25
Biosystems Engineering • Integration of Engineering principles • With biologically-based systems • For sustainable production • Food & Biological materials • Efficient utilization of natural resources • Human health ( economic & social) • Harmony with environment.

Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Embed Size (px)

Citation preview

Page 1: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Biosystems Engineering

• Integration of Engineering principles

• With biologically-based systems

• For sustainable production

• Food & Biological materials

• Efficient utilization of natural resources

• Human health ( economic & social)

• Harmony with environment.

Page 2: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Definition of the FieldBiosystems engineering is a broad-based engineering field that integrates

engineering principles with applied biological, agricultural and environmental sciences for the sustainable production of food and

biomaterials and the efficient utilization of natural resources.1

Biosystems engineers apply engineering analysis, design and control to solve problems involving engineering aspects of agricultural production,

biomaterials handling and processing for food and non-food products; and environmental resources management.1

Page 3: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Biosystem

• The biosphere is a complex, life-sustaining system comprising living and nonliving components. Land, water, and air systems interacting to produce food and support life on this planet are all part of the biosystem.

• Ecosystems are subset of biosystem.

Page 4: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Engineering

• Engineering is the application of a basic science, such as physics or chemistry, to solve problems. Traditionally, engineering has employed a single-pass approach to solve problems, using resources that produce waste at every step from processing to transport to consumption.

Page 5: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Engineering

• Basic element in Engineering

• Analysis ( information)

• Design (Synthesis )

• Control ( Management)

Page 6: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Sustainability

• The development that meets the needs of the present without compromising the ability of future generations to meet their own needs.

Haimes 1992

Page 7: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

A biosystems engineer

• A biosystems engineer employs the basic science of biology to enhance the well-being of animals, plants, and the biosphere. Unlike traditional engineering, which addresses problems to find immediate solutions, biosystems engineering looks at problems in loops--seeking the ultimate sources of problems to identify sustainable, environmentally sound solutions that minimize waste and continually recycle materials.

Page 8: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Biosystems engineers do

• pollution control • waste management • integrated pest management • reducing the use of chemicals in food production • ensuring the quality and safety of our food supplies by

using new technologies for food processing • developing renewable energy systems from solar and

biomass sources • preserving wetlands by designing more efficient irrigation

systems • improving the quality and productivity of plants and

animals by making them less susceptible to disease

Page 9: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Defination

• Biological Systems ( Biosystems) Engineering is a broad and growing engineering field that integrates the expertise of fundamental engineering fields with expertise from non-engineering disciplines.( Biological systems)

• Traditionally know as Agricultural Engineering.

Page 10: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Why Biosystems Eng ?

• Instead of just Agricultural Engineering.

• New Agriculture are more challenging , it is not only toiling the land but also using biotechnology and taking care of the environment as well.

• BSE = Biotech + Agric + Enviroment.

Page 11: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient
Page 12: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

BIOSystems engineering 

Biosystems engineering is geared toward the rapid design and development of large and complex biological

systems such as the large scale farming, plantations, controlled environment crop production. It uses results of

engineering sciences and systems theories, shares techniques with operations research and is kin to software engineering and agricultural, which also tackles with designing complex systems. Also called concurrent engineering, biosystems engineering employs the systems approach within a broad

horizon that covers analyses of goals and requirements, considerations of the system from cradle to grave,

integrating the engineering principle with biological sciences and the organization of multidisciplinary teams in

developing the system.

Page 13: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Systems engineering 

Systems engineering is geared toward the rapid design and development of large and complex systems such as the intercontinental ballistic missiles system. It uses results of engineering sciences and systems theories, shares techniques with operations research and is kin to software engineering, which also tackles with designing complex systems. Also

called concurrent engineering, systems engineering employs the systems approach within a broad horizon that covers analyses of goals and requirements, considerations of the

system from cradle to grave, and the organization of multidisciplinary teams in developing the system.

Page 14: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Scope of Biosystems Engineering:

• Research in the physical sciences and engineering

• to understand, model, process or enhance biological systems

• for sustainable developments in agriculture, food, land use and the environment.

