30
Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

  • View
    222

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Biomineralisation of Magnetosomes in Bacteria

Microbial Bionanotechnology Chapter 5

Page 2: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

2

Magnetotactic • Magnetosome

– Crystalline particles of iron oxide or sulfide– Magnetite Fe3O4

– Greigite Fe3S4 • All are either obligate microaerophiles or strict

anaerobes • Motile, aquatic bacteria • Direction of motility is affected by the Earth’s

geomagnetic field • Strains are either north- or south-seeking depending

upon oxic conditions – North-seekers predominate in the northern hemisphere – South-seekers predominate the southern hemisphere– Exist in equal numbers at the equator

• Current hypothesis states that these bacteria use the geomagnetic field to locate lower O2 or anaerobic habitats

Page 3: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Types of magnetotaxis

Page 4: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Types of magneto-aerotaxis

Page 5: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

5

There are Two Types of Magneto-aerotaxis...

Axial Magneto-aerotaxis

Polar Magneto-aerotaxis

e.g., Magnetospirillum magnetotacticum

e.g., strain MC-1, a magnetotactic coccus

Page 6: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5
Page 7: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Biomineralisation of Fe

Page 8: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Magnetotactic Bacteria

• Electron cryotomography of Magnetospirillum magneticum sp. AMB-1 reveals that magnetosomes are invaginations of the inner membrane. (A) General features of AMB-1 cells highlighted in a 12-nm-thick section of an ECT reconstruction. Outer membrane, OM; inner membrane, IM; peptidoglycan layer, PG; ribosomes, R; outer membrane bleb, B; chemoreceptor bundle, CR; poly-ß-hydroxybutyrate granule, PHB; gold fiduciary marker, G; magnetosome chain, MG. Scale bar, 500 nm. (B to E) Representative magnetosomes containing no magnetite (B), small (C), mediumsized (D), and fully-grown (E) crystals are invaginations of the inner membrane. Scale bar, 50 nm.

Page 9: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

• Magnetosome chains are flanked by long cytoskeletal filaments. (A) Larger view of the magnetosome chain in Fig. 1A. (B) Similar view of a magnetosome chain grown in the absence of iron, which prevents the formation of magnetite crystals. Arrows point to the long filaments. (C) Three-dimensional organization of magnetosomes (yellow) and their associated filaments (green) shown in (B) with respect to the whole cell (blue). Scale bars, 100 nm.

Page 10: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5
Page 11: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5
Page 12: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Bakterielle Magnetosomer

TEM image of two Itaipu-1 cocci. Each bacterium has two chains of magnetosomes (arrows) and two phosphorus-rich globules (P). Scale bar, 1 μm.

Page 13: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

High-resolution TEM images of Itaipu-1 magnetosomes with indexed bars parallel to lattice planes. Obvious symmetries between even the very small facets on opposite sides of the crystal diagonals can be seen. Comparison with other crystals of the chain in Fig. 2 also indicates that this symmetry regularly alternates between crystals.

Page 14: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

(A) Electrostatic contribution to the holographic phase shift from the Itaipu magnetosomes shown in Fig. 2, oriented to a [110] projection. The contours represent the projected thickness and show a flat-topped morphology and steep sides. (B) Projected thickness contours for the same crystals after tilting by 30° about the chain axis to a [211] orientation. The contours show that the crystal is much thicker along its center than along its edges, having a central ridge formed by intersecting faces. (C) Line profiles (solid line for panel A and dashed line for panel B) across the magnetosomes from the indicated positions (arrows), converted to values of one-half their thickness, reveal a 120° angle between the facets for the [211] projection, which is consistent with the intersection of [110] faces. Scale bar, 150 nm (panels A and B).

Page 15: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

• TEM images of Itaipu-1 and Itaipu-3 magnetosomes. (A) Chain of large magnetosomes from magnetotactic bacterial strain Itaipu-1 surrounded by smaller, elongated magnetosomes from strain Itaipu-3. The inset is a [211] diffraction pattern from the second large Itaipu-1 crystal (arrow). (B) Same chain as in panel A tilted 30o about the [111] axis. The inset [110] diffraction pattern from the second large Itaipu-1 crystal shows (111) fringes from the magnetically easy axis. Corner faces {111} and {200} are mirrored about the vertical (or horizontal) axis for alternating crystals (double arrows); see detailed image in Fig. 3. Scale bar, 200 nm.

Page 16: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Tomographic reconstruction of a magnetite nanocrystal from an undescribed coccus collected from Sweet Springs Nature Reserve, Morro Bay, CA, reconstructed from a tilt series of STEM HAADF images obtained at 300 kV on a Philips CM300 FEG TEM over a range of ± 56°. The tableau shows the three-dimensional morphology of the crystal viewed from a range of directions.

Page 17: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Magnetosome Element Analysis

Page 18: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Cu-Fe Analysis

Page 19: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Magnetosomes

Page 20: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Magnetosome crystal morphology

Page 21: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

• MamK, a homolog of the bacterial actin-like protein MreB, forms filaments in vivo. (A) Phylogenetic relationship between MamK and other bacterial actin-like proteins demonstrated by an unrooted tree. These proteins separate into three distinct groups: MamK (green), ParM/StbA (red) and MreB (blue). (B) MamK fused to GFP (green) appears to form filaments in vivo localized to the inner curvature of the cell (cell membrane stained red with FM4-64).

Page 22: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

• MamK is required for the proper organization of the magnetosome chain. (A) Three-dimensional reconstruction of a wild-type AMB-1 cell. The cell membrane (gray), magnetosome membrane (yellow), magnetite (orange), and magnetosome-associated filaments (green) are rendered. (B) mamK mutant, where magnetosomes appear disordered and no filaments are found in their vicinity. (C) mamK cell expressing mamK-GFP on a plasmid showing full reversal of the mutant phenotype.

Page 23: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Magnetosome membrane proteins

Page 24: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Comparative genome analysis

Page 25: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Magnetotaxis genes

Page 26: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Mam gene regulation in Cells

Page 27: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Magnetosome membrane

Page 28: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Magnetosome membrane protein

Page 29: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Biotechnological applications

• Delivery systems• Separation systems• DNA arrays• RNA arrays• Thermo treatment• Sensor systems

Page 30: Biomineralisation of Magnetosomes in Bacteria Microbial Bionanotechnology Chapter 5

Applications of Magnetosome particles