19
Inflatation of latex tube – material parameter identification BIOMECHANICS

BIOMECHANICS

  • Upload
    alexia

  • View
    22

  • Download
    1

Embed Size (px)

DESCRIPTION

BIOMECHANICS. Infla tation of latex tube – materi a l paramet er identification. NONLINEARITIES. s. e. In continuum mechanics. Geometric al n onlinearity Large displacements Large deformation. Material nonlinearity N onlinear constitutive equation. Constraints-contact - PowerPoint PPT Presentation

Citation preview

Page 1: BIOMECHANICS

Inflatation of latex tube – material parameter identification

BIOMECHANICS

Page 2: BIOMECHANICS

NONLINEARITIES In continuum mechanics

Geometrical nonlinearity Large displacements

Large deformation

Material nonlinearity Nonlinear constitutive equation

Constraints-contact Boundary conditions

E

nE 0

ij ijkl klc

nE 0

Page 3: BIOMECHANICS

Inflation test

Load

- Transmural pressure

- Axial force

Goal

- Constitutive equation of material

Page 4: BIOMECHANICS

ModellingTensors of deformation

Gradient of deformation F

X(X1,X2,X3,t) – reference configuration x(X1,X2,X3,t) – loaded state.

Displacement U(X,t)=x(X,t)-X.

iij

j

x X X X tF

X

, , ,

1 2 3 tx X,

FX

In terms of displacements x=X+U

iij ij

j

UF

X

Page 5: BIOMECHANICS

ModellingTensors of deformation

Green–Lagrange tenzor

TE F F I 12 ij ki kj ijE F F 1

2ji k k

ijj i i j

UU U UE

X X X X

12

Example:

One-dimenional homogeneous deformationí x1=X1, x2=X2, x3=X3.

Displacement U : U1=x1-X1, U1= X1-X1.

x xE E F F

X X

21 11 1 1 111 11 112 2 2 2

1 1

1 1 1 1

Page 6: BIOMECHANICS

ModellingTensors of deformation

Engineering deformation

Example:

One-dimenional homogeneous deformationí x1=X1, x2=X2, x3=X3.

Displacement U : U1=x1-X1, U1= X1-X1.

jiij

j i

UUX X

12

X XU UX X X

1 11 11 1 111 2 2 2

1 1 1

2 2 1 1 1

Page 7: BIOMECHANICS

Hyperelastic material

ijij

W

- true stress

- engineering deformation

Ronald S. Rivlin (1915-2005)

Melvin Mooney (1893-1968)

W c I c I Jd

2

10 1 01 2

13 3 1

I1, I2 first and second invariant of deformation tensor deviator, J change of volume, i main stretches

Function – density of deformation energy W.

Page 8: BIOMECHANICS

Hyperelastic material

1. adiabatic

2. incompressible

i i

i

Wp

, ,

1 2 3

i…stretchesp…Lagrange multiplicator (pressure)

Page 9: BIOMECHANICS

ExperimentInflation test

Measured quantities

1. Outer radius ro

2. Length of tube l3. Axial force F4. Internal pressure pi

Page 10: BIOMECHANICS

Experimental setup

1. Sample2. Flanges (3.)

4. Weights5. Tank6. Syringe – pressure generator7. Syringe – weight adjustment8. T-cock9. Valve10. Pressure transducer11. Scale12. Stand13. Camera

Page 11: BIOMECHANICS

Model - deformations Cylindrical coordinate system

, , , ,X Z R x z r Stretches i

t

o r rO R R

22 z

lL

r

hH

tangential axial radial

t

z

r

rR

lL

hH

F

0 00 0

0 0 0 0

0 00 0

Deformation gradient F

Page 12: BIOMECHANICS

Model - deformations

o i o iV v R R L r r l 2 2 2 2

Incompressibility constraint

vJ

Vdet F 2 1

t

z t z r

r

det F

2

2 2 2 2

0 0

0 0 1

0 0

t z r

rlhRLH

1

Ro…initial outer radius Ri…initial inner radius ro…actual outer ri…and inner radius

L…initial length l…actual length

Page 13: BIOMECHANICS

Model-membrane

i zz zzi

pr Gz F h r p r G

h rh:

20 2 0

2 2

j tt ttj

prt F hdz p rdz

h: 0 2 2 0

zz

tt dzG

Balance of forces

Page 14: BIOMECHANICS

Stress from loads (p,G)

o i o o o t ztt

p r r p r h r rp rp p

h h h h H

2 1 12 2 2 2

tt tt tt ttz z

zzo i o i o

G GG Gr h r r h R R H H R H

2 2 2 2 2 2

i ot

i o

r rR R

o i o iR R L r r l 2 2 2 2

Outer radius is measured, inner radius is calculated from the incompressibility constraint

Page 15: BIOMECHANICS

Stress from Const. Equat. Stresses from deformation energy

tt tt

W

zz zz

W

t z r t z r t z z r r tW W W c c, , , , 2 2 2 2 2 2 2 2 21 2 3 1 23 3

Mooney–Rivlin model W

Using incompressibility W is expressed as function of t, r

t r zJ 1 rt z

1 t zW W ,

Page 16: BIOMECHANICS

Material parameter identification

Regrese

MODtt t

t

W c c,

1 2

MODzz z

z

W c c,

1 2

Model prediction Experiment

MOD o t ztt

rp

H

12

MOD tt z

zzo

GH R H

2 2

Goal function – least squares

n

EXP MOD EXP MODtt tt zz zz

j j

Q

2 2

1

Qmin

n is number of measurement (measured points)

Page 17: BIOMECHANICS

Material parameter identification

Linear regression

n

EXP MOD EXP MODtt tt zz zz

j j

Q c c,

2 2

1 21

0

Stationary point (minimum) [c1*,c2

*]:

Q c c

c

,

1 2

1

0 Q c c

c

,

1 2

2

0 Q([c1*,c2

*])=minQ

Page 18: BIOMECHANICS

Experiment

1. Assembly of measuring instruments

2. Measure dimensions in reference configuration (Ro,Ri,L,H,m)

3. Adjust camera

4. Flood pipe

5. Several test cycles (preconditioning) without records

6. At least 3 measuring cycles, recorded

7. Disassembly and cleaning

Page 19: BIOMECHANICS

Experiment Measuring cycle

At least 6 measuring points ([ro,l,p,G]-loads and corresponding dimensions)

Upper limit for load ~ 20 kPa

Close the valve in each measuring point!

It is not necessary to measure in the region where the model assumptions are viaolated (buckling at higher loads)