N/2)

Angular momentum Jyix

i = 2 M ai/N

the same as in pure Kerr case

Page 18: Black hole solutions in N>4 Gauss-Bonnet Gravity

6D plot of β=β(r,a ∙ cosθ) in asymptotically flat case (Λ=0), λ=1

Page 19: Black hole solutions in N>4 Gauss-Bonnet Gravity

6D plot of β=β(r,a ∙ cosθ) when Λ ≠ 0, λ=1

Page 20: Black hole solutions in N>4 Gauss-Bonnet Gravity

While considering “degenerated solution” there are no any new types of particular points, so, there is no principal difference from pure Kerr case all the difference will occur only in temperature and its consequences

Page 21: Black hole solutions in N>4 Gauss-Bonnet Gravity

Real angular momentum tensor

Page 22: Black hole solutions in N>4 Gauss-Bonnet Gravity

Number of angular momentums

According to the existence of [Ns/2] Casimirs of SO(N) (Ns is the number of space dimensions) For N=4 (Ns=3) there is 1 moment

For N=5 (Ns=4) there are 2 moments

For N=6 (Ns=5) there are 2 moments

For N=7 (Ns=6) there are 3 moments

For N=8 (Ns=7) there are 3 moments

For N=9 (Ns=8) there are 4 moments

For N=10 (Ns=9) there are 4 moments

For N=11 (Ns=10) there are 5 moments

Page 23: Black hole solutions in N>4 Gauss-Bonnet Gravity

5D Kerr metric (complete version)

ds2 = dt2 - dr2 - (r2+a2) sin2θ dφ1

- (r2+b2) cos2θ dφ2 – ρ2 dθ2

- 2 dr (a sin2θ dφ1 + b cos2θ dφ2)

- β (dt – dr – a sin2θ dφ1 - b cos2θ dφ2)Whereρ2 = r2 + a2 cos2θ + b2 sin2θ,β = β(r, θ) is unknown functiona, b - moments

Page 24: Black hole solutions in N>4 Gauss-Bonnet Gravity

θθ component

A β’’ + B β’2 + C β’ + D β + E = 0

Where

A = r ρ2 (4 αβ – ρ2)

B = 4 α r ρ2

C = 2 [ 4 αβ (ρ2 - r2) – ρ2 (ρ2 + r2) ]

D = 2 r (2 r2 – 3 ρ2)

E = 2 r ρ4 Λ

Page 25: Black hole solutions in N>4 Gauss-Bonnet Gravity

Solution manipulations

This equation could be divided into 2 parts

A(r,ρ)β’’+B(r,ρ)β’+C(r,ρ)β+D(r,ρ,Λ)=Z(r,ρ,β)

E(r,ρ)(ββ’)’+F(r,ρ)(ββ’) =Z(r,ρ,β)

Page 26: Black hole solutions in N>4 Gauss-Bonnet Gravity

5D solution

Page 27: Black hole solutions in N>4 Gauss-Bonnet Gravity

6D metric

ds2 = dt2 - dr2 – sin2ψ [(r2 + a2) sin2θ dφ12

+ (r2 + b2) cos2θ dφ22]

- (r2 + a2 cos2θ + b2 sin2θ) sin2ψ dθ2 - [r2 + (a2 sin2θ + b2 cos2θ) cos2ψ] dψ2 - 2 dr sin2ψ (a sin2θ dφ1 + b cos2θ dφ2) + 2 (b2 - a2) sinθ cosθ sinψ cosψ dθ dψ - β(r,θ,ψ) [dt – dr –sin2ψ (a sin2ψ dφ1 + b cos2θ dφ2)]2

Page 28: Black hole solutions in N>4 Gauss-Bonnet Gravity

Conclusions

Taking into account 5D case one can see that in the general form of Kerr-Gauss-Bonnet solution there are no any new types of particular points, so, there is no principal difference from pure Kerr case all the difference will occur only in temperature and its consequences

Page 29: Black hole solutions in N>4 Gauss-Bonnet Gravity

Thank you for your kind attention!And for your questions!