52
Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Embed Size (px)

Citation preview

Page 1: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Bjorken Scaling & modification of nucleon mass

inside dense nuclear matter

Jacek Rozynek INS Warsaw

Nuclear Physics Workshop

HCBM 2010

Page 2: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

1. Nuclear structure function in Deep

Inelastic Scattering (DIS) - review.

2. Finite pressure corrections.

3. Implication to the EOS for Nuclear matter.

4. Conclusion.

Plan

• EMC effect• Relativistic Mean Field Problems• Hadron with quark primodial distributions• Pion contributions

• Nuclear Bjorken Limit - MN(x)

Page 3: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

 

EMC effect

Historically ratio

R(x) = F2A(x)/ AF2

N(x)

x

Pion excess

Page 4: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

 

Three approaches to EMC effect  in term of nucleon degrees of freedom through the nuclear spectral function. (nonrelativistic off shell effects) G.A.Miller&J. Smith, O. Benhar, I. Sick, Pandaripande,E Oset

  in terms of quark meson coupling model modification of quark propagation by direct coupling of quarks to nuclear envirovment A.Thomas+Adelaide/Japan group, Mineo, Bentz, Ishii, Thomas, Yazaki (2004)

by the direct change of the partonic primodial distribution. S.Kinm, R.Close  Sea quarks from pion cloud. G.Wilk+J.R.,

Page 5: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

The graphical representation of the convolution modelfor the deep inelastic electron nucleus scattering with: (a) theactive nucleon N (with hit quark q) including exchange finalstate interaction with nucleon spectators and (b) virtual pion

Page 6: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Hit quark has momentum j + = x p +

ExperimentalyExperimentaly x =x = and is iterpreted as fraction of longitudinal nucleon momentum carried by parton(quark) for 2Q2

On light cone Bjorken x is defined as x = j+ /p+

where p+ =p0 + pz

e

p r(emnant)

Q2

,

Q2/2M

D I Sj

Page 7: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Light cone coordinates

fixedMQxMxq

QfixedxwithQ

qQQvq

pJJpedW iq

2/),0,0,(

0)/(

),,0,0,(

)0()(

2

222

2222

4

MxMx

Mx

qqq

Mxqbutq

qqq

/1||and/1||so

/2||but0

thenif

2/

limit Bjorken in)(2/1

30

30

Page 8: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Relativistic Mean Field Problems

In standard RMF electrons will be scattered on nucleons in average scalar and vector potential:

p +M+US) - (e -UV

where US=-gS /mSSUV =-gV /mV

US = 300MeV

UV = 300MeV

Page 9: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Relativistic Mean Field Problems

In standard RMF electrons will be scattered on nucleons in average scalar and vector potential:

p +M+US) - (e -UV

where US=-gS /mSSUV =-gV

/mV

US = -400MeV

UV = 300MeV

Gives the nuclear distribution f(y) of longitudinal nucleon momenta p+=yAMA

SN() - spectral fun. - nucleon chemical pot.

)(

)(1)p,(

)2(

4)( 3030

4

4 ppy

pE

ppS

pdy NA

A

Page 10: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Relativistic Mean Field Problemsconnected with Helmholz-van Hove theorem - e(pF)=M-

In standard RMF electrons will be scattered on nucleons in average scalar and vector potential:

p +M+US) - (e -UV

where US=-gS /mSSUV =-gV

/mV

US = -400MeV

UV = 300MeV

Gives the nuclear distribution f(y) of longitudinal nucleon momenta p+=yAMA

SN() - spectral fun. - nucleon chemical pot.

)(

)(1)p,(

)2(

4)( 3030

4

4 ppy

pE

ppS

pdy NA

A

Strong vector-scalar cancelation

*

3

22

/,)1(

4

3)( FFA

A

AAA

A Epvv

yvy

Page 11: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Today - Convolution modelToday - Convolution model for x <0.15

• We We willwill show that in deep inelastic show that in deep inelastic scattering the magnitude of the scattering the magnitude of the nuclear Fermi motion is sensitive nuclear Fermi motion is sensitive to residual interaction between to residual interaction between partons influencing both the partons influencing both the Nucleon Structure Function Nucleon Structure Function

• and nucleon mass in th and nucleon mass in th NMNM

• MMBB (x) (x)

• We We willwill show that in deep inelastic show that in deep inelastic scattering the magnitude of the scattering the magnitude of the nuclear Fermi motion is sensitive nuclear Fermi motion is sensitive to residual interaction between to residual interaction between partons influencing both the partons influencing both the Nucleon Structure Function Nucleon Structure Function

• and nucleon mass in th and nucleon mass in th NMNM

• MMBB (x) (x)

• Relativistic Mean Field problems

• Primodial parton distributions

• Bjorken x scaling in nuclear medium

F2N(x)

)()()()(1

22 xFyxyxx

dxdyAxF

xN

AA

AAAAA

A

N O S H A D O W I N G

Page 12: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

RMF failure &Where the nuclear pions are

• M Birse PLB 299(1985), JR IJMP(2000), G Miller J Smith PR (2001)• GE Brown, M Buballa, Li, Wambach , Bertsch, Frankfurt, Strikman

Page 13: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

M(x) & in RMF solution the nuclear pions almost

disappear

Nuclear sea is slightly enhanced in nuclear medium - pions have bigger mass according to chiral restoration scenario BUT also change sea quark contribution to nucleon SF

rather then additional (nuclear) pions appears

Because of Momentum Sum Rule in DIS

The pions play role rather on large distances?