Page 15: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

PHYSICS

CHEMISTRYBIOLOGY

CIVIL

MECHANICAL

ELECTRICAL

ELECTRONIC

CHEMICAL

ENVIRONMENTAL

MATERIAL

NUCLEAR

BIOPROCESS

BIOSYSTEM

BIOENGINEERING

Agricultural

Page 16: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

ANALYSIS

DESIGN/SYNTHESIS

CONTROL/OPERATE

PROCESS OF ENGINEERING

STUDY SYSTEM(EXPLORE & ESTABLISHED DIRECTION)

(SET BOUNDARIES)

BUILD SYSTEMINNOVATE,COMPUTED

MODELGOAL/PRODUCT

TEST, EVALUATED, IMPROVED

Page 17: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Pillars of Modern Agriculture20th Century- 21th Century

• Breeding• Irrigation• Fermentation• Fertilizations• Mechanization• Agro-Chemicals• Marketing

• Genetic Engineering+• Control Environment*• Bioprocessing+• Microbes &Agrowaste Mgt.+• Precision Farming*• Biosynthesis products+• E-marketing (k-economy)*

Page 18: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Modern Agriculture20th Century- 21th Century

• Productivity• Efficiency• Profit maximization

Conventional marketing

ICT & BIOTECNOLOGY

DOMINATESAGRICULTURE

NEW MARKETING TECHNIQUES

Page 19: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

What is biosystems engineering?(NON-TECHNICAL DEFINATION)

• Biosystems engineering combines engineering principles

• with biology to solve problems.

• They ensure that we have the necessities of life:

• safe and plentiful food to eat • pure water to drink • healthy environmental resources

Page 20: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

Biosystem vs Bioprocess

• Biological systems engineers design, manage, and develop

systems and equipment that produce, package, process, and distribute the world's food and fiber supplies

• Bioprocess engineers develop and manage equipment and systems that process and distribute food and other biologically based materials

Page 21: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

SCOPE OF BIOSYSTEM ENGINEERING

AGRO-FOREST

RURALDEVELOPMENT

PRECISIONAGRICULTURE

ICT & HUMAN INTERFACE

POSTHARVEST

SOIL &WATER

POWER&MACHINERY

STRUCTURE &ENVIRONMENT

AQUACULTURE

AUTOMATIONEMERGING

TECHNOLOGY

BIOSYSTEM

Page 22: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

BROAD CLASSIFICATIONS BIOSYSTEM ENGINEERING ( Version 1)

1`.Automation and Emerging Technologies (AE) - intelligent machines; automatic control; navigation systems; image analysis; biosensors; sensor fusion; Engineering for biotechnology;

2. Information Technology and the Human Interface (IT) – communicationsand field bus protocols operational research; biosystem modelling anddecision support; machinery management; risk and environmental assessment;

3. Precision Agriculture (PA) agro-meteorology; food, fibre and forage crop production; extra-terrestrial bioproduction; yield, weed and soil mapping; geographical positioning systems;

input reduction; integrated pest management ( GPS-GIS-DSS-CPS)

4. Power and Machinery (PM) tillage and earthmoving equipment; machines for the establishment, protection and harvesting of field, protected, and orchard crops; tractors and agricultural vehicles; dynamics, vibration and noise; forest engineering; hydraulics and

turbomachinery; clean technology;

5. Postharvest Technology (PH) - properties of biomaterials; crop drying, processing and storage; opto-electronic size grading; ripeness, quality, damage and disease detection with optical reflectance, nuclear magnetic resonance and X-ray tomography; food packaging and processing; food chain integrity and foreign body detection

Page 23: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

6. Structures and Environment (SE) design of buildings and control of their environment; livestock housing; dust and odour control; crop stores; horticultural glasshouses and plasticulture; composting and waste treatment; gaseous emissions;

7. Animal Production Technology (AP) - livestock welfare and ethology; health monitors; robotic milking and shearing; feed handling; animal draught; integrated stock management; stock handling, weighing, transport and slaughter; meat processing

8. Soil and Water (SW) ) - soil structure and properties; soil dynamics in tillage, traction and compaction; soil erosion control; crop water requirements; infiltration and transport processes; irrigation and drainage; hydrology; water resource management; hydroponics and nutrient status;

9. Rural Development (RD) - renewable energy; pollution control; protection of the rural environment; infrastructure and landscape; sustainability.

BROAD CLASSIFICATIONS BIOSYSTEM ENGINEERINGCONTINUE:

Page 24: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

CHALLENGES TO INCREASE RICE PRODUCTION.SYSTEM APPROACHED BIOLOGICAL &

ENGINEERING.

$$$$$$$$$$$$$$$$$$$$

OUTPUT

ENVIRONMENTAL POTENTIAL (WATER)

INPUT

BIOLOGICALPOTENTIAL(CROP)

ENGINEERINGBIOLOGICAL

Page 25: Biosystems Engineering Integration of Engineering principles With biologically-based systems For sustainable production Food & Biological materials Efficient

IMPROVED RICE PRODUCTION IN MODERN IRRIGATION SCHEMES

• DUES TO INTRODUCTION OF A COMBINATION OF IMPROVED ENGINEERING PRACTICES AND ADOPTION OF NEW BIOLOGICAL SYSTEMS ACCEPTABLE BY FARMERS

• FROM < 3 TONS/HA > 10 TONS/HA