Page 14: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

z=9fm

TTwo resolutions scales in deep inelastic scattering

1 1/ Q 2 connected with virtuality of probe . (A-P evolution equation - well known) 

 1/Mx = z distance how far can propagate the quark in the medium. (Final state quark interaction - not known)

For x=0.05 z=4fm

  

 

  

Page 15: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Nuclear final state interaction

z(x)

Effective nucleon Mass M(x)=M( z(x) , rC ,rN )

J.R. Nucl.Phys.A

rN - av. NN distance

rC - nucleon radius

if z(x) > rN

M(x) = MN

if z(x) < rC

M(x) = MB

Page 16: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Nuclear deep inelastic limit revisitedx dependent nucleon „rest” mass in NM

• Momentum Sum Rule violation

NNx

NNN

Vxf

MM

FxfxFxfx

2

)(1

))(1()()()( 22

22F

)1(]1)(

)(1

2

2

M

V

dxxF

dxxFA N

N

AAA

C[f

f(x) - probability that struck quark originated from correlated nucleon

Page 17: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010
Page 18: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010
Page 19: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Drell Yan Calculations

Good description due to the x dependence of nucleon mass

(no nuclear pions in Sum Rules)

Page 20: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Hit quark has momentum j + = x p +

ExperimentalyExperimentaly x =x = Q2/2Mand is iterpreted as fraction of longitudinal nucleon momentum carried by parton(quark) for 2Q2jorken jorken lim)lim)

D I S

remnant

e

p

Q2

, j

On light cone Bjorken x is defined as x = j+ /p+ where p+ =p0 + pz

d~l W WW1 , W2)

Bjorken Scaling

F2(x)=lim[(W2(q2,Bjo

In Nuclear Matter due to final state NN interaction, nucleon mass M(x) depends on x , and consequently from energy and density .

for large x (no NN int.) the nucleon mass has limit

Due to renomalization of the nucleon mass in medium we have enhancement of the pion cloud from momentum sum rule

Fermie NB MM

F2A(x)= F2[xM/M(x)] + F2

(x)

Rescaling inside nucleus

Page 21: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Results

Fermi Smearing

Page 22: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Results

Fermi Smearing

Constant effective nucleon mass

Page 23: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Results“no” free paramerers

Fermi Smearing

Constant effective nucleon mass

x dependent effective nucleon mass

with G. Wilk Phys.Rev. C71 (2005)

Page 24: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Conclusions part1

• Good fit to data for Bjorken x>0.1 by modfying the nucleon mass in the medium (~24 MeV depletion) in x dependent way with

• Unchanged nucleon M for medium and small x.

• Although such subtle changes of nucleons mass is difficult to measure inside nuclear medium due to final state interaction this reduction of nucleon mass is comp atible with recent observation of similar reduction in Delta invariant mass in the decay spectrum to (N+Pion)T.Matulewicz Eur. Phys. J A9 (2000)

• (~ 1% only) of nuclear momentum is carried by sea quarks nuclear pions) due to x dependent effective nucleon mass supported by Drell-Yan nuclear experiments for higher densities increase for soft EOS towards chiral phase transition.

• Increase of the „additional nuclear pion mass” 5% compatible with chiral restoration.

• x – dependent correction to the distribution kT2

Page 25: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

In vacuum

In nuclear medium

Phys.Rev.C45 1881

Page 26: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

The QCD vacuum

is the vaccum state of quark & gluon system. It is an example of a non-perturbative vacuum state, characterized by many non-vanishing condensates such as

the gluon <gg> & quark <qq> condensates.

These condensates characterize the normal phase or the confined phase of quark matter.

Unsolved problems in physics: QCD in the non-perturbative regime: confinement The equations of QCD remain unsolved at energy scale relevant for describing atomic nuclei. How does QCD give rise to the physics of nuclei and nuclear constituents?

Page 27: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

• pion mass in the medium in chiral symmetry restoration

• Nucleon mass in the medium ?

EOS in NJL

Bernard,Meissner,Zahed PRC (1987)

EMC effect

R. Rapp and J.Wambach, Adv. Nucl. Phys. 25, 1 (2000)

Brown- Rho scaling

Page 28: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Derivative Coupling for scalars RMF Models ZMA. Delfino, CT Coelho and M. Malheiro, Phys. Rev. C51, 2188 (1995).

{Tensor coupling vector (Bender, Rufa)} Review J. R. Stone, P.-G. Reinhard nucl-th/0607002 (2006).

M. Baldo, Nuclear Methods and the Nuclear Equation of State (World Scientific, 1999)

Page 29: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Effective Mass in RMF

• W - Nucleon bare mass in the Walecka mean field approach

• ZM - constructed by changing of covariant derivative in W model. Langrangian describes the motion of baryons with effective mass and the density dependent scalar (vector) coupling constant.

ZM - Zimanyi Moszkowski

Page 30: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Relativistic Mean Field & EOSquark condensate < qq>m in the medium 0

• Delfino, Coelho, Malheiro

22

2

22

2

2

2

22)()1(

)(

1 *

*

m

g

MMMg

m

MMgm

fm NNN

NN

qq

qqNm

fmeff

qq

qq22

1

for models)

<qq>m

Page 31: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Condensate Ratios in RMF

Page 32: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Positive Pressure in NM

A

O

U

R

M

O

D

E

L

Page 33: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010
Page 34: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

But in the medium we have correction to the Hugenholtz-van Hove theorem:

On the other hand we have momentum sum rule of quarks (plus gluons) as the integral over the structure function FN

2(x) shold compensate factor EF/(E/A). Therefore in this model we have to scale Bjorken x=q/2M .

)1(]1)(

)(1

2

2

M

V

dxxF

dxxFA N

N

AAA

C[fEF/M > (E/A)/M

Page 35: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Nuclear energy per nucleon for Walecka abd nonlinear models

The density dependent energy carried by meson field

Now the new nucleon nass will dependent on the nucleon energy in pressure but will remain constant below saturation point.

Mmod=M/(1+(d(E/A)/d

and we have new equation for the relativistic (Walecka type) effective mass which now include the pressure correction.

Page 36: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Basic Equations

o

Page 37: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010
Page 38: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Masses - solution of modified RMF equation with pressure corrections compare to ZM

Partially published in IJMP & Acta Phys Pol

Page 39: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

EOS results

P.Danielewicz et al Science(2002)

Page 40: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010
Page 41: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

David Blaschke

Page 42: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Physically

CONCLUSIONS

Presented model correspond to the scenario where the part   of nuclear momentum carried by meson field and coming from the strongly correlation region,  reduce the nucleon mass  by corrections proportional to the pressure. In the same time in the low density limit the spin-orbit splitting of single particle levels remains in agreement with experiments, like in the classical Walecka Relativistic Mean Field Approach, but the equation of state  for nuclear matter is softer from the classical scalar-vector Walecka model and now the compressibility K-1=9(r2d2/dr2)E/A = 230MeV, closed to experimental estimate. Pressure dependent meson contributions when added to EOS and to the nuclear structure function improve the EOS and give well satisfied Momentum Sum Rule for the parton constituents.

New EOS is enough soft to be is in agreement with estimates from compact stars for higher densities.

Finally we conclude that we found the corrections to Relativistic Mean Field Approach from parton structure measured in DIS, which improve the mean field description of nuclear matter from saturation density to 3. 

0

Page 43: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Dependence from initial in p-A collision

2kT

X-N Wang Phys. Rev.C (2000)

Page 44: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010
Page 45: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Spinodal phase transition

Page 46: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Deep inelastic scattering

fixedMQxMxq

qQQvq

ScalingBjorkenxFqWM

qWqqMpqqMvp

MqWqqqgW

pJJpedW

pJXXJprqpW

Wld

T

T

v

iq

x

2/),0,0,(

),,0,0,(

)(),(lim)/(

),())/()()/((

/1),()/(

)0()(

)0()0()(

2

2222

22

2

22

22

221

2

4

Page 47: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Quark inside nucleus

)()()())(( 0 nnn qVEqrmi

0,0

2

22/

~

1

|)()0(

)0()(|)(

PPQe

PQePedxF

iV

iViMx

QMC model

0,00

2

0

0

2

02/

~

1

|)()0(

)0()(|)(

PPQe

PQePedxF

iV

iViMx

Page 48: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Condensates and quark masses

Page 49: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010
Page 50: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Maxwell construction

Page 51: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

Chiral solitons in nuclei

Miller, Smith, Phys. Rev. Lett. 2003

0)()0(

( )()(_

5

rnriMeiL

EENM vCN

)(

)(arctan)(

r

rr

qs

qps

)'()'()()( '30 rrrrdrr v

svs

qs

)(

)(4

2

3

vsN

vsN

kNs

qMk

Mkd

F

)()()2()(

42

222

3

3

FBv

vFN

k

FB

km

gkMk

kd

kA

E F

nNnn

nNC xMpEMNxq |)()1(|)( 330

_

Chiral Quark Soliton Model Petrov- Diakonov So far effect to strong

Page 52: Bjorken Scaling & modification of nucleon mass inside dense nuclear matter Jacek Rozynek INS Warsaw Nuclear Physics Workshop HCBM 2010

x dependent nucleon effective mass

• it is possible to show that in DIS <kT2>

M2

22 / TMediumT kk

In the x>0.6 limit

(no NN interaction)

<kT2> Nuclear= <kT

2> Nukleon

Bartelski Acta Phys.Pol.B9 (1978)